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ABSTRACT

The problem of discretization of vector field on Regge

lattice is considered. Our approach is based on geo-

metrical interpretation of the vecior field as the field

of infinitesimal coordinate transformation. A discrete

version of the vector field action is obtained as a par-

ticular case of the continuum action, and it is shown
to have the true continuum limit.

© Hucruryr adepuod ¢usuku CO AH CCCP

1. INTRODUCTION

A discrete version of general relativity (GR) which deals with
the piecewise-flat manifolds composed of flat simplices was sugges-
ted by Regge [1]. Mathematical basis for this construction and it’s
connection with the continuum theory were clarified in Ref. [2—4],
but long before that practical applications of Regge calculus to
approximating classical problems of GR had been started [0—T7].
Also discretization of other fields on piecewise-ilat manifolds and
related problems were studied [8—12]. The quantum applications
of Regge calculus were considered mainly in the framework of func-
tional integral approach [I13—19]. The Hamiltonian formalism [20]
provides a complementary approach. It's Regge discretization yields
the most direct way to fix the functional integral measure and is
interesting also from another points of view [21 —23].

In practical applications of Regge calculus one often encounters
the problem of discretization of vector (and, in general, tensor)
fields in gravity background. If the latter is taken in the form of
Regge manifold the difficulties arise connected with ambiguity of
tangent space at singular points [24] where the curvature residues.
These are the points of (n—2)-dimensional subsimplices (the
bones) of Regge lattice. Formally, this singularity displays as a
divergence of the action. Namely, suppose the action is quadratic in
the covariant derivatives and depends nontrivially on the Christoffel
connection involved in these derivatives, ¥V ny=d,n,— 't In the
piecewise-affine coordinate system T}, takes the form of §-functional
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distribution (with support on (n—1)-dimensional faces) so the
action includes the singularities of the form of §-function squared
under the integral sign. In the particular case of electromagnetic
field Christoifel connection cancels in the expression for the action.
Therefore this and similar systems admit an elegant formulation on
Regge lattice [8—10] (in terms ol some integral variables).

Now consider vector field n* with the  action of the form

5 =45 M (9100 (V) V.
,-"l,’!“‘-‘-"*“:ﬂf""?‘r':MW"Fﬁ* { i }

where M""* depends on metric and, perhaps, on another matter
fields. We consider M*** bhe piecewise-constant on Regge lattice.
List some examples of (1). First, (1) is the general form . of the
Faddeev —Popov vector ghost field action in gravity if the gauge is
chosen in the form of algebraic relations between the components of
metric tensor. In this case n"(x) is the fieid of infinitesimal coordi-
nate transformations x™=ux"—n"(x), Vily= Ve~ Vi is the
corresponding variation of metric, 8,g,v, (1) is some (degenerate)
infinitesimal norm of the type of that of the deWitt one |25] on the
space of metrics. In particular, for the conformal gauge in the
two-dimensional gravity relevant to the Polyakov string quantiza-
tion [26] MM =g g | gtrg¥ __ gvgh  Second, the so-called shift
vector N; enters bilinearly (in the form of symmetrized derivative
V N,) the 3-1 action arising when constructing Hamiltonian for-
malism in GR {[20]. Finally, if the symmetry conditions (1) were
not imposed on M"** one would decompose the derivative

Vaully= %{ﬂunv_ dvny) + % V )
so we see that the main difficulty is connected with it’s symmetric
part containing Christoffel connection.

If this note we obtain a discrete action for vector field on Regge
lattice as a particular case of the continuum one. Then we show
that this action is a formal finite-difference approximation to the
continuum action in the leading order in a lattice spacing. In this
aspect there is an analogy with the derivation of Regge action as a
particular case of the’Einshtein one [2] and subsequent proving
that the latter is the continuum limit of the former [3]. To resolve
the singularity at the bones we use a geometrical interpretation of
the vector field as that of infinitesimal coordinate transformation
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and appropriate choice of [field variables at the singular points. The
paper is organized as follows. In the next section the procedure of
discretization is described. This discretization has a freedom connec-
ted with the choice of an anzats for vector field being parametrized
by a discrete set of variables. In sect. 3 a particular choice of this
anzats is described. Using this anzats it is proven in sect. 4 that the
resulting action is, first, quadratic in the discrete variables and,
second, it has the true continuum limit. Then we conclude. The fol-
lowing notations are used throughout the paper. K is the (n-dimen-
sional) Regge lattice (simplicial complex; piecewise-flat manifold).
o*, s* are the k-dimensional simplices (for k=n—2 and k=n—1
these will be called the bones and the faces, respectively). I'(c*)
(I"(K)) is the j-dimensional skeleton of ¢* (of K), i. e. the union of
subsimplices o/ =¢* (¢/=K), in particular, I'*7'(¢*) is ao* the
boundary of o*. St(c*) is the j-dimensional star of of, i. e. the
union of simplices o¢'=>¢* In particular, we denote
SiMc" ") =SHc"""). a(li, ..., I;) is the simplex ¢* spanned by the
vectors £, ..., [r. ¢=¢(6" %) is the deficite angle which characterizes
the curvature at the bone o" % |o*| is the (k-dimensional) volume
of 0*. As a rule we use a piecewise-affine coordinate system x* in K
so that g,.=const in each ¢". |

2. THE EFFECTIVE ACTION FOR
THE VECTOR FIELD ON REGGE LATTICE

According to the previous discussion (1) can be rewritten as

S={ M™8,g,0 80 gapE d" @)
where ax* ax®
gx " ax”

On uelX") = Gap(x(x") ) — (%) . (3)

Here x(x’) is the inversed to x"=x"—n"*(x) function. If one were
able to expand (3) in the Taylor series over n* he would reproduce
(1). Now on Regge lattice such an expansion is impossible because
of the discontinuity of Regge metric”),

" Using infinitesimal form of the norm of &,g,, in our representation of S (1)
implies the smallness of changes of metric g,, from simplex to simplex (a more de-
tailed analysis below shows that it is sufficient to keep deficite angles small). Other-
wise one should proceed [rom an expression for the finite distance between the two
metrics [25] (when d8,g,. is not infinitesimal).

f

J




Our task is to reduce (2) to some field theory action with the
appropriately chosen field variables. Besides the choice of the vari.
ables we also perform partial functional integration and insert an
anzats for vector field being parametrized by a discrete set of vari-
ables. It is convenient to divide this procedure into the following
three points.

a). Changing the field variables. This includes the following two
steps. First, to each point with o/d coordinates y we assign the vari-
able ﬁ(y}zx{y}—y instead of the previous one N(Yy) =y—x'(y).
Here x(x'(y)) =y. At a nonsingular point infinitesimal N and g
coincide. It is seen that n(y) is the difference of the coordinates
taken in the different coordinate systems. Al a singular point
y=o""?* one cannot give the sence of a vector to n(y) because of
the absence of a locally affine system at this point. Unlikely f(y) is
the difference of some coordinates both taken in the same (namely,
old) coordinate system. Therefore to n(y) the sence of a vector can
be given: it is the vector which connects the given singular point
with old coordinates y to the point y, whose new coordinates (x)
are y. (Here y, is a particular case of more general notation used
in the following: by A, we denote the image of a set of points A at
the mapping 4—x(y).)

Second, there should be a correspondence with the continuum
case. In the continuum limit we should have a vector field on a
smooth Riemann manifold. However, no object of this kind arises
when tending lattice spacing to zero. Therefore we introduce an
auxiliary smooth Riemann manifold M and parametrize i by a vec-
tor field ¢ on it. The manifold M can be chosen so that K be the
piecewise-flat approximation to it in the sence of Ref. [4]. Namely,
K is mapped onto M and the length of an edge connecting the two
vertices in K is precisely the geodesic distance between the images
of these points in M. It is convenient to introduce a piecewise-affine
coordinate system in K and 2 curvilinear system in M such that the
coordinates of the vertices be fixed points of this mapping. To put
correspondence between ¢ and N consider a vertex O in K and a
simplex o(f, ..., T,) to which Oy belongs. Here each [, connects O to
some another vertex O,. Let # and &, be the images of O and 0,
in M. There is the natural basis at @ consisting of unit tangent vec-
tors u; to geodesics #@,. [j li is the difference between the Coor -
dinates of @, and @ in M then

ug =14 é_ Iy £ 13+ O() (4)
For n*=nl we put
8" =n"uz. (5)
Then Aol %
==Y - rp el "";a_:]i;' =0l L o) =z 4 o) (6)
lyseey b

where [7i, ..., [] is the determinant built of the components of 7.

b). Integrating out free fields. The distinctive advantage of Reg-
ge-discretized gravity is it’s being a particular case of continuum
gravity and, further, the flatness of the geometry in the interior of
simplices. Therefore the dynamics of fields in the simplices conside-
rably simplifies and it is possible to perform functional integration
over the values of the fields in the interior of simplices 6". So we
get an effective action being a functional of the boundary values of
lields (on the faces), Thereby we pass from R" field theory to
ZXR"™' one with Z being the set of faces ¢""'< K. There is a
local UV divergent term of the form A"\ flguw)~/g d"x in this action
where A is UV cut-off, f(&w) —a local function. Omitting this term
we get the effective action less singular than the original one (it
leads to the divergences in loops not exceeding O(A" 1)),

Gaussian integration effectively reduces to minimization ol the
action. Therefore for the considered vector field of infinitesimal
coordinate transformations the action reduces to the sum of the squ-
ared distances between the orbits of geometries in ¢" and in o,
) dist*orb gf.(¢?), orb gue(0")) (in the deWitt terminology [25]).

These distances depend only on the geometries in o” (flat) and in
oy and on the mappings between the boundaries do"—00,. Thus we
get an effective action as a functional of these mappings.

¢). To discretize the action we «freezes some degrees of freedom
of the field parametrizing it by a discrete set of variables. Now it is
the mappings ¢"~'>o"~" which should be parametrized. If it were
the case of scalar field @ (x) there would be a particularly simple
anzats at ones disposal with @ (x) chosen as 1 linear function on
the faces. This function is completely determined by its values at
the vertices and would lead to the discretization of Ref. [I1]. Ana-
logous anzats for the problem at hand would be the linear map-
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pings between the hyperplanes ¢"~'—o;~'. But generally speaking

oy cannot be a hyperplane at £> 1 because it intersects with the
bones carrying the curvature (in case of two-dimensional gravity it
is sufficient to consider one-dimensional simplices ¢! which all can
be chosen to be straight lines; at n> 2 complications arise). How-
ever, we can choose the mappings {Tn_l—H.’I::_] such that at zero
deficits they reduce to the linear mappings between the hyperplanes.
Below explicit construction of such the anzants for n=3 is given.

3. ANZATS FOR DISCRETIZATION OF THE VECTOR FIELD

| i 1

Here we construct the [aces o, and the mappings ¢"'—>o"~
for the case n=3. Generalization to arbitrary n offers no difficulties
except for the notational ones

Given the vectors 7 at the vertices we construct the mappings
0’0, in the three-dimensional case which can be called «<almost
linear» mappings of «almost flat faces». First, we construct the face
o, itsell. For that we draw the edges o, as geodesics (straight
lines) connecting the vertices
on. Then we draw a surface
63 which is a plane in some
tlat submanifold of K and
passes through of's. Defor-
ming &, near it’s boundary
we get a surface o passing
also through the edges o!.

The surface 6; can be cho-
sen to be a plane in a flat
Fig. 1. The two alternative cuts ¢ and submanifold of K obtained by

¢’ relevant to the two different maximal cutting K through the bones
continuous plane-like extensions of the b B 10ds £ e g
surface P around the curvature support g LGNy removing the points

o' (in the three dimensional space); o} of halfplanest passing through
is the projection of o' onto P. the bones o¢'. In order that

after glueing together the
edges of a cut the continuous surface arise from this plane the cut
should be symmetric with respect to the plane. In the degenerate
case of ¢' orthogonal to the plane any cut is suitable but generally
there are the two possible such cuts running along the projection of
o' onto the plane, see Fig. 1. In the assumption of convexity of
Si(o®) the cuts can be chosen not to intersect the interior of St(0?)
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The surface 65 can be drawn to pass through the vertices o). Then
it can be bounded by geodesics in ii, 6y, connecting the vertices o9
Generally 6, does not coincide with o). By construction 62 possesses
the following properties. 1). It passes through the given three verti-
ces ay. 2). It is piecewise-flat so that the dihedral angles between
the different flat pieces can differ from n by O(g) in the exterior of
St(o®), i. e. in the narrow strip at the distances O(n) from the
boundary 84;. Here n and ¢ are typical scales of the vector field
variables 7 (y) and of the deficite angles at the bones, respectively.
3). It is a plane in St(¢”) (the plane DGEHF in Figs 2,a,b).

[t follows from the second property that 63 can be approximated
by the straight lines up to deformations O(n)O(g). Therefore we
can deform &} in the neighbourhood of it’s boundary to get another
surface of which also can be approximated by the straight lines up
to deformations O(n)O(g). It possesses the following properties.
1). It passes through the given vertices o} and the edges o) connec-
ting them. 2). It is piecewise-flat, it can be composed ol flat triang-
les s* whose vertices are either o or intersections of o2 with the
bones. 3). It is a plane in St¢(¢®) (the plane DGEHF in Fig. 2,¢)
and one of the triangles s§ (DEF in Fig. 2,c) has the edge lengths
up to O(n) the same as those of o2

Next we construct the mappings o0} as a boundary values of
the mappings o°—ai which we shall describe as follows. Let us tri-
angulate each oy by a set of flat simplices s* with the following
properties. 1). The vertices of s® which belong the face o are the
vertices of the triangles s* which form this face. 2). Another verti-
ces of s° are the vertices ¢” of original Regge lattice K. 3). One of
the tetrahedra s, has the edge length up to O(n) the same as those
of o). It follows from this that there are also the simplices .s{iﬁ,
m=1, 2, 3 in which m dimensions are of the order of n and 3-m
ones are O(l). Let us embed thus triangulated complex into an
Euclidean space of sufficiently large dimension E". In E" we can
assign to each simplex o} the flat one o spanned by I''(¢%). Consi-
der the following operation of projecting the points of of orthogo-
nally onto UL? First, we project the vertices s’=o? onto o3, s%—>s.
Second, if s° belongs the boundary, s’eo;—adol, it is additionally
projected onto of, s”—s]. Despite of the fact that boundary vertex
belongs the two simplices o}, the whole operation is correctly defi-
ned because the result of the second projecting is independent of the
simplex o on which the first projecting is made’ The resulting pro-

jecting S‘L:rsﬁ can be linearly extended to each s’ to give some
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Fig. 2. Construction of the face A
a). DGEHF is a plane close to the face o’=ABC inside the union St(a®) of the two
tetrahedra having ABC as the common face. D, G, E, H, F are intersections of this
plane with the edges UJCSf[G?} carrying the curvature {another edges not belon-
ging St(0®) are not shown for simplicity).
b). The piecewise-flat surface &, is a maximal continuous extension of DGEHF into
the exterior of St(o?) as a plane. Solid lines divide a5 into a set of the flat simplices;
of these lines the double ones are the cuts symmetric with respect to the projections
of curvature supports o, shown by dotted lines (see Fig. 1).
¢). The piecewise-flat surface a5 bounded by straight lines is obtained by delormation
of &% near it’s boundary (in the exterior of St(c®)). Solid lines divide oy into a set of
the flat simplices 52

[0

piecewise-linear mapping oj—o03. Besides, oz and o® can be connec-

ted by linear mapping. This gives the desired mapping o’—o, to
which some variation of metric corresponds,

i =h ) =gt (7)
It can be used to calculate the effective action. By construction the
result depends only on the restriction of the described mapping on

M (K).

4. THE STRUCTURE OF THE DISCRETIZED ACTION

Consider now expansion of the effective action in n and in a
lattice spacing e. Given a particular metric variation (7) we get
for the variation under an additional reparametrization
XM =x"—E*(x"), X o

On Zuv=hyy + OEny . (8)

Substituting this into (2) and minimizing with respect to E* with
boundary condition E*(x) =0, xe gg® we get omitting the primes

SEW:Z 5 [hm’ ‘,wuvlp hi‘-p‘_huv Mmm 611 Km‘. am ij"ﬁ hlpJ . [9}
e o
Here K. is the Green function of operator oMa:
Op M*™ 35 Kye(x, y) = 67 6@y g 50"

Kolx,y) =0, xedo?, (10)

What can be said on the values of the (piecewise-constant) Auv(x)?
In the flat space o?=¢? and hww=const=h" in 0° As a result, the
second term in (9) vanishes. Using tenser components along the
edges [o’, m=0{"rh,, [21] we may write h; =8,/ variation of
the squared length of an edge. In 2 curved space Mow=h) +hy
where A is the variation of metric due to the previously considered
projecting s°—>si. A. is constant in each s*. What can be said on
it's values? The projection onto oz, s">s”, changes the squared
edge lengths # of the simplices s* by the orthogonal components
squared /', . Evidently /,, =O(n). At the same time the deficits are Ii-
near functions of /? . Therefore ggf:Q{-ﬂ2)0(¢.)_ The projecting onto
or makes the deficits vanish. For that the dihedral angles should
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be changed by O(¢). So the face o} after this projecting becomes a

piecewise-flat surface o} with the dihedral angles z—O(qg).
Therefore o}’ coincides with of up to deformations O(n)O(¢) and
subsequent projecting s“—s} changes some edge lengths by
O(n)O(9). This may induce metric variation At =0(g) in the cor-
responding simplices s if there is an edge in s° of the length O(n)
which has the component along x* and/or x' axes. So the simplex
sy, with the volume O(n) may contribute the terms O () to S..:.

However, these terms can be shown to cancel. Let us introduce
the normal x" and tangential x' coordinates, i=1, 2, in the vicinity
of 6. The large faces st (which have the dimensions O (1) XO(1))
of the flattened tetrahedra sj, are at the distances O(vw) from o2
and almost parallel to it. So in the leading order in n in our calcu-
lation of S, the coordinates x' and x" are tangential and normal
ones respectively also with respect to the faces sff] and only the
dependence on x" should be taken into account. Besides, the induced
on s;, metric variation h; is continuous while i*'s (i, n) and (n, n)
components suffer the change O(g) on this ' wce. So the action in
the order O(n) takes the form

2 V[hn M o —h MY 3,(52) ', byt (11)
sily sl
where at least one of indices in each pair (u, v) and (A o).is n
Naively it is seen to vanish, and also a more detailed calculation
using accurate definition of Green function shows that (11) is zero
up io O(n’®) terms.

Another question we would like to dwell on is the expansion
over a ftypical lattice scale e. The previous consideration can be
regarded as that corresponding to e=1. Al es£1 let us rescale the
edge vectors /[*—el* so that {=0O(1) as before. If Regge lattice
approximates smooth manifold M with a scale of curvature R the
angle deficits have the scale Re’. Therefore 4 = O(e?) in the region
which has the volume O(e®)O(n). Suppose the discrete vector field
1 has a differentiable continuum limit, i. e. the finite dilferences be-
tween n taken at the neighbouring vertices are linear in &. Then
hy=0(1) in the volume O(e%). So At leads only to the next-to-lea-

T S wy

ding terms in S
SEH;Z hiﬂv Mo Ay 1671 4 Ofe) (12)

where we have returned to the arbitrary dimension n.
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The limit of (12) at e—>0 can be shown to reproduce finite-diffe-
rence approximation for the continuum expression. This can be most
easily seen on the periodic |
Regge lattice (taken, e. g., in po J
the form of that used in £ B 5
Ref. [13]). Cm'lsid_er vectors n J?
and edge vectors I, a=1,...n
emanating from a vertex O.
Suppose OHEG[FL...,K;].__TI‘EH* ?*"
slation T, by an edge [ gives /
some another vertex O° and
vectors 1" ‘and 7, see Fig. 3.

If the field 7 has a smooth
continuum limit then it is suf- -

ficient to consider the case Oj=o(l}...,0%) {another possibility in
the configuration space of 7 has the measure vanishing at e—0).
Then a simple vector algebra in the basis {{,} yields the desired ex-
pression:

Figl 3. Vectors 1, i’ on periodic Regge
lattice; {,, {4, I are the edges.

==

1 hgy =8, P=2(T, 7 — W) =20, Tt — L)) =
=2(I15) (=) +2([Ti—TT) n°=
=21 8+ [+ 15— — P (T, —T)? =
=2(I'ly) 8m°*+ 0" 8a £+ Ofe?) =

= 1* I (28ca 65 0"+ 1 8¢ Gap) + O(e?) - (13)

where gup= (lly), 6.=Ts—1 is the finite-difference operator, T, is

-

the operator of translation by /. This can be rewritten by defining
hay= V @My With Tf and ¥ ~e~ '8 —T" constructed with the help of
finite differences. This can be formulated in a regular coordinate
system by using vector field {* on the auxiliary smooth manifold M.
So we get in the corresponding smooth coordinates

Jtl,ilﬂ,: vf,l;m —E" U{E} #
vaﬁﬁzﬂ_lﬁu{lﬁ*riﬂgv (14)

where I'is is the Christoffel connection in M in the neighbourhood of
the considered points.
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5. CONCLUSION

We have resolved singularities of the vector field on Regge lat-
tice by setting the modified field variables. The degree of freedom in
the construction of the descrete action is determined by arbitrariness
of the choice of an anzats for vector field on (n—1)-dimensional
faces being parametrized by a discrete set of variables. It is shown
that under appropriate choice of this anzats it turns possible to
define a descrete action which is, first, quadratic in the field vari-
ables and, second, it possesses the true continuum limit.

We have studied the case of small deficits close to the continu-
um limit. In principle, one can consider the arbitrary angle deficits.
For that an expression for the finite distance on the space ol met-
rics should be used instead of it’s infinitesimal form (2).

Within the suggested approach the vector ghost field action for

the Polyakov string on the lattice can be discretized. In this way we

reproduce the correct entropy of gravitational measure in the con-
lormal gauge, i. e. the nonlocal term (—26/48r) { RA~'R [26]. As
noted in Ref. [17] the contribution can be singled out in the consi-
dered action which can be written without using the Christoffel con-
nection and formulated in terms of some integral variables
[8—10]. The remaining term, however, is completely defined by the
vector field at the singular points and brings about the problems
considered in the present paper.

Also the shift vector N; in the Hamiltonian formalism for gravity
can be discretized with the help of our approach since the 341 gra-
vity action is a second order polinomial in V. [20] .

Ihe author is grateful to the participants of the theoretical
physics seminar at NPI for the discussion of a number of questions
considered in the paper, and, in particular, to I.B. Khriplovich for
attention to the work.
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