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ABSTRACT

The properties of the leading iwist wave [unctions of
the =£°(1385)and Z*(1530)-hyperons are investigated
using the QCD sum rules. The model wave functions
which satisfy the sum rules requirements are propo-
sed. The asymptotic behaviour of X~ and Z’-hyperons
electromagnetic formfactors and that of wvarious
«octet-decuplets transition formfiactors is found.
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1. INTRODUCTION

In references [l, 2] the method was developed which allows one
to calculate the moments oi nonperturbative hadronic wave iunc-
tions by using QCD sum rules [3]. Below using this method we
continue to investigate the ieading twist wave function properties oi
haryons entering the A(1232) decuplet. The leading twist wave
functions properties oi the A(1232)- and Q7 (1660)-hyperons were
investigated in [4], and the following model wave functions were
proposed:

Pa(X) = Paclx) [ 4.2 (6 + x3) + 2.52x3 — 6.72x1x3 4 0.42x05(x) + x3)] (1)
Po-(X) = QadX) =Dlx1x2x3, (2)

The values of these wave functions at the origin were found there
also:

f¢=1.2-10"2 GEVE, f;;:l.ﬁ-iU_QGEVE. (3)

The wave iunction (WF) ®(x;) is the iundamental object of the
theory and it describes the distribution of quarks in the hadron in
longitudinal momentum fractions 0<<x; <1, 2x,=1 (at p,—>o0).

The AT-hyperon leading twist WF is determined by the matrix
element of the three-local operator, which is analogous to (5) with
change s—d; has the same properties oi symmetry (7) and due to
the SU(2)-symmetry T, (x), X2, X3) =@, (X1, X3, X2). AT -state can he
written in the form:




LA 1) e f‘*...S L L
0 4624X|X§£3

) wt(ee) d M) ) 4+ 1ut() d ¥ (xo) u'(xs) ) +
+ldt ) uteg) u' (e D). ' (4)

The main purpose oi this paper is accounting SU(3)-symmetry
breakmg eflecls which lead to the dilference between wave functions
of X- and = -hyperons irom A.

The paper is organized as follows. In section 2 we present the
main definitions and notations. In section 3 we investigate the pro-
perties of the leading twist WF ¢.(x) and discuss the sum rules
treatment procedure. In sections 4 and 5 "we invesligate the pro-
perties oi the leading twist WF T,(x) and leading twist WF proper-
ties oi the Z'-hyperon respectively. In section 6 we present the
asymptotic values ol various hypemn lormiactors. And in section 7
we discuss the results.

2. MAIN DEFINITIONS

The X" t-hyperon leading twist wave functions are determined by
the matrix element of the three-local operator:

(O] % ul(z) ul(z2) sk(zs) 13°F(p, A=1/2) ) =

- f;ﬁ {(pC)ap T3 Va(zip) + (p75C) ap (vs27)y As-(zip)} +

+ 5 O CP b (m2 )y Taap). C o edl)

Here: {, j and k are colour indicies; «, B and y are spinor indicies;
|X*(p)) is the X"-state with the momentum p; the constants [, and
f4- determines the values of V, and T,. at the origin; C is the
charge conjugation matrix. The WF Vg(xi, xo, x3) (and similary

Asi(x) and Ty{x))

VE—(z.-p)=§de,rEXp[—iEx.-{z[p)] Vye(x) o el
D : '

describes the distribution of three quarks in X" (A=1/2)-state in

longitudinal momentum fractions. The wave functions Vy.(x), As(x)

and Ty(x) have the properties:
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; VE'(I]: X3, x3) T Vl"'(xﬂ, X1, .7{:3)1,

; TE'('Xl, X3, -"53} T TE'(XZr X, -Iaj ]

Aszi(x1, Xo, x3) = — Ax+(x2, X1, X3). (7)
In the SU(3)-symmetry limit [,=fy,=Js and T,(xi, X2, X3) =
=T, (X1, X2.X3) =@s{x1, X3, x2) But with SU(3)-symmetry breaking
eifects taken into account Ty{x) can not be expressed through Vy(x)

and A,(x). The formula (5) is equivalent to the following jorm of

the X" *.state:
I

2 Y1 7205 " X
: j 0 \/24x.x2x3

X {fyr [ V(x) — Alx )J>_ ) wt(g) s Mg ) +
+Far [ V() +A(x) ] s Lu () T ) xa}>+
' +fi thx‘hlu (x1) u'(xs) s (8)

‘The isotopic invariance determines the form of others X’-states:

!

#— 1 d,;x
| 2 (=11 /2
12 ug 4 \/2411:::23;3

X (Fse [ V(x) —A@)] s~ 1d T (0) d¥(x2) sT(x3) ) +
+ e [ Vo) +A(x)] 3 1d () d Hxa) s T (xs) ) +

X

+f3 To(x) 1d ' () d' (k) ¥ (x3) D)5 ' (9)
RS VL,—S g
X [V — A [l bd e e b9 g1y 4
e[ V) A [ Ll b ) sy 4+
R TUCOLUC j; Fxﬂu SR | ity

3. WF gqu(x) UF_E*-HYPERDN

To find the values of moments {n;, ng, n3) for gg-(x) we use the
jollowing cnrrelatnrs
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(@9%0) g 2) =i | dxexp(igx) (OIT(/* (x) OL(0)) 10) X

X Zre=(2q) " T ) (11)

(n) =(ny, ng, n3) ;

1P (x) =& [ D™ u(x)] CZ(1 —vs) | D™ u(x)]' (vl 47s) [ D™ s(x)] "),
0™ (0) = & izi(0) 54(0) vy 2C(0) +
+ 54(0) T*(0) vy 2C(0) + L(0) @*(0) yu 2C57(0)}
D=z[io,—g4,), z*=0. (12)

Note that because the current 0°°(0) is totaly symmetric in quarks
interchange, the X(1189)-hyperon contribution into the correlator
15%%9 is zero in the exact SU(3)-symmetry limit. But, taking into
account the SU(3)-symmetry breaking effects, we have to choose
the spectral density in the form:

—Im 1{#%(s) =— R 8(s— M) +8RY” 8(s — — sy,
W = fye [ 2+ Fo] 087,
R =f:[f—F] o, (13)

where Ry’ is the X(1189)-hyperon contribution (the X-hyperon lea-
ding twist WF was investigated in [5].). RY is the X"-hyperon con-
tribution and the last term in (13) is the perturbation theory contri-
bution. The quantities s, determine the beginning oi the smooth con-
tinuum in correlators. The sum rules obtained from (11} and (12)

have the form:

4 n . T .
Bl éﬂ exp (— M2 /M2 +8RY exp (— M3 /M?) =

{n}l EME
4U4M*11—1+Hjcxp< H)) =22 [l —exp ()] +
") L 16t e ' ms , -
P (o) e s 2 e -
atm, ol (n) f aq2
—W<Slgﬂ'uv Guﬂ:?S,}: H=s J’JM {14}

Here (and below) the hyperon masses are considered as known and
are taken from the Particle Data Tables. In (14) the term af” is
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due to Fig. 1 diagram with massless quarks; the term 3" is a cor-
rection to this diagram due to the s-quark mass; the term as” is
due to Fig. 2 diagrams; the term at” is due to Fig. 3 diagrams; the
term a4” is due to Fig. 4 and Fig. 5 diagrams (these diagrams give

both ¢(0]@u|0)? and (0|3s|0)” condensates, and to simplify the for-
mulae we have written the summary contribution using
(0]5s]0) ~0.8X (0|au|0), (see [6]); the term af? is due to
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diagrams. The coefficients «{® are given in Table 1. When fitting
Fhe sum rules we used the standard values of condensates (see, for
instance, [6]):

(= G*) =12:107"GeV*, (au)=—(0.25 GeV)’,

(§s) =08 (au), {(\as;uu)?*=1.8-10"*GeV®, m,=150 MeV,

» i g ;
{5iga, G—'w?s} =mj (55), mi=0.75 GeV>

+ L_et us discuss the sum rules treatment procedure, which is used
in this paper, in more detail.

Notice that the standart sum rules treatment procedure, which
we used before [7, 8, 5], includes the following points:

1. The spectral density is chosen in the form: —lIm I(s) = (reso-
7 .

nance) +continuum;

2. The best fit is made in an interval of M* values where non-
perturbative corrections are at the level ~10—40% from the per-
turbation theory contribution; - '

3. The VE}'if}ring of sum rules stability is made by varying the
spectral density model: the next resonance is added to the spectral

: i
density, so that -;Im I(s) = (resonance) + (next resonance) -+ conti-

nuum,__and then the best [it is made with two resonances in the
same interval of M? values:

4. The choice of model wave function moments is made, using
the constraints like ) xux;=x;.
]

As a rule one calculates nonperturbative corrections (below NC)
only within -a lowest dimension (in our case 4 and 6). Certainly,
there are NC with a greater dimension (for instance, (0|G?|0) and
others) at the SR, but usually it is implied that such contributions
are smaller than the NC of a lowest dimension on the fullﬂwing_
grounds. First, we do the so-called «borelezation procedure», which
suppresses NC with greater dimension by the factorial multiplier.
Second, it is expected, that NC (0]|0.|0) with the dimenson
(mass)2* is proportional to (ug)?*, where po is the characteristic
scale, ~ (300—400) Mev. Since this matrix element enters into the
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sum rules in combination (0]|0k|0)/M?**, then expansion parameter
(o) 2/M? is small. At the same time, due to the special choice of the
fitting interval the NC of the lowest dimension are less than 40%
from the pertubation theory contribution. So, the usual SR ideology
is: the main contribution into the SR is the perturbative one, NC of
the lowest dimension are the correction to pertubative theory, and
NC of the greater dimension are small numerically according to
abovementioned reasoning. But strictly speaking these arguments
are not enough to guarantee smallness of the NC of the greater
dimension: for instance the matrix element (0|0k|0) can be multi-
plied by very big factor. Therefore, this procedure is based heavily
on the following hypothesis. Such scale of M§ exists that power cor-
rections hierarchy is valid above M§ (that is NC of greater dimensi-
on give a smaller contribution into the SR than that of lower
dimension), and the power corrections series blows up below Mg:
so, this series can not be approximated by few first terms, since all
the series members are important. If we take this hypothesis for
granted than we may fit SR in any interval of M® (which is above
M3) —even where the contribution of lower dimension NC is greater
than the perturbative theory contribution. Since the standard
SR procedure treatment does not work well in our case (the most
of SR (14) are such that s'”, corresponding to the best fit, is below
the 2*-hyperon mass squared, in contradiction with the primary
choosing of the spectral density model) we have to treat all SR
(14) fixing the fitting interval and fixing the begining of the smooth
continuum s. It is known from the work experience with the bary-
onic SR that M? must be greater than 1 Gev®. So we can treat SR
hereabout the mass of the resonance under consideration. The begin-
ning of the smooth continuume is known from the physical reasons:
it is above the resomance under consideration but belove the next
resonance in a given channel. Treating in the common way the SR,
for which the best fit results don’t contradict the primary choise of
the spectral density model, we’ll find the begining of the smooth
continuum s, It is the (001) moment in our case. The rest of the

SR (14) we will treat with that s*”. Really this procedure terns out
viable. Actually, the treating of the octet baryon correlators in this
way gives the results close to the standard treating procedure
results. So the hypothesis about the existence of the scale M3
doesn’t’ contradict to SR. The results which follow from fitting the
sum rules (14) are presented in Table 2. In order to get some
information about stability of these results we have calculated inde-

J




pendent correlator !fﬂ ¥ )(f.h with the auxiliary current
Oy ™(0) =¢"*{@(0) §(0) v,2C[ @0) D]/ +54(0) X
X #4(0) v, 2C[ @(0) D] 4 @(0) @(0) v,2C | 5(0) D]} (15)

In order not to overload the text, we don’t write here the explicit
form of these sum rules. We present only the results which follow
from fitting these sum rules.

It is seen from Table 2 that moment values of the WF qu(x),
obtained from two independent correlators, agree well with each
other. Notice that moment values of the WF ¢,(x), obtained from
three independent proton correlators (000), (100) and (200), agree
well with each other too [8]. It is necessary to emphasize that from
our point of view this good agreement is neither trivial fact nor the
accidental one. The reason is the following. The perturbation theory
contribution into the values of WF moments is essentially different
for different proton correlators: (000), (100) and (200) (e.g. for
the moment (100) it is 1/3, 3/7 and 1/2 correspondingly). The NC
contribution into the same moments of WF differs greatly too. But
the change of the NC contribution from correlator to correlator is in
such correspondence with the change of perturbation theory contri-
bution that values of the WF moments practically do not change.
This way NC «know» about the relative contribution of perturbation
theory into the sum rules and correct the former to the «rignts WF
moment value. Besides, one more effect comes in to play in the
decuplet case. The Z-hyperon contribution into the correlator (000)
is negligible since SU(3)-symmetry breaking effects for the octet
residues are small. The corresponding contribution into the correla-
tor (100) is not small because SU(3)-symmetry breaking effects for
the shape of octet wave functions are not small. But in spite of that
both correlators: (000) and (100) give the values of WF moments
which agree well with each other.

The values of model wave function

¢5°(X) = @acd(x) [ —0.0927x7 +0.5295x3 — 0.3735x3 +
+0.2364(x; — x2) +0.5042x3 — 0.1533]

are presented in Table 2 also.
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4. WF T

.Te find the T,.(x) we used the following correlator:

K&%%%g, 2 2) =i dxexp(u;t) OIT(T(x) 0Y(0)} 10) X
n +ne+nz43 Kﬁ:‘:ﬂm}{q ) :

*

>< -:':'c"t :(EQJ
T (x) = e[ D™ u(x))* Cyu2(1 +vs) [ D™u(x)]’ . |
(1 —vs) [ D"s(x)] 4. (17)

The current é?nm((}) is the same as in (12). The spectral dencity is
chosen in the form

% Im K{90)(5) — i S® §(s —M2) 4 1688 §(s — M2) +

BY” s (n)
+40n Als=g)
Sy "—Ei‘?fﬂ +f5] TV, (18)

SE =Fs [fz—[s] TY

where Si’ is the Z°(1189)-hyperon contribution, S{’ is the Z-hype-
ron contribution and the last term in (18) is the perturbation theory
contribution.

The corresponding SR have the form

i S® exp (— M2 /M2 + 165 exp (— M2/ M?) —

) 1aa 2 A 42
f(fn M1 —(1+H) exp (— H)] — 2 {1 exp ()] +
By  / as G2 16B¢” 5% s 3
+ o G mem (akka) B R (5
— B (Sigow Gt 2 5. 19)

The coefficients p{® are given in Table 3. The results which follow
from fitting the sum rules (19) are preeented in Table 4. We have
calculated a.lse the independent correlator Ky )(q. z) with auxiliary
current O (0) (see (15)). The results which follow from f{itting

" these sum rules are presented in Table 4 too. The moment values of

the medel WF
11




Ty(x) = @acx) [ 0.1647(x3 + x3) —0.8205x3+0.8594x;—0.1925]  (20)

also. The constants fy and ff are equal to
forfer~1.5-1072GeV?  fy/fsr=1.25. ' (21)

are presented in Table 4

Since in the exact SU(3)-symmetry limit [,/fgy=1, so it is seen
from (21) that SU(3)-symmetry breaking effects are ~259%.

5. 2°(1530) HYPERON

The Z7-hyperon leading twist wave functions are determined by
the matrix element of three-local operator (see (5)) with the repla-
cement u—s, s—d, 2"—E". In exact SU(3)-symmetry limit constant

fe is equal to fL., and g (x) = @=(x).
H°-states can also be written in the form:

1

1_5 dax %

W3 x 4 24x1x0x5

X {fe [ Vi) —Ax)] = 15T (e) st ) a'(x3) ) +

S fee [ V) + AW & s 0er) s o) wteg) Y +
A fae Ter(x) 15 (1) s (x2) 't (x5) ),

12 0=1/2) ) =

—— 1 dax
1B oy e LB
'\fr3 ﬂS 4 24le¢2}£.;5

e [ V() —A@)] e 15t ) st ) d T es) y +
A fer [ V() A & |5 ' (1) s T (xe) d M (xg) ) +
o Taelx) 18T (1) s *{x:,)d (x3) ). (22)

For finding the WF ¢.{x) =V.{(x) —A.(x) we have used correla-
tors (11) and (12) with replacements u—s, s—u, 3°—>2". The spec-
tral density was chosen in the form (13) with the replacement

a{"—y{". The corresponding sum rules have the form (14) with rep-
lacements 3—8, a{”—>y{®. The coefficients y{". are given in Table 5.
We have calculated also the independent correlator /%'%(g, z) with
auxiliary current 0%*(0) (15) with the same replacements. The
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results which follow from fitting these sum rules are presented in
Table 6. The moment values of the model WF

0z+(x) =@acx) | —0.189x7 —0.015x3+0.387x3+
+009[XE—I2}—04]8I;+ 013?] (23}

are also given therein.

For finding the WF T_.(x) we have used correlators (17) with
replacements u—s, s—u. The spectral dencity was chosen in the
form (18) with the replacements X"—~E&*, 2—E, B{"—08{". The corres-

pnndmg sum rules have the form (19) with replacements B{M—8(",
3'>E*, 2—»Z. The coefficients 8{” are given in Table 7. We have
calculated alsn the independent correlator K&'™g, 2) with auxiliary
current O )( 0) (15) with the same replacements. The results which
follow from fitting these sum rules are presented in Table 8. The
moment values of the model WF

Ta(x) = @adx) [ —0.147(x} + x3) +0.813x% —0.844x3 +0.231] (24)

are also given therein. The constants [z and fe are equal to
far~ e ~15-10"2 Gev?, [y/f=r=~1.25. (25)

In the exact SU(3)-symmetry limit f$=f3-=f£—. It is seen from (25)
that SU(3)-symmetry breaking effects are ~259%.

6. THE ELECTROMAGNETIC FURMFACTURS OF HYPERONS

These formfactors can be measured in the ete -annihilation,
ete~—BB. It has been pointed out in [5, 9] that there is no need
to do a new calculations of the Feynman diagrams for these
formfactors, because one can use the results [10] for the nucleon
formfactors (see below (28) and Table 9).

The properties of the leading twist wave function of the
Q~-hyperon have been investigated in paper [4] (see (2) and (3)).
The value of the Q™ -hyperon formiactor is

Q'FF (Q}) ~—2-10"2 GeV*, [Ig-~ —900. (26)

The values of the A-resonance formfactors were found in [9],
those are:

EATQY ~1.7-107" GeV,
13




‘F(QY) ~8.5-10~2 GeV*,
FEQ)/FEQ) | <1,
Q'F} (Q%) ~ —85-1072 GeV*. (27)

The asymptotia of the nucleon formfactors has the form [10]:

Q'Fi(Q) ==L i1y,

l
Iy=\ daxdsy {2 Z e:Tix, y
0

6] _
E eiTi{x, y) } : (28)
= i=8
where ¢; is the charge of ‘those quark which interacts with the pho-
ton in the given diagram, e;=e;= —1/3, e.,=2/3. The explicit form
of various diagrams and Ti(x, y) are given in [10]. (For the reader
convenience we present these results below in Table 9.)
Comparing the explicit forms of the proton and Z't (A=
=1/2)-hyperon states:

1
Pty =iy %%—{%{x) g ud dfy —Tox) luf uf di ),
0

@s*(x) lu s s )+ = fz'

Ts(x) ||'~'f|)r UET 334' ¥

w6 17 2y
one can establish the correspondence:
Iz /N3, oMx)—>0s(®)
Tyx)—> — Jr Ead oy ' (29)
2-“2' '

Using (29) one can obtain the 2*-hyperon formfactors as follows.
1. Let us present the electromagnetic current in the form:
RB=1/21+1/61,—1/31;,
L=ty u—dyd, Ii=iyu-+dyd.

JE=—gare

2. Because there is no d-quarks in the 2'T-state, the formiactors

_of the curreats J% and J coincide. The formfactor of the current Jy

14

is obtained from (2'8} by the replacement (29) and with e,=1,
es=0. Using the explicit form of T;(x, y) from Table 9 and (16),
(20) and (21), one obtains (here and below &;=0.3):

Q' F5(QY) = Q' F(Q%) ~9.3-10~2 GeV*,
13 =13-~4.7.10%.

3. The formiactor of the current J; is obtained from (28) by the
replacement (29) and with e,=0, e;=1 (i.e. accounting only for
those diagrams NN .7, 12, 13 and 14 where the photon interacts
with the s-quark). One obtains | -

Q' Fisr~0 GeV*, I3~0.
The formfactors of 2"-hyperons have the form:
QFF (@) = Q! |5 Flut o Fie— - Fiv | =62-102 GeV?,
Q'FX"(Q?) = 0* [i s g LF&-]: 161072 GeV*,

Q'FE [QE)-—Q“[——FIE+ F,E——-—F,E] G GeV

Fi (QY G ) T e
. ~ 4, : _w"l-_zl, i e ~2 7. 30
Q) Fi (Q%) Fr (@Y (49)

Let us point out that all these ratios are equal to unity in the
SU(3)-limit. From (30) we see that though the value of
SU(3)-symmetry breaking effects in the wave functions is
~20—30%, the SU(3)-symmetry breaking effects in the furmfac-
tors can be considerably greater.

Unfortinately the accuracy of the ratios (30) is not very good.
The reason is the following. The magnetic formfactor value is very

- sensitive to the precise form of the WF when the properties of the

latter are close to the properties of the asimptotic one. (Remind that
the proton formfactor is zero when one take the asymptotic WF.)
So really we choose the values of the X'- and E’-hyperons WF
moments inside the intervals allowed by sum rules so that all cor-
relations, which follow from the exact SU(3)-symmetry limit, fulfil
as good as possible. At the same time we have not succeeded in fin-

ding such model wave functions, which simultaneously satisfy sum
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rules requirements and lead to the small (=20—30%)
SU(3)-symmetry breaking efiects in the formfactors.

The E™ and E'~-hyperons formfactors can be obtained in the

similar way from (28) wusing the replacement f,—>f.-/~/3,
Qx)=>@gdx), Tx)—>—fa/2f-TAx). Using the explicit form
(23) — (25) one obtains:
QFE(Q) ~14-10"2GeV?, [gv~0.71-10%
QFE (QY) ~ —83-10"2GeV*, [z~ —0.42-10"
TRUEERR S Fi (@) SO 1 31).
FE@) o E@an it ¥

It is seen from (26), (27), (30) and (31) that typical values of
the decuplet hyperons formfactors are ~10~2 Gev*. The smallness
of these formfactors (as compared with the nucleon formiactor

which is equal to 0.95 GeV*) is due to specific properties of the
octet and decuplet wave functions. The first one is highly asymmet-
ric, while the second one is close to symmetric. Therefore the typical
values ol the integrals including the decuplet wave functions are in
order of madnitude smaller than the corresponding integrals for the
octet wave functions.

The asymptotic behaviour of the transition formfactors y2'—Z
can be obtained as follows:

1. One has to replace |f,|*=fsfs/~/3 in (28);

2.The expressions for Ti(x, y) have the form (see [7, 10])
Ti(x, y)=Ni(x, y)/Di(x, y). One has to replace 1/Di(x, y)=
=1/2[1/Di(x, y) +1/Di(y, x)].

3. In N;(x, y) one has to replace:

s i 3
P 3(x), - Tylx)—>— f{f (0, ony)~>exy), Tay)—>— f‘i = T3 (y) .

Using the explicit form (16), (20) and (21) one obtains:

QP QY L3 102 GeVE, | g =~ 0,99 1%

QFZ T (0 =2.4.10-2GeV*,  Jyop==0.21-10%,

Q'FY ¥ (QY)=16-10"2GeV!, [y-5y-=~0.13-10%, (32)
The transition formfactors yE°—>E can be obtained in the similar

way: -
Q'Ff "E(QY=1.3:10"2GeV?, [z
16

g-=~1.1-107,

Y

[

Q'FE T (Q%) =24-10"2GeV*, Igugm=~19-10°. (33)

The transition formfactor yPA have been found in [9] and it’s
value is:

QFPT(Q%) =2-10"2GeV!,  [Ipy+ ~2.1-10°. (34)

The transition formfactor y2**—A can be obtained by the analo-
gous changes from the transition formfactor yZ°—A (see [5]):

spZA fafz (aag)?

Tsoy =5 dax day {2 | Tf\:m(xi y)+ Téjﬂﬁ{x, Yyl —
— (T ) T8 o)+ 15 069 b lern)]}s

DA s

QFENQY =15-10"2GeV?,  Iyoy~1.5-10%, (35)
F(Q?) v ol 0
3/2FF Q%) —1/2F7 T (Q%) gy A S

It is seen from (32) — (35) that typical values of the octet-de-
cuplet formfactors are =102 Gev'. The smallness of these for-
mfactors (as compared with the nucleon formfactor =0.95 GeV*) is
due to specific properties of the wave functions of hadrons partici-
pating in the process. The octet wave functions are highly asymmet-
ric, while the decuplet one are close to symmetric. It has been poin-
ted out in [11] that in such a situation there is a strong destructive
interference of various diagram contributions which leads to a
strong supression. It is necessary to note also that the following
formiactors ' Fae a0, Foilo "and ~FF oo FFi (Q% Yare legual to
zero in the exact SU(3)-symmetry limit. It is seen from (32) and
(33) that values of these formfactors are the same order of mag-
nitude as other formfactors are (13 Fyog(Q?) + Fyoy(Q%) =
—=5.7-107% GeV*). As a whole, it is seen from (26) —(37) that
SU(3)-symmetry breaking effects in octet-decuplet and decuplet-de-
cuplet formfactors can be ~100%.
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7. DISCUSSION

The main purpose of this paper is to investigate the properties of
the leading twist wave functions of the X°- and E°-hyperons. The
main results obtained in this paper are the following.

1. For a determination of values of six lowest independent WF
moments of the X'~ and E'-hyperons all sum rules with
n—+ng+n3<<3 which follow from the two independent correlators
have been obtained and treated. It is checked that the treatment of
all independent sum rules leads to the results which agree well
with each other. |

2. Based on the knowledge of six lowest independent moments
with n;+4n.+n3<<3 we have proposed model wave functions for
the 3°- and E'-hyperons. O

3. It is checked that sum rules for the octet baryons doesn’t con-

tradict to the hypothesis about existence of such scale M3, above

which the power corrections hierarchy is valid.

4. Comparing the residue values of the decuplet baryons (see
(3), (21) and (25)) it is seen that SU(3)-symmetry breaking
efiects are ~259%. At the same time the corresponding residues of
the octet barions are practically the same -as in exact
SU (3) -symmetry limit. .

5. Comparing the WF of various baryons (see (1), (2), (16),
(20), (23) and (24) it is seen that SU(3)-symmetry breaking
effects are ~20—309% both in octet WF and in decuplet WF. Let
us consider for instance the following components of wave func-
tions: '

ATy >l () ute) d P (xa) ),
125y lu ) wt ) s (x9) ),
BTNy —>1s 1) s ) d M x) ),

1Q 7Ty 15t 0) st (0) s T(x3) ) (37)

and compare the values of their first moments:
AT TS (Y {xa): (s ) ~(32:36:32) %)
|20y Y (e i (xs) ~(30:29:41) %)
EE‘_T}:{ {xl}i{xg}:(xg) ~(42:32:26) %} .
197y )i ey s () ~(33:33:33)%) . (38)
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Comparing (37) and (38) we see that when u-quark is replaced
by s-quark the momentum fraction it carries increases. This is cha-
racteristic for the meson wave functions [6] and for the octet ba-
ryon wave functions [5] also.

At the same time SU(3)-symmetry breaking effects influence on
the octet and decuplet formfactors by different ways. The typical
SU(3)-symmetry breaking effects in octet-octet formfactors are
~10—30%:

Fy

£l tnnes = oo ~1.15;
Fl A Ve Bt ; B

e =0 S

EF;‘I- “hy _FE:‘L
- 3; b o085 ——Lr~135 (39)

1 2 L

At the same time it seems that the SU(3)-symmetry breaking
effects in the octet-decuplet and decuplet-decuplet formfactors are
greater. For instance;

(T Tl SR R (0

1 —_—r—— 14, =L ~27:
QY FE(QY i Q) -
F.-‘J.".-.!- a
L (@) ~40. (40)

V3/2FT Q) — 1/2F 7 (Q7)

However the results (40) have considerably less accurasy then
(39), because formfactor values of the decuplet baryons turn out
very sensitive to the precise form of the wave functions.

At the same time we have not succeeded in finding such model
wave functions which simultaneously fulfil the sum rules and lead
to the small SU(3)-symmetry breaking effects in the formiactors.

[t is pleasure to thank V.L. Chernyak and I.R. Zhitnitsky for the
numerous usefull discussions, A.S. Yelkhovsky and A.M. Osodoev -
for the help in translating this paper.
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Table 1

Moments ™ ek b oh” k™ ek
(000) ] 1 1 6.60 1 1
(100) 1/3 2/5 1/2 2.36 1/2 1/2
(010) 1/3 2/5 0 1.88 172 5/6
(001) 1/3 1/5 1/2 2.36 0 —1/3
(200) 1/7 1/5 3/5 | 581/600 | 3/10 1/3
(020) 1/7 1/5 1/5 323/600 3/10 2/3

- (002) 1/7 1/15 3/5 34/30 0 0

(110) 2/21 2/15 —1/10 | 113/150 1/5 1/3
(101) 220 1/15 0 383 /600 0 —1/6
(011) 2/21 1/15 —1/10 | 353/600 0 —1/6

Table 2
(V—A)p
e Correlator {000} Correlator (100} Model
SR <FIT> SR <FIT> hid
(000) 1 | R 1 1
(100) 0.21 —0.39 0.30 0.25—0.44 0.34 (.2993
(010) 0.19—0.38 0.28 — — 0.2870
(001) 0.32—0.51 0.42 0.33—0.53 0.43 0.4137
(200) 0.10—0.18 0.14 0.10—0.19 0.14 0.1146
(020) 0.09—0.17 0.13 — S 0.1313
(002) 0.18—0.26 0.22 0.15—0.24 0.20 | 0.1887
(110) 0.03 — (09 0.06 0.04 — 0.09 0.06 0.0577
(101) 0.08—0.13 0.11 0.11—0.17 0.14 0.1270
(011) 0.07—0.12 0.10 0.07—0.12 0:09 0.0980
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Table 3
Moments B 1% pi Bl B aLY
(000) 1 1 1 7.56 1 1/3
(100} 1/3 2/5 1/2 2.74 1/2 41/900
(001) 1/3 1/5 0 2.08 0 109/450
(200) 1/7 1/5 3/5 1.53 3/10 11/150
(002) 1/7 1/15 1/5 1.10 0 2/9
(110} 2401 2/15 0 0.72 1 /5 — 17/450
(101) 2/21 1/15 - —1/10 0.49 0 1/100
Table 4
e
Correlator (000) Correlatar (100) Model
Moments | WF
SR «FIT» SR «FIT»
(000) 1 1 1 1 1
(100) 0.17—0.35 0.26 — — 0.253
(001) 0.38 —0.58 0.48 0.34 —0.54 0.44 0.494
(200) -| 0.08—0.16 0.12 — - 0.080
(002) 0.22—0.30 0.26 0.19—0.28 0.24 0.220
(110) 0.01 —0.06 0.03 B — 0.036
(101) 0.09—0.14 0.11 0.08—0.14 0.10 0.137
Trable <4
“Moments i P Vi e i e
(000) 1 2 | 4.56 2 1
(100) 1/3 3/5 1/2 1.30 1/2 —1/6
(010) 1/3 3/5 0 1.78 1/2 175
(001) 1/3 4/5 1/2 1.48 I 2/3
(200) 1/7 4/15 3/5 53/150 3/10 1/6
(020) 1/7 4/15 1/5 61/75 3/10 2/3
(002) 1/7 92/5 3/5 53/150 3/5 /2
(110) 2/2] 2/15 | —1/10 | 59/150 0 178
(101) 2/21 1/5 -0 139/300 | 1/5 0
(011) 2/21 1/5 —1/10 | 43/75 1/5 1/6

.22

o

Table 6

(V—A)z=
B Correlator (000) Correlator {100} Muldel
SR «F1Ts SR «FlT» WF
{000) | l I l 1
(100) 0.26 —0.50 0.41 0.21 —0.57 0.39 0.417
(010) 0.25—0.49 0.38 0.22 —0.51 0.36 0318
(001) 0.14—0.38 0.22 0.08—0.43 0.25 0.265
(200) 0.13—0.23 0.19 0.06—0.22 0.14 0.201
(020) 0.10—0.21 0.16 0.07—0.17 0.12 0.134
(002) 0.05—0.15 0.08 0.00—0.13 0.05 0.111
(110) 0.09—0.16 0.14 0.10—0.19 0.14 "0.123
(101} 0.06—0.12 0.09 0.056—0.16 0.11 0.093
(011) 0.04—-0.11 0.07 0.06—0.14 0.10 0.061
Tables?
Moments &j™ i B &4 s S
(000) | 1 6.84 2 16/75
(100) 1/3 3/5 1/2 2.44 1/2 41 /900
(001) 1/3 4/5 0 1.96 ! 11/90
(200) 1/7 4/15 3/5 .44 3/10 19/300
(002) i 2/5 1/5 0.92 3/5 32/225
(110) 2/21 2/15 0 0.48 0 —7,/900
(011) 2/21 1/5 —1/10 (.52 1/5 —1/100
Table 8
I'=
Correlator (000} Correlator (100) NiaHs!
Moments I Wi
sk «FIT» SR =FlT=
(000) | | ] l 1
(100) 0.27 —0.52 0.37 0.29 —0.49 0.39 0.416
(001) 0.09—0.34 0.21 0.14 —0.30 0.22 0.168
(200) 0.13—0.23 0.18 0.12—0.22 0.17 0.208
(002) 0.02—0.13 0.07 0.03—0.09 0.06 0.062
(110) 0.11 —0.18 0.15 0.12—0.18 0.15 (.155
(101) 0.04—0.11 0.07 0.05—0.10 0.07 0.053
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Table 9

i| Diagram Ti(x, y) I
s ! (V(x) — A(x)) (Viy) — Ay)) + 4 Tx) Tly)
| A s (=)ol =400
Xy . L]
3¢
2 - - 0
_ — 4T0x) )
3 —3i (1 —x2) xapi(l — 1) 3
% (Vix) — Atx) (Vi) — Alg))
4 e nxdl —x3) gl —u) s
—(Vix) + Atx) (Vi) + Atg))
? : - xixad | —x3) gl —ya) ys
P i 0
ale
: (V(x) — Alx) (Vig) — Aw)) 4 Vin) + A)) (Vi) + Aw)
" xi(1 — x3)ui(l —ya)?
st
8 . 0
s e S :
9 (Vix) — Alx)) (Vig) — Aly)) +4Tix) Ny)
(1 —x0) %) — 1) %y2
i S (Vix) + Ax)) (Vi) ;l-.-'i{y}} +:i Tix) fy)
il —xz) gl —ys)
T ple 0
i — (Vx) 4+ A(x)) (Vw) + A))
. ] xixol 1 — x3) gyl | — yo)
% i 470x) Ty)
e : (1 — x) xapiyell — ya)
. | —(V(x) — Ax)) (Viy) — A(y)

o oxll =x)) xagyol | — ga)
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