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ABSTRACT

To find the instanton— antiinstanton potential a
method of calculation of the functional integral near
the configurations, which are only approximate solu-
tions of equation of motion, is developed. The collec-
tive coordinates are chosen for only that modes which
can't be integrated in Gauss approximation. Instan-
ton — antiinstanton pair is a name for a configuration
minimizing the action in all other <«undangerouss
directions. ;

As a practical example the asymptotic of pseudo-
particle interaction in nonlinear O(3)-sigma model is
found. At large distances the field of instanton — anti-
instanton pair turns out to be very different from the
sum ol fields of two single pseudopaticies. This
means, in particular, that to go beyond the dilute
instanton gas approximation one can’t introduce
two-particle interaction only. The opportunity to inves-
tigate some other field configurations is discussed
(merons).
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1. INTRODUCTION

After the instanton discovery in 1975 [1] the question about the
role ol nontrivial solutions of classical Euclidean equation of motion
in quantum field theory attracts a permanent attention. The most
important examples of such fluctuations are the instantons in
SU(N) Yang— Mills theory, directly associated with strong interac-
tion physics. In this theory an exact N-instanton (N-antiinstanton)
solution [2, 3] was found in addition to one-instanton solution [I].
Another popular class of theories looking in many features very like
the SU(N) gluodynamics and having also an exact many-instanton
solution are the nonlinear O(3)-sigma model [4] and CP(N)-sigma
models [5]. In all mentioned theories the N-instanton configuration
realizes the absolute minimum of action for a fixed topological
class. If we want to go beyond the dilute gas approximation, we
must learn to deal.with configurations, constructed from a few
instantons and antiinstantons. The simplest example is presented by
an instanton and antiinstanton, situated at a distance much larger

‘their sizes. This configuration has zero topological charge and,

generally speaking, do not satisfy to the equation of motion. The
aim of this paper is to find an adequate method to describe the field
configurations which minimize the action only approximately. All
practical applications are made for nonlinear O(3)-sigma
model —the simplest theory we concerned. The experience stored in
dealing with this model is believed to be useful for calculation of
the Yang— Mills instanton—antiinstanton interaction.
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There are many papers devoted to the problem of instan-
ton — antiinstanton potential calculation (see e. g. [6—13]). How-
ever, in most of them the shape of instanton —antiinstanton configu-
ration is chosen quite arbitrary. Either two different solutions of
classical equation of motion in two separate parts ol coordinate
space are made equal at the boundary (with break of derivatives),
or more or less argued ansatz is used for far separated pseudo-
particles.

Among the quoted papers outstands the methed ol 1.I. Balitsky
and AV. Yung [12, 13]. In this method the choice of an infinite
dimensional functional space trajectory, describing the gradual
moving up of initially far separated pseudoparticles, is really model
independent. Nevertheless, the method of paper [12] does not seem
good (see detailed discussion in the end of the following section).

Development of the paper proceeds as follows. In section 2 a
way to distinguish the collective variables which describe the motion
of an instanton and antiinstanton is shown. Calculation of the non-
linear O(3)-sigma model instanton—antiinstanton interaction is
examined in section 3. Practically, an origin of only the first
nonvanishing term in the long range expansion of the potential
~1/R? may be understood (R-distance between pseudoparticles).
Nevertheless, even this result occurs to be unexpectedly interesting.
The field of instanton—antiinstanton configuration at distances
much larger R turns out to decrease much faster than the fields of
pseudoparticles itself, or their sum. Some original screening takes
place. Hence the pseudoparticle interaction is not of the two particle
form even in the lowest ~1/R® approximation. Let’s for example
consider an instanton very far distant from an instanton— antiins-
tanton pair. Because of screening the single pseudoparticle should
not interact with the pair. It is to be mentioned, that first attempts
to calculate the nonlinear O(3)-sigma model pseudoparticle interac-
tion were perfomed in [7, 8]. The results of these papers differ both
from each other and [rom present paper.

Trying to obtain other corrections to the instanton—antiinstan-
ton potential one encounters the principle problems. Practically, the
main criterion for the choice of collective coordinates consists in
requirement that the Gauss integral over all other modes should
slightly differ from the product of integrals near individual pseudo-
particles. Unfortunately, this natural, model independent definition
allows to calculate only the first term in the long range expansion
of potential.
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Some secondary detailes of section 3 are carried out to Appen-
dixes A and B. The problem of Gauss integral calculation near an
instanton — antiinstanton configuration, obtained in section 3, is dis-
cussed in Appendix C. Finally, an application of the developed me-
thod to get the smoothed nonlinear O(3)-sigma model meron solu-
tions is examined in Appendix D.

The principal results and discussion of possible perspectives are
shown in the conclusion.

2. GENERAL DESCRIPTION OF THE METHOD

Our principal aim is to calculate an infinite dimensional func-
tional integral

1
z Sexp[ gS[[p}]nd(p. (2.1)

Generally accepted way to lind Z consists in calculation of the
functional integral in Gauss approximation near the minimum of
S(¢) (the saddle point approximation). To get the minimums one
have to find the finite action solutions of the equation of motion
8S/69=0. . ot oL i

As it was pointed out in the introduction in this paper we are
interested in the contribution to integral (2.1) from the finite action
configurations which are only approximate solutions of Euclidean
equation of motion. | _ el '

The physical theories may be divided in two classes. We face a
typical representative of one class when investigate with path integ-
ral the problem of the anharmonic oscillator ~with potential
A (x2—n?)2 In this case among the eigenvectors of operator 828 /6¢*
in the field of instanton there is one level with zero eigenvalue
separated by finite split (~hn®) from other eigenvectors.

It is evident to suppose that for such ‘theories the operator
§2S/8¢? in -the field of instanton —antiinstanton pair has a lew
eigenvectors . with anomalously small eigenvalues. In other words,
we suppose that there exists a certain segment of the functional
space where an expansion |

¢=qo+) |n)a,,
I
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is valid, and besides |e.| < ®?. Here N is the doubled number of
zero modes for a pseudoparticle. All parameters of the expansion
(2.2) —S(@0), M, €n, o are slow functions of the point go.

It is easy to show, that in the part of functional integral, where
the expansion (2.2) is valid a surface of the function S(¢) looks
like a valley sloping very gently. Due to relatively big value of of
the integration over a; (j= N) may be performed in the Gauss
approximation. This direction corresponds to the motion across the
valley. It seems quite natural for the pair instanton — antiinstanton
to minimize the action in all @; with j= N. On the other hand to
integrate along the a, (n<CN) the Gauss approximation can’'t be
used because of anomalously small values of g, i. e. the collective
coordinates are to be introduced. The modes a. (n<<N) reflect the
motion along the valley. \

Now it is easy to define the valley bottom—the line correspon-
ding to different relative positions of pair components. The bottom
of valley is a set of points where function S(¢) has a conditional
minimum so that 65/8¢ does not equal to zero, but is a linear com-
bination of N eigenvectors of the operator §°S/6¢? which have ano-
malously small eigenvalues. In other words, the set of equations to
find the configuration.¢(x) for an instanton— antiinstanton pair has
a form: -

Y
0S8 !
i S

l (2.3)
58 ;
59’ Pi=¢g;P;

Here the coefficients A;-may be done equal to the unit by a choice of
functions ; normalization. :

It is wellknown that if the equation of motion is fulfiled
(68/8¢=0) any symmetry of the Lagrangian leads to appearance
of zero eigenvalue of §°S/8¢’. One can easily see that if 6S/8¢p==0
all the ¢; in (2.3) generally speaking differ from zero.

[t is interesting, that the value of first variation of action 6S/8¢
determines practically the valley slope only—not the position of its
bottom. The faster action would grow along the valley, the less
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should be the role of this part of the functional space in the con-
tinual integral. '

To introduce the collective coordinates the functional integral
(2.1) is to be multiplied by the Faddeev— Popov unit. It seems very
natural to use the delta functions to make equal zero the ag;
(j<<N) —the eigenvalues of §°S/8¢” having anomalously small
eigenvalues:

2= [] 8Co—q 1)) det || 2e=mltad ||
i : '

xﬁ dri exp[— Lst '}] [d (2.4)
L2 Tl | e :

‘Here 4, are the same eigenfunctions of §°S/8¢* as in (2.3) and r; is

the set of useful collective variables (the pasitions, orientations and
sizes of the pseudoparticles). Such a delinition of the collective
coordinates makes it most simple to calculate the Gauss integral
over the directions across valley (compare e. g. with [12]). One is
only to calculate the determinant of the operator §2S/6¢? with N
eigenvalues omitted.

Let’'s discuss what happens in more interesting to us sigma
models and Yang— Mills theories. One can see that the expansion
(2.2) is not applicable in this case. The continuous spectrum of
eigenvalues of the operator 6°S/8¢® begins immediately from w?=0.
That means there is an infinite number of directions near any confi-
guration in the functional space which the action varies along
almost linearly. Therefore there are no real valley on the S(g)
surface. |

Nevertheless we could construct the solutions of equations of
(2.3) type which should have a certain physical sense. Involved in
all physical quantities is not the value of functional integral (2.1),
calculated near the instanton configuration, but only its difference
from the functional integral around the trivial vacuum of the theory.
Of course, the Gauss integral along the eigenvector of 8°S/8¢?
in the field of pseudoparticle pair with very small eigenvalue should
produce a dangerously big multiplier in Z. But generally speaking,
the same multiplier in Z appears when we calculate the functional
integral near the vacuum. The collective variables are necessary
only if spectra of the operator 8°S/8¢’ in the instanton — antiinstan-
ton pair field and near the vacuum differ drastically.
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As we shall see in the following section there are two types of
differencies in the spectra of 8°S/8¢” in two pseudoparticles field
and in vacuum. We know that in the field of an individual pseudo-
particle there are a few zero modes — the localized eigenvectors of
52S/8¢? operator with the equally zero eigenvalues. In section 3 it
will be shown that some zero modes in the field of instanton — anti-
instanton pair turn into discrete spectrum levels (corresponding
eigenvalue becomes negative and small). The rest zero modes turn
into quasi-stable levels (there appears a resonance type behaviour
of the scattering phase shiit). '

We are only to understand what collective coordinates will
remove this «dangerous» propeties in the §°S/8¢" spectrum. IT we
discuss the zero modes which turn into a bound states the equations
(2.3) and (2.4) don’t change. Detailed discussion of the collective
modes associated with quasi-stable levels determination will be done
in the following section for a concrete theory. Let’s show almost
without discussion what the equations (2.3) and (2.4) should tran-
sform in if the quasi-stable levels are involved. Instead of (2.3) we
get:

L EORVIOR A
¢ fi i

$ S -
= Pis=eii- . . (2.5)
8°S

L %Ewu:j":'i ‘IJH

Here £<0, f;j(») is a very narrow [unction in the mﬂmentut_h repre-
sentation which differs from zero only near the j-th resonance. The
function fj(x) is chosen so that vector '

Fi=\ [;(0) b dx T -(28)

accepts all dangerous properties of 82S/8¢%. In the other words,

when we found the eigenvectors of §°S/8¢> which are made ortho-

gonal to Fj, the j-th ‘resonance disappears. In more detailes the
choice of [;(x) for concrete theory is shown in following section.
Finally (2.4) turn$ into:

2= ] 8(¢o—a0 19 [] 80— FD) X

X det | 2o [ T 1] dreexp| - -;{—S{(p)]ﬂ dg.  (27)

Now F; is not an eigenvalue of the operator 6°S/8¢* and the prob-
lem of functional integral calculation becomes more complicated. As
we shall see below, at least for far separated pseudoparticles the
function f;(») is quite narrow and the trouble can be easily avoided
(see also the Appendix C).

[t is interesting to compare the way to define the instanton —an-
tiinstanton configurations, proposed by Balitsky and Yung {12, 13]
with that of this paper. We saw that if the excitation spectrum near
the vacuum of theory did not begin directly from zero, the pseudo-
particle pair is associated with a well established valley on the map
of S(¢) function relief. It's intuitively evident that the way of the
valley bottom definition is to be local in the functional space (i. e.
to say whether a point go(x) lies on the valley bottom the only
behaviour of S(g) in the vicinity of go is necessary to know). The
equations (2.3) and (2.5) are evidently local in this sense (only
two variational derivatives of action are used to determine @).

On the other hand the definition of the valley bottom used in
[12] isn’t local at all. Balitsky and Yung describe the pseudopartic-
les moving up by means of a frajectory which in every point o
coincides with the wector 8S/8¢ calculated in the same point. But
there are an infinite number of such trajectories (at least one goes
through the every point of functional space). To make the definition
unique the asymptotic behaviour of the trajectory is to be involved.
The only trajectory, which in the asymptotic gives two infinitely
separated pseudoparticles, is called by the bottom of the valley.

Nevertheless if the well established valley is associated with the
pair of pseudoparticles at the map of S(¢) function relief the
Balitsky — Yung method and that of present paper at least for far
separated pseudoparticles produce very close values of instan-
ton — antiinstanton potential. It happens, however, that in the most
interesting theories the spectrum of excitations begins from »®=0.
So the assumption itself that the well established valley corresponds
to the instanton—antiinstanton configuration is wrong. For such
theories the method of the paper [12] for pseudoparticle interaction
description is incorrect.




d. THE CALCULATION OF THE NONLINEAR 0(3)-SIGMA MODEL -
INSTANTON —ANTIINSTANTON INTERACTION

The .great progress was maid last a few years in the nonlinear
O(3)-sigma model investigation. In addition to papers [4, 7, 8]
quoted in the introduction in this theory there were calculated the
one loop functional integral near one instanton [15, 7] and even
near many instanton [16] configurations. Thus, many of the formu-
las adduced in the beginning of this section may be considered as
wellknown.

‘The action for O(3)-sigma model looks like:

szg Y (9:5 0up) dx,

i B
o=(1. ¢z, 93) , ) yally
G

Functional integral around the point o takes a form [15]:
e (enp il 2 sy T a2 iy g
2=\ exp| — —5@) |[] 85— 1) dp=

=S exp{ »iI_S(@)HS pmgod’x+ | ain’mﬂidﬂxwwan}x 25} (3i2)

X|| 82gow) v,
where
m=—A4(go A qo) .

It's known [17] that nonlinear O(3)-sigma model is asymptoti-
cally free. Let’s discuss only the field configurations which have
such a typical momentum that coupling constant g is small enough.
One can then assume g to be a fixed value, neglecting its variation
irom scale to scale.

The equations (2.5) turns into:

{ — Ap+(pAg) p=) hipit ) 5 filx) b, dx
I

vilZy b o
— A-(FAR)] F=eb+u(F) § i#15)

Here function u(r) is a Lagrange multiplier making it possible to"

satisfy the condition ¢y=0 for every point 7. The right hand side of
the Tirst equation (3.3) contain the summation over a discrete and
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integration over a continuous spectrum. Formulas for fi(#) could be
found only at the end of this section. Now we can only state that
fi(») differs from zero only at small momentum x. The integral
over the excitations with small wavelength converge well and
Gauss approximation may be applied for its calculation. The need in
collective variables may arise for small » only.

It is convenient to use two complex functions o and F instead of
two vector functions ¢ and ¢ satisfying two additional conditions
(¢*=1 and ¢p=0) so that:

ot =2 1lary "
a0 ’ Al ks F—o’F —o'F—aF
’IlJ—{tIJ;—I—.E'IIJg, ‘lpd}_((]—t_lmlﬂjﬂ’ E]+|m|2J? ) {3.5}

Now the conditions ¢*=1 and @y=0 are fulfilled automatically.
For such notations the action is

do 2 daw 2
IE;I +IEI ab
=8 dx dy, :
s8] (A+Tanr, © Y
z2=x-+tiy. (3.6)
The equations (3.3) after some transformations turn into:
0’ 20° do do A |
i =Y XF L F odu (3.7)
dzaz" . 14+ |w|? 6z a2 Z 4 +Z S 4
A 2m° [ﬂm 0 do 3%w ]_
{ . dzoz T 1+l Loz a2 i 8z° 9z ' dzdz
6w ™2 Jw r;?m} 2 dw 0w £ -
i) F L F'= Z=F, 3.8
. (IF|o|** a2 az +{l—|—|m|2}2 dz 0z 4 (&:5)

Solutions of equation (3.8) are conveniently normalized:

Fi Fe+ Fi Fy
— dy = i . 3.9
82{1—|—|MI2}2 dx dy= i (3.9)

If we get the right hand side of eq. (3.7) equal to zero we ob-
tain the usual Euclidean equation of motion in terms of © and 2. “1
particular any analytic (only z dependent) or antianalytic (only z
dependent) function should be an exact solution of equation of mo-
tion. The configuration w=A(z—R,) ! is usually called as an
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instanton of size |A| with the center pointed at R,= (ReR,, ImR,)
and o= (B(z—R,) ~")"—an antiinstanton of size |B| centered at
RH: {Re RB] Im RB] .

It's evident to search for the solutions of eq. (3.7) in a form:

B
z—R

m=ij——|--( ).—I—u (3.10)

where u=u(z, z*) is a small correction (we suppose |A|<|R| and
|B| < |R|). The magnitude of u can be found easily. For example,
the field of antiinstanton in the vicinity of instanton in the Tirst
order over |R|~! equals to (—B/R)’. Adding of the constant
doesn’t change the analytic behaviour of the w. The first nonanalytic
term making the solution not to satisfy the equation of motion is of
the order |R|~2 So it is evident to suppose that u~|R|~* (I use
|A| ~1, |B|~1).

Now let us discuss the equation (3.8). For pure instantonic (an-
tiinstantonic) configuration this equation is also simplified. Thus for
analytic ® one gets:

i 20" do 4 £
{_rﬁ‘zfrfu‘,?;"'+l-i—lu.:nl2 0z Eiz’} F_TF+ (31

It's easy to show that for @=A/z only two of the eq. (3.11)
with =0 solutions F~1/z and F~1/z* decrease at the infinity and
can be integrated in the sense of formula (3.9) at z=-0.

Four functions 1/z, i/z, 1/2 i/2*—are the zero modes of one
instanton solution. 1/2* and i/2* appear due to translational invari-
ance of the action, 1/z and i/z— due to rotational and scale invari-
ance. So one can state that in the right hand side of eq. (3.7) the
functions F appears in a form:

F=l A+ -+
Z Z

R + G, (3.12)

r
(R

where p, g, s, t are complex constants and function G=G (z, 2 s
small everythere. Moreover if we work in the first order over |R|~?
the coefficiients s and { occurs to be zero. Zero modes correspon-
ding to the translation of pseudoparticles in this approximation
remain the solutions of (3.8) with e=0 and only F~z"',
(z—R)*~! appear in the eq. (3.7) right hand side.

Let us see how our equations behave at |z|>]|A],
|lz—R|>|B|. Now o is small and one gets:

12

if TR0 "% M o= i
9z 62" EZ 4 ﬂ—l—z S 4 Fdx, (3.13)
i )
 9z02" 4 & (ett)
If to remember that i - — LA one sees (3.14) is the ordinary
dzdz 4

Bessel equation. It’s clear now that F is a linear combination of
functions like (ﬁ) Z,.(xlzl), where Z  is the McDonald function

for e= —«°, and Z,, —Bessel or Neuman function for e=x’. If we
remember the formula (3.12) it's easy to write:

F=Lulzl Kiwlzl) + —Ioonlz—RI K@ |2—R1),  (3.15)

e

in the discrete spectrum,

F=§--;’—x |2] [cos @, J1 (x| 2]) —sin @, N1 (x |2])] +

L 5 n 12— RI[cos g /iGx 12— RI) —sin g, N 12— R1)] ,(3.16)
Sl

in the continum. At first sight it seems that the phase shiit of a’
wave scattered on the instanton (z=0) and antiinstanton (z=R)
may differ. In the Appendix A the both terms in (3.16) are shown
to have the same phase shift for a reasonable boundary condition at
the infinity o=, =q,.

It is lucky that with (3.15) and (3.16) one can get the solution
of equation (3.13): |

mzmu—l—z —’;‘_-Ff-JrZ S %Fudx, (3.17)

62010

=(0. Sub-
gz oz
stituting F (3.15), (3.16) and choosing wo so to fulfil the formula
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where wo is the homogeneous equation solution —




(3.10) one gets:

‘”'_—-i_{fq‘l‘zﬁ"f—l—"zg% Siﬂ[p,,_d:-c}-[-— ] {B"_|_.

" (z—R)’
M G 9 M Fi i s (
+Z—ﬁ——z Sf—x{i—smqjud}{} — Z ” —|—Z S’—Lde, {3.18)
[t’s naturall to suppose that A, fi~|R| % and w~|R| ™' Then we

have a surprising result—even for far separated pseudoparticles the
asymptotic of the instanton — antiinstanton configuration field dil-
fers significantly from the sum of instanton and antiinstanton fields.

The functions o (3.18) and F (3.15), (3.16) at |z| ~lA| and
|z— R| ~|B| satisfy the equations (3.7) and (3.8) only in the zero
order over pseudoparticle interaction. It happens the expressions for
iteraction induced correction u (3.10) and G (3.12) at |z| ~|A]|
and |z—R|~|B| can be found. The procedure of u and G determi-
nation is examined in the Appendix B.

It is interesting that except for big parameters |R/A| and |R/B|
the big values In|R/A| and In|R/B| are involved. Everywhere
below we shall use only lowest nontrivial approximation over
(in |R/AI] ™", [In [R/BI] ™.

Comparing the solutions of equation (3.7) to (3.18) at
1Al < |zl < |R| and |B|l < |z—R|I < |R| one gets a set of two com-
plex equations which allows to find tne values of A; and normaliza-
tion constants for function f;(x) (B.5). Comparing the (3.8) solu-
tions in the discrete spectrum to (3.15) one obtains the equations
(B.9) for eigenvalues » and complex quantities p and ¢. And com-
paring to (3.16) in the continum one obtains equatins (B.10) which
allow to iind p, g and phase shift ¢ as a function of x.

Two complex equations (B.9) give us the x* values in discrete
spectrum.

2

i (3.19)
IRIZV Ly Ly

2 +
j.{,‘:ﬁ,%:

Here L,=In|R/A|, Ly=In]|R/B|. Another two solutions have no
physical sense (x°<<0).

While we discuss the infinitely distant instanton and antiinstan-
ton the operator 62S/8¢® has eight localized eigenfunctions with
even zero eigenvalues—1/2°, i/2°, 1/(z—R)™, i/f(z—R)™,1/2,i/z,
1/(z—R)", i/(z—R)" corresponding to eight zero modes. After we
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take into account the finite distance between pseudoparticles in the
first order over |R|™* four zero modes (~2"2, (z—R)'™%) don't
change. But from another four zero modes 1/z, i/z, 1/(z—R)",
i/(z—R)" two become the discrete spectrum levels and two disap-
pears somewhere. So 1o understand where do zero modes «disap-
pear» we are to analyze the behaviour of the eq. (3.8) solutions in
continuous spectrum.
From the equations (B.10) one finds in continuous spectrum

2
2
RE= 5 b :
R (La Gete) (Lot Fetew)
p~aR~\[Lg+ %ctg Q (3.20)

qmu.,-’.}u\/;_|__;-ctgcp ,
where a equals to 1 or i according to the double degeneracy of all

solutions. _
We are interested in that part of (%) function there ¢ varies

fast. If ctggp< L, ctge< L, one can rewrite the first of (3.20)
formulas

w?=ug— 2o clg @,

(3.21)

¥ L e
[RINL, Ly

7 bt il
[[=—xn (—-— ——)
i T s

Such a phase shift energy dependence, as it is known from quantum
mechanics, corresponds to a scattering on the quasi-stable level of
the energy =¢ and width 4T'%o. Let us remind that eigenfunctions of
operator °S/8¢” are the combinations of Bessel and Neuman
functions like:

cos @ (xp) — sin pNi(xp) , (3.22)
where p=1z| or p=|2—RiI. And near the resonance
r
(HU—E]2+I‘2 ,

sin ¢, =
e
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i : (3.23)

cos @, =
Vi —)? 4 T2

It's important that at small p the Neuman function goes to infi-
nity Ni(xp) =2(nxp) "', while the Bessel function goes to zero
Ji(np) =xp/2. Therefore one can say that the amplitude of probabi-
lity for the exitation to penetrate inside pseudoparticle is proportio-
nal to sing (3.23).

Our purpose is to find such directions in the functional space
where the small action variation corresponds to anomalously big
variation of functional coordinate. In other words the small action
variation is associated with macroscopic translation, rotation and
scale transformation of pseudoparticles. Integrating along this
directions one can’'t use the Gauss approximation —the anharmonic
corrections are of greate importance because of slow convergence.
Therefore the collective coordinates are necessary.

The obvious candidate of the directions which the collective coor-
dinates are to be used along is the discrete spectrum eigenvector of
§°S/8¢*. In this case the corresponding eigenvalue & is negative.
This leads the Gauss approximation integral over the discrete spec-
trum eigenmodes of 82S/8¢* operator even diverge.

Another example of dangerous functional space directions are
the operator §°S/8¢” eigenvectors close to the quasi-stable levels
(3.21). Let us discuss the fluctuation of the type

W ={ f(x) Fdx. (3.24)

The direct expression for W(z) is easy to found

_[ple=n) | qlr=na) ¢
"-F—[ : —|~(2_R')]Sf{ijmfpzdx, (3.25)

This expression is true near by to z=0 and z=R while in all the
other cases ¥ is small.
Adding of V¥

(5.25) “to Toir

m=i—1—( BR) we just obtain the combination of rotations and
z z2—

initial configuration

scale transformations of the instanton and antiinstanton. It’s easy
to understand that the most «dangerous» direction in the functional
space is the W (3.24) vector with
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ot r -
f(%) ~sin @, = '\.f'f{}ﬁn—_;tﬁtjz—l—rj : (3.26)

Formally the functional integration over the modes close to the
quasi-stable level may be performed in the Gauss approximation.
However, because the phase shift in the vicinity of quasi-stable level
differs much from the trivial quantity @=nn, the value of this
Gauss integral should be anomalously big as compared to the vacu-
um integral. It’s natural to interpret this big value of functional
integral as a reflection of existence of the collective coordinate des-
cribing the pair of far separated pseudoparticles. In the Appendix C
it is proved, that for the Gauss approximation integral near the
instanton — antiinstanton pair to be equal to the product of integrals
near the individual pseudoparticles the functions [;(%) of the form
(3.26) are to be used. ;

The formula (3.23) shows the value of phase shift in the vicinity
of resonance only. So, one can substitute [;i(x) of the form (3.26)
into (3.24) and (3.18) if only all the integrals over x converge at
| —no| ~I'. Unfortunately this is not so.

We saw that in (3.24) and (3.18) the Bessel function appears in
the only combination

I'{3tg —3t)

(30 —n)? "2

[10) cos @, J16¢p) d~ Ii(p) dx. (3.27)

Of course, at p>>wg ' this integral converge well because of the J,
function oscillations. But we -are most interested in p<xgs ', where
(3.27) converges very badly. The formula (3.26) define the f;(x)
only close to resonance. To improve the convergence of the integrals
one have to rediline the integrals so that at [x—x|=>A
('« A< no) function fj(x) should go to zero very fast. Without
additional physical information we can say nothing about the cha-
racter of function [;j(x) decrease. However, we should see, that to

-calculate the first term in the instanton —antiinstanton potential the
inequality '« A< »p is enough.

With two complex equations (B.5) two values A; and two [unc-
tions fij(») normalization constants are easy to found. After that
from (3.18) one sees:

B S e 2n
o=-—{2 ol 2R () + ). aol2) b+
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where a,, b, L,, Ly As we don't know how the integrals of (3.27)
type were defined, we can say nothing about the values an, bn. The
series (3.28) are good convergent at |z|, [z—RIK |R|~/L (where L
is a big logarithm either In|R/A[ or In |R/Bl). Contribution to the
action by |z|, lz—R|=|R|+/L is only ~RIALY ')

The corrections to action appearing due to pseudoparticles inte-
raction may be divided in two classes. First appear if we choose the
instanton — antiinstanton configuration as a direct sum of the fields

gt

z—R

&=

) (the sum ansatz)

Mgy poo B e
S e

(1t wbemg)id)

This instanton — antiinstanton potential was found in [7].

Another corrections appear because the configuration (3.28) dif-
fers from the sum ansatz. With this corrections the interaction of
jar separated pseudoparticles becomes twice more than (3.29)

1
IRI*

Saum=8| _dxdy= 1‘63+32n Re (%ﬁ) 1 o( }[3.29)

(3.30)

S=16n+64n Re(%) +0( mlﬁL) .

It is quite unexpected that in the approximation we usc the first
two terms in ® (3.18) ~1/z and ~1/(z—R)" cancels

om T B 47| L g

X

(3.31)

At %olz|>1 functions F; in (3.31) decrease like exp (—mnolzl|). The
continuous spectrum functions at w|z| >1 decrease very slowly
F_~1/~/zexp (ix|z|). However, after integration over in (3.31) the
first term in the F,_ asymptotic cancels and so w~|z| %% at
%olz|>1. We see that at large distances the field of instanton—an-
tiinstanton configuration decrease much faster then the individual
pseudoparticles fields. |
We have calculated only the interaction induced correction to the

18
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pseudoparticle pair classic action AS=64xnRe (ﬁﬁ) Further cor-

R?
rections to this action may be of the order ~[In|R/AI]7,
[In |R/B|]~'. Unfortunately, so far as we do not understand how

to define fj(x) (3.26) at |x—wxo| >I we can say nothing about the
value of this corrections. We can also say nothing about the diffe-
rence of Gauss approximation integral near the instanton-antiinstan-

ton pair from the product of individual pseudoparticle fields (see
Appendix C).

4. CONCLUSION

We have found the long range behaviour of the instanton— anti-
instanton interaction in the nonlinear O(3)-sigma model and disco-
vered also that the field of pseudoparticle pair at large distance
decreases much faster than the sum of instanton and antiinstanton
fields.

We can’'t calculate any further corrections to the instanton —an-
tiinstanton interaction because of principle difficulties. In single pse-
udoparticle case the collective variables are associated with loca-
lized eigenvectors of the operator §°S/6¢* which have even zero
eigenvalues. In the pair of pseudoparticles case some ol «dangero-
usy» directions, which the collective coordinates are necessary along,
become not single eigenvectors but narrow packets ol 528 /8¢
eigeniunctions close to a quasi-stable level. To find the shape of this
packet the phase shiit @(x) behaviour near a resonance is to be
considered. When we calculate the Tirst term only in the pseudopar-
ticle interaction the information from the simple Breit—Wigner lor-
mulas is enough. Collective variables are chosen so that the Gauss
integral over other variables equals to the product of single pseudo-
particle integrals. The further corrections can not be found before
we formuiate the better criterion for extraction of correspondent to
the collective motion part of function ¢(x).

The next., much more important application of this paper method
should be the calculation of an instanton — antiinstanton potential in
the Yang — Mills theory. It is to be noted that Balitsky— Yung me-
thod [12, 13] has recently been applied to this problem [18].

The usefulness of the collective coordinate miethod to describe

‘the instanton — antiinstanton pair (at least for large distances) is

evident. It’s interesting to understand whether there exists any other
19




class of configurations which have no such a well established
asymptotic as pseudoparticle pair, but to calculate the functional
integral around them the collective variables are necessary? Formu-
la (2.3) gives us the natural way to look for such configurations.
In Appendix D the attempt to redefine the meron solutions of nonli-
near O(3)-sigma model by means of equations (2.3) is examined.

The author would like to thank E.V. Shuryak, O.P. Sushkov and
A.l. Vainstein for numerous helpful discussions.

Appendix A

Let us discuss the instanton and antiinstanton placed at the
points R, R, inside a big circular volume of a radius D(IR,l,
|R,| < D). We are to formulate the boundary conditions which the
solution of eq. (3.8) should satisfy at [z| =0. The most popular

conditions are either F(|z|=D)=0 or ( 2 F(z)) =Lkt
alz| |21 =D

occurs, however, that the most suitable to us boundary conditions
are mixed:

[ F(2) — F(—2)] jay =p=0

(A1)

|55 +F(—2)] =0

alz| |z| =D

Really, at |z|>|R| one may write |z—R|=]|z| —|z| Re (R/2)
and so at large z (3.16) transforms into

F~pe ‘"[cué A;cos (% | 2] +9;) +sin A, sin (% | z] +¢,)] +
+gecosA,cos(x |zl 4+, +sinA,sin(xlz] +q,)], (A.2)

where z=|z2le%, A;=xlzl Re (R/2),; -A,=xlz}Re (R,/z). ;lt's
important that for transformation z——z the function cos A is even
and sin A—odd. So, both terms in the first (or in the second)
addentum in (A.2) satisfy the condition (A.1) at the same value of
». However, the whole function F (A.2) is consistent with (A.l)
only it ¢,=gq,. :

In principle, one may solve eq. (3.8) for other boundary condi-
tions as well. The only inequality |R,|, |R,| <D is necessary. It
can be shown that the final result for instanton— antiinstanton
interaction don’t change, but the solution become much more com-
plicated.

20
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Appendix B

Expression (3.18) is correct at |z >|Al and |z—R|>|B]|
only. On the other hand at |z|~|A|, for example, n=A/z+ C+dw
where dw~|R| 2% and C~|R| ' constant which doesn’t change the
instantonic character of w. We are to find 8w from the exact
eq. (3.7) at |z| ~|A| so to satisfy the (3.18) at |z| > |Al.

At small z (3.18) takes the form:

o ror§ 3 (2 -1

=) S ’l;z{[m (E&Qﬂ) ) %]sin §— 2 cos [p} dx—rz'(%)., (B.1)

where C is a constant of no interest which may be easily found
from (3.15), (3.16), (3.18), In (y) =0.577... is the Eurler’s constant.
The explicit formula for b is also easy to be found. In the following
we shall use only that b=B at «< |R| '. The wellknown proper-
ties of cylinder functions were used in (B.1) (see e. g. [19]).

On the other hand, let’s search for a solution of (3.7) at small z

2
like w= A FWjel) + E;it In the first order over V
2
" 20, R [y
V4 s V = Fo, (B.2)

where a=A1% t=1z|%, Fo=) }“'—fi-l-zg L'{isin ¢, d». Solution for

this equation is

mr () n() -2 @y
and. for large ¢
il o [f In (i) —21], (B.4)

Comparing (B.4) and (B.1), (B.2) it’s easy to write the equation
for values A and for fj(x) normalization constants. It occurs that
except for big parameter |R/A|*> (or |R/B|*) there appears a big
value In|R/A|  (or In|R/B|). In the leading order over
[In |R/A|] =" (or [In|R/B|]™") we get:
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Lﬁj E‘i-q-"—]—zg%’:ﬂ‘-sinrp,{dx]:%,

(B.5)

where L,=In|R/A|, Ly=In|R/B|. The second equation (B.5) is
found at |z— R| ~|B|.

Now let investigate the operator §2S/6¢? eigenvectors. We are to
understand what restrictions to F (3.15), (3.16) may be found at
|2l ~|A|] and |z—R|~|B|. Let's discuss first the bound states.
Keeping in (3.15) at |z| < |R| only the terms with angular behavi-
our like ~1/z (or ~2") and neglecting the terms ~1 as compared
to big In (»|z|) one gets:

E 3

; ;
F=—E——|—pz'%—ln(x|z|}—q(%) . (B.6)

Now we are to get the solution of eq. (3.8) equal p/z at
|z| < |A| and turning into (B.6) at |A| < |z| < |R|. Let the solu-
tion of (3.8) at |z| ~|A| be of the form:

A - R (B.7)

&

where ... are small corrections with angular behaviour different
from 1/z. Substituting © (B.3) and F (B.7) into the (3.8) one gets
the differential equation for . Its solution at > |42 is

b fA N g e By B8
= fin(4)-2] £ i(2) 5
From (B.7) and (B.6) we see:
[ 2
: (B.9)
.2
S~

where L,=1In |R/A|, L.=In |R/B]. The second equation (B.9) was
found at |z—R|~|B]. _ '
For the continuous spectrum repeating all upper reasons almost

z2

b

without change we see:

w2 [ 13l WAEE
J 2 _Lf‘]_{ ?Ltgq’]:ﬂ“ R:gi
(B.10)
5 ! L8 T
l ?_LH‘J* E’“E‘F‘]‘?*E-
Appendix C

The Gauss Integral Calculation
Near Instanton— Antiinstanton Configuration

As we have yetl seen, the most interesting information about the
pseudoparticle interaction comes from the long wave fluctuations.
So let’s discuss only the small momentum excitations ses Tl =

The problem of Gauss integral calculation is known fo be re-
duced to the problem of phase shifts calculation for 8°S/6¢” opera-
tor eigenfunctions. We are most interested in the massless theories

where the 6°S/6¢® eigenvalue spectrum begins at w’=0. The Gauss

integral over the states with small o converges badly. So the Gauss
approximation can be only applied if the long wave contribution to
all physical quantities is small. In other words at a big wavelength
the phase shift must go to zero.

It's easy to show that in the field of one pseudoparticle the
phase shift comes to zero not like the power of » but much slowly
for only fluctuations F~1/z at z—0 (the instanton case) or
F~1/(z—R)" at z—R (the antiinstanton case). For example, in the
field of single instanton (0w =A4/z)

S Rl TR N S h
cg = = [ln( : )+ 2],.., = In(x14]). (C.1)

On the other hand, in the case of pseudoparticle pair at small x
only excitations like 1/z in the field of instanton and l/(z—R)" in
the field ol antiinstanton mix strongly. So to calculate the long

wave contribution to the Gauss integral we are to discuss 8°S/8¢?

eigenfunctions of the type (3.16) only.

Let’s put for definition |A|=> |B]|. Graph of the ¢(x) function
(3.20) consisting of two curves is shown on Fig. 1 (curves I and

IT). One curve (I) begins at ¢=mn, »=0. Another (II) begins at

¢=0, »=0 but at x= %, the phase jumps quickly from ¢=~0 to
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p~n At |Rl~'<x< |A|l7!, |B|™' we have Ctg{p-——*ELE (I) or
I

ctg o= %LA _{II}. At x> |R| " the excitations of the type I corres-

pond to the excitations near the antiinstanton and know nothing
about the instanton, and excitations of the type II are the near
instanton excitations. '

Let's remind that if L,>>1, Ly>>1 all the eq. (3.8) solutions are
double degenerate. The function ¢(x) consists not of two, but four
in pair coinciding curves.

Besides the continuous spectrum functions, as we saw in sec-
tion 3, the eq. (3.8) has two discrete spectrum solutions. Let’s con-
sider these solutions as a part of curve I of function @(x).

It’s easy to find » which makes the (3.16) to satisfy the boun-

dary conditions:

= (V+2)a—e(0}. (C2)

D is the volume radius.

Let’s discuss the contribution to the functional integral from the
type I excitations. Dividing this contribution by that to the integral
near vacuum (@=0) one gets:

1, (++3)

1 (v+5-2)

= % €XP [L"‘“g‘”‘{@_ ) i] . (C.3)

gl
D

The number of multipliers in (C.3) numerator is one more than in
denominator because in the case of pseudoparticle pair one variable
in the functional integral corresponds to the discrete spectrum level
and we introduce the collective coordinate to integrate over it.

We know that at x> |B|~! the phase shift goes to zero. So in
(C.3) the dependence on ultraviolet cut-off cancels.

At |R| '« x<|B| ™" the phase shift in curve we discuss is:

q}=ﬂ(1—ﬁ;)=n(l+m). (C.4)

At < |R| " the ¢ goes to m quite quickly. Then contribution to the
Gauss integral of the Fig. 1 curve I excitations is
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const

. LOHEE C5
\In |R/B| &8

Here the unknown constant depends only on the individual antiins-
tanton properties and doesn’t influence the pseudoparticle interac-
tion.

We have yet said in section 3 that to calculate the functional
integral over the excitations of Fig. 1 curve Il the Gauss approxi-

M £ £ (f * lﬁfﬁllj

i-—w———h_—{——u—-——i_—_—-ﬂ—— —

e e Sl

z'n""" i'?:l' (LgL B )h§ &

Fig. 1.

mation is inapplicable. Formally calculated Gauss integral (divided
on corresponding vacuum integral) in this case is

const (C.ﬁ}

—

Because of a resonance behaviour of the function @(x) there ap-
pears a big multiplier x5 '~|R| in the integral. But we know that
in massless theories the Gauss approximation may be applied only
if the long-wave contribution cancels in all physical quantities.

To introduce the collective coordinate we multiply the functional
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integral (2.1) by the Faddeev—Popov unit containing the delta
function §({w—we |¥)) where ¥ is defined by (3.24), (3.26)
L

urzg P S e (C.7)
Vo —un) 4172

If rewrite (3.8) shortly in the form HF=¢F, then to calculate the
Gauss integral we are to solve

(H—¢e) F=q¥ . (C.8)

Here n is a Lagrange multiplier making it possible to satisiy
(F|¥)=0. With (3.16) and (3.22) one gets:

pri-j—l-h[:-c |z|]+q'(zz:;Lf|{x 1z—RI) . (C.9)

I. e in a single resonance approximation after the collective coordi-
nate was introduced the phase shiit became equal to nmn.

On Fig. 1 (curve III) it is shown what the function ¢(x) may -

be aiter the collective variables were involved if we go beyond the
single resonance approximation (3.21). For »>= %o the shape of ¢(x)
doesn’t change at all. At x<Zxo the phase shift has increased on .
Because we don't know how the function f;j(%) (3.26) is delined at
|x—xol >T we can say nothing about the shape of ¢(x) close to
resonance (this part of the curve is shown by dots at the picture).
One can state only that sin <1 at |[%x—wup| ~1I.

Now with the same accuracy as the expression (C.5) was found
we can calculate the whole longwave contribution to the functional
integral. If remember the double degeneracy of all the 8°S/6¢”
eigenvalues one gets: i

const :
In l%‘ In |%[

(C.10)

The unknown constant determines the single pseudoparticles proper-
ties only and doesn’t influence their interaction.

We have said nothing about the value of the multiplier ap-
pearing in the functional integral (2.7)

[ 8(Co—ao 1W:)) [] 8(Co—wo | Fyy) det | |2@z0e ¥ FD | |17 47, (C.11)

ﬁ?’k
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It's easy to show that if neglect all the corrections ~L; ', L; ' the
(C.11) gives:

const In |§| In |§-| [ dr.. (C.12)

Here rs is the set of collective variables describing positions, orien-
tations and sizes of pseudoparticles.

So, we have shown, that Gauss integral in the field of far sepa-
rated instanton and antiinstanton really equals to the product ol
integrals in the fields of individual pseudoparticles. But to get this
result we were to find the adequate definition of the collective coor-
dinates. If one use the function f;(») much different from (3.26) the
value of functional integral may be quite another.

In order to calculate any correction to (C.10), (C.12) we are to
know how f;(x) (3.26) behaves at |x—xo| >T.

Appendix D

Redefinition of Meron Solutions

The meron is a name of a certain class of equation of motion

solutions having an infinite classic action (the spatial integral
diverges logarithmically). Such solutions are known both in
Yang —Mills theory [20, 6] and in nonlinear O(3)-sigma model
8].
[ }Traditinnal way to define the meron configurations is the follo-
wing [6, 8]. All volume is devided in three parts. In first part one
uses the meron solution, in others two instanton solutions. With the
adequate choice of parameters and shape of the bounds this solu-
tions may be maid equal at the bound (with break of derivatives).
As we should see, at least in the nonlinear O(3)-sigma model such
a definition doesn't allow to determine even the number of meron
collective coordinates. |

Let’s discuss in details the nonlinear O(3)-sigma model merons.
Every function like [8]:

u:.:ei*rfﬁ [Dl}

is, in particular, the solution of classic equation +Df motimn
(eq. (3.7) with zero r.h.s.). Here u—an arbitrary analytic function,
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t—a real parameter. The simplest localized solution of this type is

e [E=A) (z—B)
“T N =47 (z—B)

(D.2)

It’s easy to understand the nature of the solutions like (D.1).
Substituting (D.1) in (3.4) one sees that nonlinear O(3)-sigma
model meron is a nonlinear O(2)-sigma model whirl immersed into
O(3). .

( [t occures that the eq. (3.8) solutions describing the operator
§2S/8¢? eigenvectors in meron (D.1) field with e=0 may be found
in explicit form. In particular, for (D.2) meron the eq. (3.8) with
e=0 has a solution:

F~\ZE;::]}‘ {;:i}; L [w\;?in 12:’; |+ q:-] (D.3)

i. e. while approaching the points A and B function F changes the
sign an infinile number of times. In quantum mechanics function
like (D.3) appears if the particle falls on the point [21]. The ap-
pearance of every new zero means the birth of a new bound state.

To define the finite action meron configuration it seems very
natural to use (2.3)

§s
Sy R (D.4)
o Z :

. instead of 8S/6¢=0. Here Fi—a set of bound state eigenvectors of
§2S/8¢. Such a definition means that we search for configuration
minimizing the action in all the directions except for that which the
Gauss integral diverge along. ‘

: Let's discuss ‘@ like (D.2). If keep in the eq. (D.4) r.h.s. only
functions F localized at |z—A|~p, and |z— B|~p; we should lind
the solution quite smooth near z=A and z=18, and equal to (D.2)
at |z—A|>p, and |z—B|>p, The explicit form of the (D.4)
solution may be found only ‘numerically. Nevertheless if p,, pg are
small encugh the classic action of this configuration may be found:

S=2nln (-M)+{)(l]. ’ .
v wrw b PaPg -

We can also find the number of collective variables necessary for
meron description -

28

NN:n(—‘ Bp:p’i'?) | (D.6)

Generally accepted [6, 8] is the point ol view, that meron solu-
tions begin to make a significant contribution to the physic values
only at such a big coupling constant that logarithmic growth of
the action (D.5) is canceled by further growth of the coupling con-
stant g.

We get accustomed to that any collective variable leads to ap-
pearance of a big multiplier in the functional integral (the whole
volume, the distance between pseudoparticles etc.). Now, of course,
we can say nothing about what the integration over meron collec-
tive variables will lead to. Nevertheless the fact that with growth of
the action (D.5) the number of collective variables (D.6) grows
simultaneously gives us a hope that meron configurations should
play an important role at small coupling constants also.
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