£

MHCTUTYT AAEPHON ®M3UKHU CO AH CCCP

A.R. Zhitnitsky

FRACTIONAL TOPOLOGICAL CHARGE AND
TORONS IN SUPERSYMMETRIC 0(3)c-MODEL
AND IN GAUGE THEORIES

PREPRINT 88-113

=llmE

HOBOCHUBHUPCK




Fractional Topological Charge and Torons
in Supersymmetric O(3)o-Model
and in Gauge Theories

A.R. Zhitniisky

Institute of Nuclear Physics
630090, Novosibirsk, USSR

ABSTRACT

The new class of self-dual solutions with a [ractional

topological number in the 2d O(3) o-model and

4d SUSY gluodynamics (SYM) are considered. The

correspoﬂdi'ngh contribution to fermion condensate
() has finite nonzero value.

© Hwucruryr adeproid gusuku CO AH CCCP

I. SOME REMARKS ON FRACTIONAL TCPOLOGICAL CHARGE @
AND WHY IT SHOULD BE CONSIDERED

It is well-known that the action is finite for solutions with inte-
ger Q only. But this theorem holds for special boundary condition,
which corresponds to consideration of the theory on sphere S’ (the
|x| = oo are identified). Still another boundary conditions can pro-
vide the finite action with fractional topological number. So, the
only problem is to analyze stability of classical solution. In other
words, we have to analyze the small quantum fluctuation around
classical background with fractional Q.

The well-known example of self-dual solution with Q=1/N in
SU(N) gauge theory is toron [l]. The solution is defined on a

2
hypertorus T\ X T\ X T X T, and has finite action S= ;SN'

The main properties of this solution are following: the fields are
defined in a box of sizes L, and are smeared over the box
(Guw~L"?); the solution exists only if the ratios of the sizes L, of
box satisiy certain relations; the introducing into the theory of fun-
damental (not adjoint) representation of fields is rather difficult
because of special (twisted) boundary condition; the quasi-classical
calculations [2] of (yp) in SYM are incorrect because
g(L—o0)—o0. So, 't Hooft’s solution can be considered only as an
illustrative example with fractional charge.

Still, we believe that solutions with a fractional number may
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play an important role in the theory, but this solutions should be
formulated in another way than 't Hoolt’s solution.

The reasons to consider fractional Q are more clearly seen for
supersymmetric theories than for ordinary ones. Indeed, in super-
symmetric O(3)o-model there are 4 fermion zero modes [3, 4]. This
means that instanton transition is aiways accompanied by emission
of 4 fermion fields and so (Py(x), (Pp(0)=> =0 [3, 4]. However,
(PP ) instanton =0 because we have 4 (but not 2) zero modes.

It is obvious that we get (y¢) 0 for solution with Q=1/2,
which has 2 zero modes. Corresponding calculations in SYM, based
on 't Hooft's toron solution were carried out earlier [2]. The finite
(at L—>oo) value () ~A’ was obtained. The quasi-classical
approximation which was wused in [2] is unreliable because
g(L—o00)—0co. However, the nonzero (pg) indicates that localized
solution with required properties exists.

Our main goal is to formulate the self-dual solution in R® (for
O(3)o-model) and in R* (for YM theory) which is characterized by
Q=1/2. For this purpose let’s remind some facts ifrom instanton
calculations. Then we present a solution with fractional topological
charge and describe some modifications of calculations connected
with fractional topological charge.

2. 0(3)o-MODEL. INSTANTON

The action, being formulated in terms of n®-fields, is equal to:

S=:_fgd9x(6pn“}2; Atnte=1; awl, 2, & p=1L2. (1)

The constraint n°n“=1 can be resolved with the help of stereo-
graphic projection (Fig. 1)
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Then the action is described by one complex field:

PR 7 o (3)
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The seli-dual equation and instanton solution in this language takes
the form:

| G 0 .

— =0, Qua=——, z=xi4ixs. (4)

a2z Z2—d

Here p, a are 4 free parameters associated with translational and
scale invariance. The instanton in terms of n“lields is the hedgehog

n®~r® with the action:
2
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The next step is the calculation of quantum fluctuations in instanton
background. It is necessary for this to consider the following form
15, 6]:
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Here A=I({41)—=2, I=1, 2, 3,...; g1=2(2{+ 1) is multiplicity; n,
o are the coordinates ol sphere obtained by stereographic projection.
The additional condition ¢“né;=0 must be fulfilled because of con-

straint (g°n%)*=1. As usually we have to consider the quantum
fluctuations in vacuum background as well. In this case we have:

miae=1L%, A=I({+1), @=2@2I+1), I1=0,1,.. (7)

Due to egs. (6), (7) we have 6 zero modes in instanton field and 2
zero modes in vacuum field. So, there are 4=6—2 nontrivial zero
eigenstates associated with 4 iree parameters (4).

Let’'s note that the contribution of nonzero modes to instanton
measure can be easily calculated (with logarithmic accuracy) with
the help of ordinary diagram (as it has been made in [7] for gauge
theories) and is equal to (Fig. 2):
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For instanton S;[=2n so that the contribution of nonzero modes is
[5, 6]:
e -S,L-,-.-=E—]rl M.ﬁ.

Therefore, the instanton measure is proportional to [5, 6]:
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4 zero modes nonzero modes classical action

The instanton measure for SUSY O(3)oc-model is defined only by
zero modes so that [3, 4]

di’ d’e
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Zinst (SUSY) = d®aMid’p M5 Mo My e ap’dPad’p de dieg (10)
4 boson z.m 4 fermion z.m classical

action

Here p>*~Mj§exp | —2n/f(My)) is renorminvariant value. Here g, e
are collective Grassmann coordinates associated with 4 fermion zero
modes. The instanton coniribution to two-point function does not
vanish [3, 4]

(P(x), pp(0) > ~u’.

In other language (in terms of unconstrained ¢-field) the zero
modes satisfy equation:

(890) =0. (11)

However, the arbitrary: analytical function is not yet a zero mode;
only the functions also satisfying finitness condition [8]

| Sepol®
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are acceptable. There are only two independent analytical functions
dpo~(z—a) ', dgo~(z—a) ? which satisfy these conditions. So,
we have 4 real zero modes, as it was expected.

3. THE TORONS IN O(3)oc-MODEL

We admit a more general class of solutions of equation
d
— = 0(4). Namely:
a5 Pl (4) )

Prtoron = lim vi: Q = ]J;2 '
A—sl) >

X

dip 2= nA pdp e 13
6‘2| f Spfi‘*-—l—p]z E° o

0

d*x
I 4 )

G i %S (

Here A—0 is regulator of fixed points of orbifold (see below). The
solution is defined on two Riemann sheets. The physical space is
one of them. Note, that the topological charge equal 1/2 is the only
stable one under quantum f{luctuations; the solutions with another
fractional number are unstable.

Let's describe the geometrical features of toron solution. Com-
pactify for this purpose the complex plane z to sphere S, (Fig. 3)
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Fig. 3

We make a cut along a line joining O to oo, open up the sphere, so
that it becomes a hemisphere and then glue a copy of itself (the
second sheet) to it. The sphere we obtain (Fig. 4) is to be thought
of as the compactified complex plane z
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Fig. 4

Let us remind that @ ~1/z is hedgehog on S. The toron yl/z is
hedgehog on S.

There is alternative point of view on toron solution™. It is con-
nected with consideration of the manifold with boundary. Let’s con-
sider conformal mapping (15). In this case physical space is
half-plane with boundary Im Z=0 (Fig. 5a, 56). In ©—variable
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physical space corresponds to disk with radius R (Fig. oc). So, we
may define the theory on a disk R and take the limit R—-oco on
the final stage of calculation. On the other hand, we may define the
theory on the exterior of small circle A and take the limit A—0 on
the final stage of calculation. In this language toron is the point
defect at A—0.

The only questions which arise concerning this solution are: is
this solution stable?: is the contribution to (W) of this toron solu-
tion finite at R—0 or A—0?

To answer this questions we have to calculate the toron measure.

*) The author is grateful to A. Morosov and A. Rosly (who considered analogous
solutions earlier) for explanation of this opinion on solutions with fractional topologi-
cal number.
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4. THE TORON MEASURE

The contribution of nonzero modes can be easily calculated with
logarithmic accuracy as before (8) and is equal to:

i e 1 F o ikl ! -«"lx - N
exp { -In Mi—{(Sa 1) } == eXp !1~ — —1In .-"l.-]'r_;J . (17)
\ £ 4 : Z

(e =™ for instanton). So, decreasing action two times we have the
nonzero modes contribution deminished two times as weil. How this
phenomenon can be understood irom the specira of eigenstates
viewpoint? To answer this question, let’s note that in terms of 5, o
(14) the equation for quantum fluctuations in background toron
field coincides with that in the instanton case (6):

H}.rl'juruu :L‘I(ﬁ &' o 2 . EEH!I
However, the muitiplicity g/ decreases twice in comparison with the

instanton case. It follows irom the fact that one-hali modes are
unacceptable because of the boundary condition. So, due to
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we have

arom,

goF =50 % Ko (19)
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in agreement with more simple calculation (17).

Let’s consider the zero modes in toron background. In this case
the multiplicity of zero modes is 2 (not 4 as for instanton). It
comes from the fact that the only analytical function

dpe~1/2 (20)

satisfies to finitness condition (11, 12) [8]. Taking into account this
facts we write down the toron measure for SUSY O(3)o-model in
following form:
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Here we have taken into account that supersymmetric measure is
defined only by zero modes and the multiplicity of zero modes is
equal 2 (20). Toron contribution to () does not vanish.

(P ) ~pufe’d’e=p (22)

and the result is delined exactly by rchorminvariant combination:
Moexp | —a/fo} =p. This phenomenon can be easily understood if
one starts from instanton measure (10). Decreasing action twice we
see the multiplicity of zero modes decreased two times as well.
That’s why the renorminvariant combination p=Mgexp{—mn/fo} is
conserved.

In conclusion of this section let’s describe the geometrical inter-
pretation of acceptable modes. For this purpose we consider the
manifold S having a discrete group G. Dividing S by group action
G we have S=58/G. We may consider the theory on S but we
demand the physical states to be invariant with respect to G:

G |ph}'sica]> e
states

physical >
states

In our case G: z——Zz and, in particular, zero modes (20)
dpo~1/2~1/%* satisfy this condition. Let’s note that G: 3~ —3 has
fixed points (North and South Poles) and so S/G is orbifold (see,
for example, [9, 10]). The orbifold has singularities in fixed points.
For their regularization one uses usually the dimensional parameter
A—(0 (the «blowing up» in literature). At each fixed point, there is
a conic singularity with deficit angle n. So, the topological charge

& i ab B
. 2:1,@&& on 2’
as it was expected (13).

5. TORONS IN SU(2) SUPERSYMMETRIC GLUODYNAMICS

Let's formulate the seli-dual solution for gauge theories on the
language analogous to Cauchy— Riemann condition for O(3)o-mo-
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del. For this purpose consider Witten's Anzats [11]:
A§g=n"Adr. 1),

A —giokgt 1T P2 o gui papiy D0y papig (23)
F r
AFZ(AU,A]}, D =D; — iy, z=rit, T

Now the problem is effectively 2-dimensional one. Then A,(r, t)
w=0, 1 is the gauge field and @ (r, t) —complex scalar field of this
2d-theory. The solution of the self-duality equation is described by
any analytical function g(z) [11]:

s r
=92 y_inZ2E o—f¥, A=A—ide=—22L ()
dz | —gg e

The topological charge in Anzats (23) is determined by change of
phase [=dg/dz around the countour which encloses the region
Rez=0 [11].

I T i " T g
Q:{—Sdfdr l?am Fouvtiga dy (@ Dvﬂl)J:EE@)dSEl”ﬁ (25)
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So, the solution g(z)= — is a gauge transform of the vacuum

a-+z
and has Q=0; the

s =[] (372)

is the l-instanton solution with Q=1. The toron solution with
Q=1/2 (by analogy with O(3)a-model) is described by the function

o=(252)"

Here A=a-+a—0 is the regulator, analogous to dimensional para-
meter A (13) in O(3)oc-model.

We can show that in the toron’s background the only two regu-
lar fermion zero modes exist (remember that in the instanton
background 4 zero modes exist). As we have seen (20) the ana-
logous phenomenon is inherent in O(3)o-model too.
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i is well-known [12] that for each solution of the spinor field
equation there exist precisely two linearly independent solutions of
vector field equation (in D, Ai=0 gauge). In particular, the Dirac
equation in instanton field has 4 solutions:

pro~Gie O e, P34~0uex Give. (27)

Thus there are 8 gluon’s zero modes:

Aeos . a=01723"
A~ Gl x, d=1,2,8; (28)

AL~ Gy x,.

Therefore, the instanton measure is equal to:

d’e; des %
ZJns.’ ke l.ﬂ'ill f.-i.‘:xl'l- _.1'1[1| d IF i .-"L'iu Mg . AL
8 boson z.m(28) 4 fermion z.m(27)

~M} exp{ s 3%} d'xod'p d’, d’e:, e
g

. - 2
M“~Mﬁexp{ ik BTTJ } _
2

The instanton contribution to two-point function does not vanish
[13, 14]:

(i), Yp(0) ) ~n’.
In our case, the Dirac equation in toron field (24), (26) has 2 regu-

lar solutions (the gluino zero modes). Thus [12] there are 4 regu-
lar gluon’s zero modes). So, the toron measure is equal to:

£o gt L)
e T e M O (R (6
4 boson z.m 2fermion z.m. classical action
3 g4 8, 3 3 4n’ ’
~n'd xod’e ; M=Mgexp{———2}. (30)
g

The toron contribution to ¢(yy) does not vanish:
() ~p’. (31)

With decreasing action twice the multiplicity of zero modes de-
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creases two times as well. That's why the form of renorminvariant
combination p®~Mjexp| —4na®/g’} conserves.

Details of the toron caleulations in O(3)a-model will be pub-
lished in [15] and corresponding calculations in SYM will be pub-
lished in [16].

I thank V. Chernyak, A. Morozov, A. Rosly, M. Shifman,
A. Vainshtein, and P. Wiegman for useful discussion and critical
comments.
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