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ABSTRACT

A method of a statistical analysis of local structure of
liquids represented by an ensemble of configurations
of atoms is proposed in the mathematical framewqu
of structural invariants. The problem of the descrip-
tion of local structure of macroscopical volumes of
liquids is studied. The statistical algnrithrn&.l oi the
identification (classification and determination) of
local structure of liquids are presented. The conditions
of the recognition of macroscopical close-packed stru.L:-
tures (fcc, hep) in the presence of thermal fluctuati-
ons of their constituent atoms are studied.
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I. LOCAL STRUCTURE OF A LIQUID— STATUS OF THE PROBLEM

The physical concepts which assume the presence of a definite
type of local structure in a melt (i. e. a liquid near its ireezing tem-
perature 7,) seems to be fruitful in theoretical investigations of
properties of a wide class of liquids starting from simple theoretical
models [1—9]. Unluckily, the character of local arrangement of
atoms in small volumes of melt is not sufficiently well known. The
experimental results do not yield firm conclusive answers to the
question of the existence and type of local structure in melts. The
ambiguities of the interpretation are due to the indirect character of
available information concerning the instantaneous positions of
atoms: the 3-d structure is characterized in terms of radial distribu-
tion function (RDF). This characteristic seems to be very sensitive
to irregularities of the structure (see section 4). Meanwhile, it is
reasonable to expect that the «good» local order is violated in some
domains of the melt—in analogy to the case of an ideal crystal
with dislocations. It was assumed earlier [9] that a melt consists of
multiply connected regions of «good» matter and of domains where
the local structure is violated. The latter ensure the isotropy of the
melt, i. e. the lack of long-range correlations of local anisotropies of
physical properties. The relatively small concentration ny of atoms
of «bad» matter is thus the main obstacle for the identification of
local structure of melt (in presence of thermal fluctuations) with
the help of RDF.

The strong sensitivity of RDF to small concentration n, is pro-
bably the manifestation of the general tendency in structural’ prob-

3



lems. The anomalous strong dependence of mean-root-square devia-
tion £ of an atom from its supposed equilibrium position on n, was
discussed by us in [10]. ‘ _
On the other hand there exist quite a number of facts _whlch
support the concept of the local structure of melts. 1En part_n:ular,
the results of X-ray, electron and neutron structural experiments
show that, as a rule, the local structure of melt in volumes corres-
ponding to at least two first coordination shells resembles thrfﬂ of
the parental (or, maybe, some other) crystal, see e. g. in a
-book [11].
hﬂﬂflrht:: mnE*e ]detailed study of the structure of the melt can be
made via computer experiments using the Munt.e-Carlu _and {nr)
molecular dynamics methods. The ensemble of typical _cnnﬁguratmns
of atoms thus obtained contains the full information about the
instantaneous positions of atoms. In this way the pﬂticeal?ie prog-
ress in understanding the physics of melts, and in par‘gmular ol
their thermodynamics was achieved. Nevertheless, the results {Jfrthe
simulation of the structure of the melt are, from our point of view,
inconclusive ones because of the lack of systematica! appm'ach to
the problem of analysis of types of structures displaying notﬁceable
thermal fluctuations of constituent atoms. The success Ol such
analysis depends critically on the choice of appmprlate set .of_para—
meters which should ensure the sufficiently detailed description of
both topological and metrical properties of local structures (see
{lO]'[‘)l{e aim of this paper is to propose a method for fnnalysis the
structure of a macroscopical configuration of atoms In prder to
study the problem of the existence and types of local order in melts.

2. LIQUIDS—PHYSICAL CONCEPTS.
SOME DEFINITIONS

In this paper we study the local order in quu'icls—the characte-
ristic of the arrangement of atoms in a small nenghbugrhund of an
atom. The resilts of structural investigations [11] indicate that the
local order in melts exists at least in few coordination shells.

A group of atoms' (mentally) picked ou_t of cundensed_matter
(cluster) can be treated as a geometrical figure, cl}aracterlzgd .by
the coordinates ¥; of centers of atoms. Such the detailed description
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is superfluous in the study of structure of real physical systems.
Note that the concept of the structure includes the possibility of any
motion, not changing the interatomic distances. Small (thermal)
[luctuations of atoms' positions lead to various geometrical ligures
corresponding to one «physical» structure. In other words, one con-
figuration can be selected to represent this infinite set of figures.
This configuration can be associated with the concept of «physical»
structure; it displays usually some type of point symmetry and can
be chosen as the ideal structure pattern. Suppose that the set of
patterns is known. Then by definition the structure of a cluster coin-
cides with that of a pattern which provides maximal coincidence
(resemblance). Such the prescription is of no value when many pat-
terns approximate the studied structure equally well. In particular,
this is so when the temperature is sufficiently high [10]. Conse-
quently, the set of patterns should consist only of structures as dif-
ferent from each other as it is possible. For the detailed account of
the concepts of statistical description of the local structure of con-
densed matter see [12]. The choice of a set of patterns depends on
physical concepts.

We suppose that a melt displays one (or few) type of local
structure. There exists an opposite point of view on this subject (see
e. g. [I3]) based on the concept of local chaos which neglect the
possibility of noticeable coincidence of local structures. The general
concepts concerning the local order in melts have arisen in the
twenties of our century (see e. g. in [14]); it was assumed that the
small volumes with some type of arrangement of atoms—the so
called subotaksis—exist in a melt. The general physical picture ol
the kinetics of liquids based on the notion of subotaksis was propo-
sed by Frenkel [2]. In short, the subotaktic domains are supposed
to be unstable i. e. they cannot be regarded as «nucleis of some
other phase; in particular, they cannot be identified with microcry-
stallites. A subotaksis has no physical boundary associated with the
rapid change of parameters of state. ;

In general, a large variety of types of local order can be discus-
sed, including both crystaliographic and non-crystallographic point
symmetries. In the latter case at least two different crystallographic
elements are required to build 3-d quasi-periodic lattice [15]. In
particular, Frank [3] assumed the existence of small icosahedrical
domains in supercooled liquids.

We assume that for a large variety of melts (including simple
melts) the local crystal order hypothesis holds. According to this

-
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hypothesis the statistical picture of ordering of atoms in small volu-
~-mes of crystals coincides with those of the melts. The concept of
local and global structures is associated with the so called «tan-
gent» figures. By the definition [16, 9] the tangent position of an
ideal structure to real physical system minimizes the degree of non-
coincidence of atoms and their supposed pre-images (i. e. the sites
of tangent figure). The choice of tangent figure is dictated by physi-
cal arguments. For example, the local crystal order hypothesis
implies the choice of some crystal lattice as tangent figure. The
appropriate local order-parameters were introduced by Hess [6]
and in our paper [8]. Another example —the choice of tangent fi-
gure for the study of the structure of metallic glass. The local order
is supposed to be icosahedrical, with five tetrahedra (slightly distor-
ted) sharing an edge. The local topology is the same as in {3, 3, 5
polytope which plays the role of tangent figure. The local order-pa-
rameters were introduced by Sethna [16] and Nelson and others
[17].

The concept of tangent figure provides the possibility of consis-
tent analysis of configurations of atoms of condensed matter. Each
of them can be splitted into domains of «good» and «bad» matter.
The former one is associated with slow rotation of tangent figure in
space; the local structure of the latter differs strongly from that of
tangent figure. For example, the domains of «bad» matter corres-
ponding to local crystal order hypothesis are locally equivalent to
dislocations [9] while for metallic glasses they correspond to discli-
nations of Frank — Kasper phase [4].

So far the ideal structure patterns (tangent figures) were sup-
posed to be a priori known. Generally it is not clear whether the
configuration of atoms of interest displays any type of local structu-
re and, if so, which set of ideal structure patterns is the «proper»
one. In the present paper we study some topics related to such the
formulation of the problem of identification of local structure of
condensed matter.

In general three types of local structure associated with diffe-
rent time scales can be distinguished in melts [18]. The instantane-
- ous (/) structure is described by the set of coordinates of atoms at
some fixed moment of time. The vibrational (V) structure is the
averaged structure of an atom’s neighbourhood over the period of
time less than time of «settled» [2] life. In our language this
means that the defects are immovable. Finally, the diffusional (D)
structure arises when the defects are free to move. This paper is
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devoted to the study of /-structures in order to obtain some know-
ledge of V-structures.

In order to study the resemblance of structures of two clusters

some gquantitative characteristics must be used [10, 12] (see also

[19]). Let us introduce the local order-parameters — the irreducible

multipole moments of the density [6, 8]

Tc-r.. ...-::.-:"Z ;w{:f{”}:] fslﬁj oty e [ I ]

(a)

where

6y = 1 (2)
denotes the irreducible part of the Cartesian tensor x. ..x.”. The
summation in (1) extends over all the points ¥'®—the centers of
the atoms that surround the central atom of the cluster. Function
w(X) defines the weight of the contributions to T, , from different
coordination shells. The characteristics of the structure of a cluster
have to be both rotationally and translationally invariant. They can
be obtained via the contractions of indices of products of parame-
ters T, ., {=0, 1,..., i, e. they are all the scalars that can be con-
structed from the set {T, .|, i= 0, 1,...

The equivalent set of local order-parameters (Nelson and Toner,
see [7]) can be constructed with the help of another basis of the
irreducible representation of the Os group, namely that of spherical
harmonics Yy :

Tim=Y WX g2, (3)

[a)
where _
f.:'::il s {SEEUJ) ) : (4)

Q@={¢@; 0} denotes the polar and azimuthal angles that fix the
direction ¥“/|X¥ @| and ®(¥) is a new weight function. £ . and
T. . are linear combinations of £ and Tym, respectively. The inva-
riants of Ty, can be constructed via the use of the standard forma-
lism of angular momentum in quantum mechanics, see e. g. [20].
Some examples can be found in [10, 19, 21].

The order-parameters (1), (3) have 2/+41 independent com-
ponents from which 2(/—1) independent invariants can be con-
structed. In what follows these invariants * (/=0, I, ... :
k=1, ..., 2(I—1) will be referred to as structural invariants [12]
and the phase space [y{®) will be referred to as the feature space.
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For the sake of simplicity the upper index in ¥® will not be written
out explicitly, i. e. ¥, will be used instead of y{¥. Any figure can be
represented by a point in the feature space. Let us define also the
dimensionless invariants ¢,=1,/0, [12], where of denotes the dis-
persion of the random variable ¢, The sets t¢4 and {¢] which are
many-dimensional random variables (random vectors) will be deno-
ted by ¢ and @, respectively; the covariance matrix of random vec-
tor ¢ will be denoted by &.

The structure of 13-atom close-packed clusters in the presence of
thermal fluctuations of their constituent atoms at T~ T can be
described by a few relevant structural invariants with small values
of [ [10]. The rest of the invariants describe the details of the
structure and are of interest at lower temperatures corresponding to
crystal phase. This important property of structural invariants
makes them a promising tool for the systematical approach to the
problem of analysis of types of structures displaying noticeahle
thermal fluctuations. '

The local structure is identified as follows. The feature space is
divided (at temperature T) into domains corresponding to the fluc-
tuations of ideal structure patterns. In general these domains over-
lap one another, that leads to a probabilistic character of recogni-
tion. Any structure represented by a point in the feature space can be
treated (with some probability p;) as the fluctuation of the structure
of any ideal pattern I (consisting of the same number of atoms).
The concept of a definite type of local structure is thus meaningless
uniess p;>>p, for some i. The quantitative measure of the error of
recognition is given by the degree of overlapping oi the probability
cliensities of invariants . The details can be found in our paper

12].

The formalism of structural invariants yields a convenient de-
scription of the local structure of macroscopic systems. Let us con-
sider a configuration of atoms. For each atom ¥’/ one finds his
N—1 nearest neighbours which constitute together an N-atom clus-
ter. The invariants ¢ evaluated for this cluster define the field P (¥)
in the point ¥=X'. Fields §(¥) characterize the local structure of
the given configuration.

The program of the identification of local structure of liguids
(and amorphous systems) presented below is rather time consu-
ming. Thus, the clear understanding of the degree of rigorousness
of mathematical treatment is necessary. In the next section this
problem is briefly discussed. '

§v

3. STATISTICAL ANALYSIS OF LOCAL STRUCTURE OF MODEL LIQUIDS.
BASIC CONCEPTS

In this section we present briefly the basic concepts of the statis-
tical identification of local structure of condensed matter described
via an ensemble of configurations of atoms. We suppose that this
ensemble of semimacroscopic (containing 10°—10* atoms) configu-
rations, i. e. of semimacroscopic /-configurations is known, e. g.
from computer experiments. Taking into account the presumed equi-
valence of time and statistical averaging (ergodic hypothesis, see
e. g. [22]) one can conclude that the ensemble represents the mac-
roscopic [-structure.

The problem of the identification of local structure of a conden-
sed system can be divided into two parts. The first one is, according
to the terminology of Kendall [23], the classification of local struc-
tures of a macroscopic (or semimacroscopic) [-configuration into
groups consisting of similar structures but different with respect to
each other. Namely, a priori one knows neither the types of «goods
and «bad» matter nor their numbers. The aim of the classification is
to extract the statistically uniform domains (i. e. groups ol atoms)
in an [-coniiguration. The concept of statistical uniformity means
the statistical equality of some parameters in this domain. The
choice of these parameters is dictated by the behaviour of structural
invariants in presence of thermal fluctuations and, in turn, deter-
mines how detailed the classification will be. The hypothesis of local
crystal order states that the results of the classification are the
same ones (in statistical meaning) for each of the semimacroscopi-
cal /-configurations of the ensemble.

In the second stage of the identification the classified structures
are compared with the ideal patterns of structure (determination).
The following formulations are of interest. I) —«quantitatives
determination — where the statistical hypothesis that the structure of
interest resembles that of one ideal structure pattern is verified.
1) —«semiquantitative» determination— where it is assumed that
the studied structure is one of a few known types; the determination
is provided via the comparison of the moments of the invariants
with these of ideal patterns. III) —«qualitative» determina-
tion — where the presence oi some definite (but unknown) types of
local order for macroscopical /-configuration is displayed. This for-
mulation is technically simpler than the preceeding ones and is thus
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of main interest for the verification of the basic concepts concerning
the local structure of melts.

In what follows we present the simplest algorithms for classifi-
cation and determination of local structures. The reliability of the
identification depends on the number of used informative invariants;
in general the random vector ¢ should be used. In some cases it
may turn out that the use of only one informative invariant ¢, is
sufficient. Thus, the methods of both many-dimensional and
one-dimensional statistical analysis are used throughout.

4. IDENTIFICATION OF STRUCTURE OF «COMPUTER» LIQUID:
CLASSIFICATION

In this section the simple algorithm of classification of types of
local structure of /-structure described by vector field (%) is pre-
sented. The volume of the matter is divided into domains of «good»
and «bad» matter using the density probability function p; of ran-
dom variable ¢, The classification of atom X as an atom of a

«good» matter depends on the radius R, of the neighbourhood of ¥

which contributes noticeably to ¢, An atom belongs to a «good»
matter only if all his neighbours are in «right» positions, i. e. the
atom and its neighbourhood resemble an ideal pattern of structure.
The defects like dislocations, vacancies etc. presented in this neigh-
bourhood, make the atom a «bad» one. As a result, defects give rise
to the region of «bad» matter with radius R, This is the origin. of
the strong susceptibilty to defects of RDF at large (a few interato-
mic) distances.

We propose the following method of classification. One finds
with the help of ¥ (¥) the empirical density probability functions
pi(¢p:). The typical functions p; corresponding to some concepts of
local structure of liquids are shown in Fig. 1. In particular, the
case {a) corresponds to the presence of definite types of «good»
and «bad» matters. The boundary y” splits the y; axis in two parts
in a «natural> way. Most of the clusters belong to the ;> }{¥
domain; by the definition their constituent atoms form the «good»
matter. Equivalently, an atom belongs to a «bad» matter only if it
does not belong to any-cluster with y . Such the classification
+is suitable for the distinction of two types of noticeably different
structures when one of them is dominant (Fig. l,a). When two
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Fig. 1. Schematical plots of some typical functions pi(); «g», «b»—«goods and
«bad» matter.

types of similar structures are present (Fig. 1,b corresponding to
some concepts of local structure of alkali metal melts [5]) one can,
for the beginning, neglect this fact and apply the above algorithm
to find the domains of «bad» and «good» matters. To this end the
less informative invariants with higher values of / [10] can be
used. In the case displayed in Fig. 1,d no definite type of local
order exists.

The merits of the method are its simplicity and small volume of
needed computer time. Its main shortage is due to the element of
arbitrariness. Namely, one expects that the number of relevant inva-
riants at the melting temperature is not less than 10 [10]. In this
case any reasonable statistics is not sufficient to construct the pro-
babllll},’ density function p(y) and the classification has to be done
via the use of partial density function p/(¢,). It is natural to expect
that the classifications resulting from the use of different p, do not
coincide. Next, in some cases the choice of {\” is also arbitrary (see
Fig. 1,c). Finally, this method offers no possibility to compare the
diflferences between two different classifications.

In principal, the advanced methods of many-dimensional statisti-
cal analysis can be used to yield the algorithms iree of these short-
comings. We do not present them here for the following reasons.
Firstly, they are very (computer) time consuming. Secondly and
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more important is the fact that if the hypothesis of local crystal
order holds then the simplest methods of classification should dis-
play the presence of the definite type of local structure. In this case
the use of advanced methods is justified; they determine the degree
of the reliability of the conclusions and provide the detailed treat-
ment necessary in cases like that shown in Fig. 1,b.

5. PARAMETERS OF LOCAL STRUCTURE OF MACROSCOPICAL SYSTEMS

If some connected domain of «good» matter consists ol a big
number of atoms then it may be more convenient to describe its
local structure in terms of «macroscopic» parameters then in terms
of local parameters y. The advantage is due to the improvement of
the conditions for the recognition of fluctuating structures. In this
section we introduce such the description.

Macroscopical volume 8V of «good» matter containing n, atoms
can be treated as a set of Ny=n,/N, N—atomic clusters; the para-
meters describing fluctuations of the shapes and orientations in spa-
ce of two neighbouring clusters are supposed te be not too strongly
correlated. The choice of N is a priori arbitrary since the «clusters»
have no real physical boundary. To some degree, the analogous
arbitrariness arises when the element of periodicity of an ideal
crystal is to be chosen. The main difference is that for big values of
N such that No~1 the «cluster» displays no resemblence to any
crystallographic structure. The study of fluctuations of macroscopi-
cal structures with the help of such the large cluster though in
principle possible is diflicult due to the evident lack of a classifica-
tion scheme for the choice of patterns I'; which form the basis in the
space of structures [12]. For this reason it is convenient to use
small volumes of melts which display noticeable similarity with
some crystallographic (or non-crystallographic) structure. As stated
in section 1 such the similarity holds in volumes corresponding to
first coordination shells, containing N.~10'=10° atoms [l1]. In
such the case the choice of {I'} corresponds to the concept of
crystallographic (non-crystallographic) point-symmetries. Evidently
such the description is valid for systems where the mentioned above
similarity holds in volumes containing more than N. atoms.

Let us consider an arbitrary splitting of domain 6V of «good»
matter onte N-atom clusters. In general, some ol the atoms may
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belﬂng to more than one cluster. The local structure of the matter
in 8V can be described via the set of «macroscopical» quantities

I N ;
Llf _— l'l'} rr.lr.'] 5
! "'""“‘?-’ (i) (9)

The summation in (5) extends over all the clusters. The quantities
(5) are the analogues of the average (per site) magnetization of a
macroscopical sample of localized magnetic moments, or the
average density of a gas etc. For more details see [24]. For further
purposes we define a dimensionless invariant @;=% /X, where Z,
denotes the m.r.s. deviation of random variable W, and random vec-
tors W={¥,, ¥,,..}, D={dy, @y, ..}. The statistics of fluctuations
of invariants (5) is studied in the next section.

6. IDEAL PATTERNS OF STRUCTURE: FLUCTUATIONS
AND CONDITIGNS FOR RECOGNITION

Determination of the structure of previously classified domains
requires the description of the structure of presumed patterns in the
presence of thermal fluctuations in terms of parameters (5).

The physical picture of the structure of a liquid accepted in this
paper implies the existence of an equilibrium concentration of linear
defects and deformations due to these defects. When the defects are
immovable, the structure of average locations of atoms can be iden-
tified with the V-structure. The long range orientational order does
not exist; when moving along the «good» matter the tangent lattice
changes its orientation. This in turn leads, at the distances of a few
coordination shells, to the deformation analogous to the elastic
deformation in bent bar of an ideal monocrystal. The statistics of
fluctuations of invariants reflects both the «quick» phonon-like
movements corresponding to nearly independent fluctuations of
atoms’ positions in deformed local lattices, and the «slow» move-
ments, corresponding to this deformation. The problem of the sepa-
ration of the «phonon» and «defect» part of a deformation was
studied in paper [9].

In what follows we discuss the statistics of fluctuations of inva-
riants ¥, in the case of ideal crystal. In the space of structural
invariants the fluctuations of some structure G; are represented by
the probability density functions E29(W¥) and E@(®). In order to
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find Ehese functions note that the local probability density functions
p(y(r) for N-atom clusters do not depend on 7: p(W(7))=p(P).

At the te, mperatures exceeding the Debye temperature the rela-

tive thermal displacements of atoms are mainly due to the short-
wavelength phonons. Thus for our high-temperature systems the
fluctuations of atoms’ positions can be treated as statistically inde-
pendent (some correlations are present for the nearest-neighbours
only, see e. g. in [25]); the fluctuations of parameters ¥;(7) and
Wi(r;) (is~j) of the structures of two neighbouring clusters are also
statistically independent. Averaging (5) over the ensemble and
taking into account the ergodic hypothesis one finds the parameters
(W) describing the fluctuating structure

(Vi) =p(r) =4, (6)
where (..), .. stand for statistical and time averages. Some
examples of evaluation of functions ¥;(£) can be found in (10, 19].
It should be stressed that quantities vy, are not linear functions of :
this results in the dependence of (W:) on E. When the number u::-’ii
atoms is very large (No>>1) the statistics of fluctuations is domina-
ted by th_e configurations with W,~ (W¥,}. This is the simple ccnse-
quence ol the universal effect of the narrowing of the width of the
density probability function E;(¥;) for the independent additive
quantities P, (see e. g. in [26]):

i :‘Mr_ /2 ey )
TS ()

For large values of N, the central limit theorem (see e. g. in [27])
states that the invariant W, is normally distributed:
Ei(Wi) ~n (Wi (¥, 20 ;

i{(fbj} Guli fm.-, {(I}Ir:}‘ “ ' (8}

where «~» stands for «asymtotically». It was assumed that the two
fir:;t moments of random variable , are finite. In the case of quad-
Téfltlc invariants the variables y; are, with good accuracy, normally
distributed [10]; then formula (8) holds for any value of Ny. The

parameters of the function E,(¥,) are, in accordance with (6) and
(7)

(¥y=p;  Si=ai/\Ns. 9)
14

Let us study the conditions for the recognition of ideal structure
patterns described via parameters @®. We assume that the fluctua-
tions of invariants @; with different values of [ are statistically
independent. For normally distributed random vector @ this is so
when the non-diagonal elements of covariance matrix vanish. It is
also assumed that the quantities XY for the ideal patterns [ satisfy
the approximate relation X{’~ZXZ{. Both these conjectures hold
approximately for the 13-atom clusters studied in [10]. Then, the
probability E of erroneous identification of the fluctuating structure
via the maximum-probability decision rule is [12]

OF == ] —erf( ﬁ‘i) | (10)
22

where Ajp=| (D) — (®®)| denotes the distance between the cen-
ters (@YY, (DY of Gaussian distributions corresponding to
structures 1 and 2 and eri(x) stands for error function:
erf [x}:-‘,i_Se_Fdf. Writting down formula (7) in terms of para-
VI
meters ¢ and @,
O=+N, 7, k54

one finds
Ajg=/Ng 82, (11)

where 8= (") —(F?)| denotes the distance between the cen-
ters (G, (@) of distributions corresponding to the fluctuations
of N-atom clusters of structures 1 and 2. Formulas (10) and (11)
give the possibility to study the conditions for the recognition of
macroscopical structures wvia the characteristics ol fluctuations of
individual clusters.

As an example, let us study the conditions for the mutual recog-
nition ol close-packed structures: cubic (FCC) and hexagonal
(hcp). These structures are the «natural» candidates for the ideal
structure patterns of simple liquids. In Fig. 2 we present the plot of
the function E(%); function 8;2(§) (Fig. 3) was evaluated on the
basis of data presented in our paper [10]. To be delinite, in the
case of quadratic invariants the data presented in Fig. 2 coincide
with the data obtained from (10) for £> 0.15. For £<<0.15 the
values of E are smaller (better recognition) than presented in
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Fig. 2. This reflects the fact that only the most informative invari-
ants were used in [10] to find 8,2(§). For &> E.~0.5 the relation
012(§) =0 holds with the accuracy of computer experiment. With the
same accuracy the function E(E) tends to a non-symmetrical step
function at Ny>>1. Thus, the advantage of the use of invariants ¥,
shows up at intermediate values of & 0<E<E..
The modelling of the fluctuations at £ 0.4 needs probably bet-
e ter statistics. For this reason the results corresponding to E> 0.4
are presented by dashed lines in Figs 2, 3.

-

7. IDENTIFICATION OF STRUCTURE OF «COMPUTER» LIQUID:
DETERMINATION

In this section we discuss the simplest varianis of determination
oi local structure of liquids. The set of n samples (configurations of
atoms) is given and each configuration is divided into regions of
«good» and «bad» matters; the former is described via W. The
determination of the structure is performed via the statistical analy-
sis (see e. g. {28, 29]) of the sample WV . ¥ Ag a rule we do
not present the well-known algorithms in detail. '

fig. 2. Plot of the dependence of the error of recognilion E on
hexagonal (hcp) domains of «goods matter. Ng=1 (a), 8 (b

for cubic (icc) and
38 (c), 77 (d).

),

i
5 7.1 «Quantitative determination»

As pointed out in section 3 the statistical hypothesis stating that
W, is normally distributed has to be verified. In the simplest version
one uses the property of the asymptotically normal distribution of
sample excess (e) and asymmetry (A) of normally distributed
e population. If

| =

|4 o4l < 3, [efgil =58, (12)
S |

where o,="76/n and o0,=20,, then the hypothesis is accepted and

the determination acquires semiquantitative character. The signifi-

A E cance level of the test (the probability of making the error of the

al 0.2 e, -~ first kind) is o~ 0.003.

; ; : ; In the more rigorous approach the goodness-oi-fit test 4% can b

used; the values of (W¥;) and £, are identified, If the value of the

Fig. 3. Plot of the function 8,2(E) for cubic and hexagonal 13-atomic clusters. test x° evaluated on the basis of sample WiV, ., Wi” satisfies the
inequality

"'lq__
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where r denotes the number of domains onto which the ¥, axis is
divided, o— the significance level, then the hypothesis is accepted.
Here y.. denotes the a-percent point of y*-distribution with m deg-
rees of freedom [30]. The determination acquires semiquantitative
character.

7.2. «Semiquantitative» determination

In the simple version one determines the type of fluctuating
structure represented by point ¥” via the maximal-probability deci-
sion rule [12]. It states that the fluctuating structure is the defor-
med state of this of patterns «i» for which the value of E¥(¥") is
the biggest one:

2P > ENF) (14)

The upper index denotes the type of the pattern. In assumption of
the statistical independence of W, and of approximate . equality
¥ ~ 3 the function (W) is a product of functions Z,(¥;), formu-
la (8), and the probability E is given by formulas (10) and (11).

In another approach one finds the confidence estimates for mean
values and dispersions of random variables ¥, If W, is normally
distributed then the confidence estimates with measure of reliability
equal to | —a are (see e. g. [27]):

for (W)
L S 4 i3 S i
(qre— ff_!.‘a,n..[ R T %_fw,_J) . (1ba)
yn oVl
for 2,
(n—1)8% (n—1) 87
( A B ol ) (15b)
En._.-'E, n—| == a2 n—1

Here ¥, S? denote the unbased estimates of mean value and disper-

: 1 :
sion evaluated irom the sample Wi, ... W{"; ¢,, — ?a-percent point

of Student’s ¢-distribution [30]. If the parameters (¥;) and X; of
some ideal structure pattern lie in intervals (15) then the /-struc-
ture can be treated with measure of reliability 1 —a as the fluctua-
tion of that pattern.
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In many-dimensional case the confidence estimates for the
m-dimensional vector of mean value of ¥ are obtained with the help
of the generalized T?-statistics of Hotteling [29]. In the assumption
of the normal distribution of ¥ the probability to get the sample (of

size n) with mean value W and sample covariance matrix S such
that

o~

n(F— (FY) S (¥ —(F)) < Tha) , (16a)
where
o (3 i (16b)
n—m

is 1 —a [29]. Here F,,_.(a) denotes the a-percent point of F-dis-
tribution and (...)'—a row. The principles of the determination are
the same ones as in the 1-d case. The survey on confidence estima-
tes for many-dimensional normally distributed variables can be
found in [31].

7.3. «Qualitative» determination

In this formulation one verifies the statistical hypothesis stating
that the density probability function of structural invariants is the
same one in various domains of «good» matter. We deal with the
physically interesting case when these domains correspond to indivi-
dual (subsequent) configurations. To this end one verifies the
hypothesis stating that two samples correspond to one parent popu-
lation. No knowledge about the distribution of structural invariants
is required. For each of the configurations one finds the sample
Vi, ..., Pis, Where pi=1,(7;) denotes the value of invariant ¢, for a
cluster with center 7, and s—number of clusters in the configura-
tion.

The decision is made with the help of non-parametrical good-
ness-of-fit tests (sign test, Van der Warden X-test, Wilcoxon test).
Let us discuss the determination on the basis of Wilcoxon test (see
e. g. [27]). The elements vy, ..., s, and ¥f, ... ., of two samples
are mixed together and then ordered by their magnitude. By the
definition pair (¢w, Pi) forms an inversion when i << When
the hypothesis is true then u—total number of inversions—should

not differ noticeably from its mathematical average %Sﬁig. The
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hypothesis is rejected when [u— —s.5;

—

exceeds a critical value u,

(e is the significance level). The quantities u.(si, s:) are tabulated
e. g. in [27]. For big values of s, s2 (s, s2>> 20) the approximate

formula holds
“uzzuV'l’"gz{'lz’-i.—'_*‘{f_i_l] {J.?}
12

where 2y(z,) =1 —a and My(x) denotes the Gaussian distribution
| 4 = 5 1

— Se dt. 1f the hypothesis is true for any
Vaa o

pair of coniigurations than it can be concluded that the macroscopi-
cal structure has some (unknown) type of local order.

The analogous analysis can be done in terms ol parameters WV,

function: @gfx) =

8. CONCLUSIONS

The mathematical formalism presented in this and preceeding
[10, 12] papers gives the possibility of a consistent analysis of
structures of «computer» liquid and amorphous systems both on
local and semimacroscopical levels. The aim of the subsequent work
is to apply it to the study of the local structure of the melt and, in

particular, to verify the validity of modern concepts of this struc-
ture.
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