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ABSTRACT

A process of the radiative recombination of the non-
relativistic electron with a hydrogen-like ion is con-
sidered. A simple expression is derived for the total
cross section of the process with the use of the analy-
tic properties of the electron Green function in a
Coulomb field. The dipole approximation is used.

© Hnucruryr adeprof ¢usuxku CO AH CCCP

In the present paper, the radiative transition of an electron from
the continuous spectrum state to the discrete spectrum state (the
radiative recombination) is considered. This process is of a great
importance in plasma physics, astrophysics etc.

The review of the early papers devoted to the problem under
consideration can be found in Ref. [1]. The numerical calculations
of the cross sections had been a rather complicated problem, especi-
ally for the total cross section calculation. The essential step has
been made in Ref. [2], where the relatively simple expression has
been obtained for the transition on the fixed energy level. In our
paper, a simple formula for the total cross section is derived for the
radiative recombination of a nonrelativistic electron with a hydro-
gen-like ion.

We will carry out the calculation in the dipole approximation
which is valid if Za<1 (Zle| is the ion charge, a=¢&’/hc=1/137
is the fine structure constant, e is the electron charge). In this case
the total cross section o, depends on the parameter t=Ze’/hv,
where v is the initial electron velocity.

Let us start with the well-known formula for o (see e. g.

Ref. [3]):

o, K 2 1322
where the summation is performed with respect to the bound states.

In eq. (1) Xy is a matrix element of X between the initial state ({:)
and the final state (y.) of an electron, ho=E—E, E=mv*/2 is
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the initial electron energy, E, is the final electron energy and m is
the electron mass. Evidently, the cross section o, does not depend
on the velocity direction A=70/v of an initial electron. This fact
allows us to transform the expression (1) for the cross section or..
in the following way. Firstly, we multiply both sides of (1) by
dih/4n and take the integral over the angles of the unit vector A.
Then, it is convenient to use the standard electron Green function
G(xX, x'|e) in the Coulomb field (see Ref. [3]). As it is known, the
function G has a cut along the real axis from 0 To oo, in the com-
plex plane &, which corresponds to the continuous spectrum. It also
has poles at £¢<C0, corresponding to a discrete spectrum. In virtue
of that, for the functions y; of the continuous spectrum one obtains
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where §G (X, X'|E) =G (X, X' |E+i0) — G(x, Xx’| E—i0) is the discon-
tinuity of the Green function on the cut. For the function ¢, of the
discrete spectrum, we get
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Here the contour C, of the integration with respect to e encircles all

~ the poles (see Figure). With the help of the relations (2) and (3),
we represent the cross section o, in the following form:
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Using the analytic properties of the Green function, it is possible to
deform the contour of the integration with respect to ¢ in (4) in
such a way that it will encircle a cut (contour C,, see Figure). The
singularity at e=E should be taken into account. The reason of the
arising of this singularity will be explained below.

I

Fig. 1. The contours of integration with respect to & in eq. (4). The crosses corres-
pond to the poles of the discrete spectrum.
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Let us consider now the radiative transition of an electron to the
state of a continuous spectrum (bremsstrahlung). Acting in the
same way as in the derivation of eq. (4), we obtain for a corres-
ponding cross section o:
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where ¢ is the energy of a final electron. The cross section oy, for
the radiation by the nonrealistic electron in the field of a hydro-
gen-like ion, is well-known (see e. g. Ref. [3]):
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where E=Ze?/hv, E'=17Ze*/hv’, e=m(v')?/2, n= —4vv’'/(v—0’)"
and the function F(n) is the hypergeometric function: F(y)=
=F(i§, it’; 1; n). It is evident that e<E in eq. (6). In the limit
e—~E, we get from eq. (6) the following asymptotic form:

do 16 j o200 (—H_FL) + (1) — (W{1 4 i) + (1 —iE)) /2
St ) R w i
de 3 me E—e

where P(x) z;i—_in I'(x). It is easy to see now that the singularity at

e—FE is the usual singularity connected with the soft photon emission.

Let us return to the consideration of the radiative recombination.
After the transition from the contour C, to the contour € in
eq. (4), one can represent o, as a sum of two quantity:
Orec=0,+ 0y The quantity o, is given by the formula (4), where the
integral with respect to ¢ is taken in the principal value sense and
G(x’, X |e) has to be substituted by 8G (X', x¥ |e). The quantity oy is
given by eq. (4), where the integration is performed along the infi-
nitesimal circle around the point e=E. Comparing eqs. (4) with
(5) and taking into account antisymmetry of %—E— (5) with respect
to substitutions e«=E, we obtain o, with the use of eq. (6). To cal-
culate o9, one has to construct a function for which the discontinuity
on the cut in neighbourhood of the point e=E to be given by
expression (7). It is not difficult to do that, using the well-known
relation $(x—1) —p(x+ 1) =nctg (nx) —1/x and the analytic pro-

perties of logarithm. Making the stated calculations, we get finally
3]




the following expression for the total cross section of the radiative
recombination:
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The notations used in eq. (8) are defined after eq. (6).

Let us discuss now the asymptotic form of the cross seection o....
In the case of £ 1, the main contribution to o,  comes from the
following region of integration with respect to e in (8): E<e< EE>.

In this region T}%iF(ﬂ)zﬁEKp (2nE’) /n~/3. Substituting this
asymptotic into (8) and taking the integral, with logarithmic accu-
racy, we obtain
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The asymptotic form (9) is in agreement with the result adduced in
Rei. [2]. In the case of E« 1, it is convenient to devide the region
of integration with respect to € in two parts: from 0 to & and irom
go to oo, where we choose gy such that EE*<eo< E. In the first
region E<1, &'~1, n« 1. In the second region §, £'<1, n~I1.
Making the corresponding expansion, taking the integrals and then
adding both contributions, we obtain

Hy 2
e Ao ! ("ﬁ— 5(3) (10)
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that coincides with the well-known result for the total cross section

in the case of E<€1 (see e. g. Ref. [3]). In eq. (10) T(x) is the
Riemann function.

' The method for the calculation of the radiative recombination

cross section proposed here seems to be very useful for some other

cases as well.
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