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ABSTRACT

The properties of oscillation of a magnetic [lux
tube in the presence of a shear flow of matter along
its axis have been studied. The presence of iflows is
shown to cause a numbe: of new ellects: the appea-
rance of negative energy waves, reversal ol the sign
of radiative damping, the development oi explosive
instability at the nonlinear stage, and the development
of «coarse» (linear) hydrodynamic instability when the
velocity exceeds a certain threshold. The corresponding
processes have been classilied. The calculations of the
growth rates of dissipative instabilities associated with
the radiation of sound waves and anomalous damping
in the resonance layer have been performed. The con-
ditions for the existence ol explosive instability have
been found.

The results obtained can be ol interest in connec-
tion with the problem ol energy accumulation and
release in the Solar atmosphere as well as for better
insight into the dynamics of various processes in the
space and laboratory plasma with the I[ilamentary
structure of magnetic field.
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1. INTRODUCTION

In various astrophysical objects and in laboratory plasma the
situation is frequently met when the magnetic flux in a plasma is
concentrated in a separate, relatively thin magnetic [luxtubes while
magnetic field in a bulk plasma is small. In particular, according to
the observational data all the Solar magnetic field is concentrated
in a narrow fluxtubes usually far removed from each other. In the
spots intense fluxtubes are assumed to be tightly settled (see for
example [l] and References therein). For a better insight into vari-
ous processes in the Solar atmosphere where the magnetic field
plays a dominant part (e. g., the processes ol energy transfer from
the lower to the upper layers of atmosphere, the processes oi energy
storing and release and others), the properties of both the separate
tubes and their ensembles should be analysed. Besides its signifi-
cance for astrophysical objects, such a study is also of interest from
the point of view of general physics due to a great variety of wave
processes in such structures. Therefore, it is no wonder that this
problem is attracting much attention.

One of the first theoretical works on this subject was that of
Ref. [2], where the study of bending oscillations of a separate tubes
has been made (in particular, their «radiative damping» associated
with the radiation of secondary sound waves to the ambient medi-
um) and the problem dealing with the propagation of long-wave
sound oscillations in a plasma containing an ensemble randomly
distributed magnetic tubes, has been treated. In addition, a specilic,
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nondissipative mechanism of damping ol such oscillations has been

revealed that is connected with the transier ol their energy to the .

energy of bending oscillations of tubes. This effect is similar, to
some extent, to the mechanism of Landau damping. In Rel. [3]
attention has been drawn to the existence of specific quasi-longitudi-
nal oscillations of a tube in which a longitudinal compression (ex-
pansion) of a plasma inside the tube is accompanied by an increase
(decrease) of its cross-section so that the sum of the gas-kinetic
and magnetic pressures is not perturbed. These oscillations are an
analog ol slow magnetosonic oscillations in a homogeneous plasma
(and are sometimes called «slow» or «sausage» oscillations). They
are of particular interest for having a very small radiative damping
[4]. In Rels [4, 5] studies have been made ol various damping
mechanisms of oscillations of magnetic tubes, in particular, by the
Alivén resonance (see [6]) occurring in the region where the phase
velocity ol oscillations becomes equal to a local value oi Alivén
velocity. In Ref. [7] the dispersion properties of a plasma contai-
ning an ensemble ol tightly packed magnetic tubes are considered.
The presence of random inhomogeneities (inhomogeneities aren’t
assumed to be small: the magnetic field, plasma density and pres-
sure can change by the order of unity from tube to tube) gives rise
to a more intense dissipation of energy of the long-wave oscillations
in comparison with the homogeneous case.

The above studies deal with the systems in which the unpertur-
bed plasma is at rest. On the other hand, it is often the case when
the plasma outside a tube moves along the magnetic field with res-
pect to the plasma inside the tube. In particular, according to obser-
vations, the plasma flows usually with different velocities inside and
outside the magnetic structures are observed in all the regions of
Solar atmosphere where magnetic field has a filamentary structure.
In other words, there always exist shear flows along the fluxtubes
in Solar atmosphere.

The presence ol shear flows along the magnetic tubes leads to
appearing of a quantitatively new effects. First of all, when the
speed of the relative plasma motion exceeds a certain threshold
value there arise negative energy waves” in the system which can
become unstable due to various dissipative processes (for instance,

) The possibility of existing the negative energy waves in nonequilibrium media
was pointed out in Rei. [8] for the first time (in plasma); on the negative energy
waves in hydrodynamics see, e. g., [9].
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due to the radiation of sound wave to the environment). Besides,
since there are also positive energy waves in the system a nonline-
ar, «explosive» instability can develop in it as well. At last, when
the speed exceeding the second threshold (the first one is that for
excitation ol negative energy waves) there arises a «coarse» (line-
ar) instability similar to the instability ol tangential discontinuity.

We will consider long-wave oscillations of a tube, i. e. the oscil-
lations whose wavelength Z=1/k is large as compared with the
radius R: RR< 1. Just these oscillations are most readily excited by
large-scale plasma motions and have a relatively low damping rate.

The paper is arranged as follows. In Section 2 linear equations
lor bending and slow oscillations are investigated. The conditions for
the existence of bending oscillations with negative energy as well as
the condition of a «coarse» instability of a tube are found. In Sec-
tion 3 the conditions of the dissipative instability of bending oscilla-
tions are formulated and its growth rate is estimated. In Section 4
the instability of bending and slow oscillations associated with the
radiation ol secondary sound waves are discussed. The nonlinear
«explosive» instability of negative energy waves is considered in
Section 5. Some properties of the «coarse» instability of bending
oscillations which develops when the flow velocity exceeds the
second threshold value, are analysed in Section 6. The results obtai-
ned are briefly discussed in Section 7. Some necessary calculations
are given in Appendixes.

2. LINEAR THEORY OF BENDING AND SLOW OSCILLATIONS

Let's consider a model of an axisymmetric homogeneous magne-
tic tube in the presence of a flow along its axis. An analysis will be
made in the coordinate system where the substance inside the tube
is at rest, while the flow velocity outside it equals « and is directed
towards the increasing z. '

We will start with bending oscillations. The displacement of the
tube relative to its unperturbed position will be described by a vec-
tor &, (z, £) lying in a plane normal to the tube axis. One can show
that the vector £, (z, ) satisflies the equation (the procedure is
similar to one in Ref. [2]):
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where p: and p. are the densities of plasma inside and outside the
tube and B is the magnetic field strength inside the tube (just as in
Ref. [2] we assume that there is nc magnetic field outside the tube
since this assumption makes the calculations simpler, having no
influence on the essence o. the problem).

Equation (1) has the energy integral which can be represented
as follows:

TLRE ¢ ﬁﬁ_'-_ ’ __Bi_ 2 ﬂ%. ; LM, & 2
I:S dz—z—{Lp;»t—pH}(T) —|—(4n Deld )( &z) }—cunbt, (2)

where R is tube radius. The integrand has the meaning of oscilla-
tion energy per unit length ol the tube.

For harmonic plane waves ol the form exp(—iwt+ikz), the dis-
persion relation following from (1) has a form:

0>+ 1 (0—ku)?—ka?=0, (3)
M

where n=opi/p., a= (B%/4np;)'/* is the Alfvén velocity inside the
tube. From (3) we have

2 - H‘Lﬂ ([ a®(14+m) —u?] }. (4)

Hence, it is seenlthat at
4> ut=a 14+ (9)

(index b indicates that the point is concerned with the critical velo-
city of excitation of bending oscillations) the system becomes
unstable. This instability may be referred to as a «coarse» one since
its growth rate is comparable with the frequency at the above-thre-
shold value of the order of unity (e. g., at u—ul~ul). We will
dwell upon this instability in Section 6 in a more detail and now we
are concerned with the phenomena occurring in the region o< Ue.

Using the dispersion relation (4), it is easy to obtain from (2)
that for travelling waves the energy density W per unit length of
the tube is equal to

2 2
W= “RE':"' 3 fe‘z[(l +n) 25 -I-ﬂz'n—ug],

or

w’:

R R2pET (X7 4= ux) (6)
I +n :

with a new designation xzﬂ,_.-'fn| a’(l +n) —u®]. The radicand is assu-
med to be positive, i. e. the «coarse» instability is absent. Since we
also assume that u= 0, only the wave corresponding to the sign
minus in the dispersion relation (4) can have negative energy, i. e.
the wave, which travels in the opposite direction of the z-axis if no
flow exists. For this wave we get from (6):

x

W =naR*k? p.E3 (ma®—u?)
L XER

[t is seen that the wave energy becomes negative at

> ul=an (7)

(the index n indicates that the question is the threshold at which
negalive energy waves appear). Comparing (5) and (7) we see
that u'<<u/, i. e. negative energy waves (NEW) indeed appear in
the plasma which is still stable with respect to the «coarse»
hydrodynamic instability. At the lower boundary ol the interval
within which the NEW exist (at u=u/) the phase velocity of the
wave corresponding to «minus» in the dispersion relation (4) equals
zero. At u= ul the NEW are propagated towards the mass flow.

Let us now consider slow oscillations [3, 4]. The peculiarity of
these oscillations is that the sum of the magnetic (p,) and gas-ki-
netic (p) pressures in them inside the tube almost is not perturbed,
while each particular term is perturbed significantly:

n

P ik Py p’ Py P
Because of this property of slow oscillations the plasma parameters
outside the tube have a little influence of their dispersion relation
(giving the corrections of the order of (kR)?). In particular, they
are weakly influenced by the presence of external [low. Thus, we
come lo conclusion that in the presence of shear flow the dispersion
relation for slow oscillations up to the small corrections remains the
same as without a flow:

w (L5;
e e = —— 8
7 ( k ) 7 '\."Iﬂz—[—sf { )
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where si= (ypi/p:)'/* is the sound speed inside the tube (the index T
is used to designate slow oscillations)..

The complete equations ol bending and slow oscillations are
derived in Appendix 1.

3. DISSIPATIVE INSTABILITIES OF BENDING NEW

Within the interval

VN a<u< ‘\/1—|—r] a (9)

there can exist the instability of NEW caused by any dissipative
processes in plasma. In the other words, taking into account dissi-
pative effects (interaction with medium or with other waves) leads
to losing the energy of NEW and, hence, to growing their ampli-
tude. It is remarkable that for magnetic fluxtubes due to their speci-
fic features this («fine») instability can occur even in the absence of
any dissipative processes (viscosity, thermal conductivity, Ohmic
losses; of course, all of them lead to instability too). Namely, the
instability takes place due to collisionless dissipation of bending
oscillations. The mechanism of such dissipation has been studied in
[5], where it is shown that for radially inhomogeneous magnetic
tube there appears the eifect of anomalous and strong absorption of
oscillations at a resonance point, i. e. at the point where the phase
velocity of oscillations becomes equal to a local value of Alfvén
velocity. This effect also exists in the presence of shear flow along
the tubes. Here we will follow the method used in Ref. [5]

In the long-wave approximation the fluid may be regarded with
good accuracy as incompressible (that is, one may assume that
divu=0). Then instead of velocity one can introduce the current
function :

In this case the general set of equations (I.6) reduces to a single
equation for

: ol 2n2
iﬂi(pg—”)ra—“’—(pg_kﬁ) ® g (10)
r r

We assume that ® contains now a small imaginary part o-iv
introduced for a correct accounting of a singular point at

k*B?

4n 2 )
ginary part can be explained, for instance, by rare collisions be-
tween ions and plasma neutrals. To made our calculations more
visual we take, just as in [5], a model of the tube uniform almost
throughout the whole space expect a narrow transitional region (the
smeared boundary of the tube) where plasma density and magnetic
field (squared) depend linearly on the radius:

ER_;H + peQ? r_fR.

pkd = . From the physical point of view the appearance of ima-

pQ=piw

By pmdh =
Biry=258 P e

Note that [< R.

The solution of Eq. (10) at constant density, magnetic field and
flow velocity is the Bessel functions in the internal region and the
Hankel functions in the external one. In a first approximation over
kR < 1, these solutions have correspondingly the form:

Lar, r<<R
lIJ_{ Bfr, r> R+
To find the solution in the transition region R<<r<<C R+ let’s intro-

duce the variable z= eyl (0<<z=<C1). Taking the smallness of the

parameter [/R into account Eq. (10) can be represented as follows:

: 2
L (z—z—ie) j—j--é;(z—z”—mw:ﬂ, L
where
kh‘aﬁ_mﬂ
Zn=

k2a2+ Pen? 2
P

The imaginary addition ie has appeared here because of iv (the con-
crete value of ¢ makes no difference since it is not enter in the tinal

result). .
Equation (11) has a single-valued solution in the complex plane

z with a cut along the line Im z=ie, — oo << Re z<CZzp. This solution
9



can be expressed in the Bessel functions. Expanding in the series
over parameter [/R the solution can be represented approximately in
the form:

Y=C+DlIn{z—2z0—ig).

e d ;
Using now the continuity conditions for 1 and ~d—j at the points

r=R and r=R-+1{ (i. e. performing the appropriate matching) and
choosing the required branch of logarithm we get the following dis-
persion relation:

I 22 +if~(’—— : )+m=o. (12)

Zp 1 —2g

The real part of (12) gives

| —Zn=2Zn.

[t is easy to check that this expression is just the same as the dis-
persion relation (4). For the imaginary part of the frequency we get
from (12) the following expression:

v

LLs
4

! N (muFx)’
{1 1

R (14m)? +x

\
It is seen that for positive energy waves (the upper sign) y corres-
ponds to the damping rate and in the case of negative energy
waves (the lower sign) y is the growth rate.
Thus, the growth rate of instability for NEW due to resonant
absorption-has a form:

wes _ m L (ut~hlain—e ) (13)

w TE“"‘H}E "-\,l"lqi ag{l-l—‘n]—ug]_

One should bear in mind that the value of growth rate is valid in
the region which is not too close to the threshold where the denomi-
nator in (13) vanishes.

It is worth noting that the effect of anomalous absorption m:hich
causes here the instability of NEW can occur also for a uniform
magnetic fluxtube with the nonuniform shear flow.
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4. INSTABILITY OF BENDING AND SLOW OSCILLATIONS
CAUSED BY RADIATION OF SECONDARY SOUND WAVES

The dispersion relation (4) for bending oscillations has been
derived neglecting the compressibility of media. Formally, allowance
for compressibility corresponds to keeping the next-order terms with
respect to the parameter RR<l in an exact dispersion relation
(el. [2]). The main elfect arising when compressibilily is taken into
account is the radiation ol secondary sound waves by the oscillating
tube [2]. Under the conditions when there is no plasma ilow this
eifect leads to «radiation» damping of bending oscillations,
whereas in a case when outside a tube plasma has a finite velocity
the radiation of secondary sound waves can lead to growing ol the
bending oscillations amplitude. This is possible in two cases: when
a bending oscillation has a negative energy while a sound wave has
a positive one, or when the [ormer has a positive energy while the
radiated sound wave has a negative one.

The dispersion relation for plane sound waves (the waves may
be regarded as plane at large distances from the tube) is of the

form:
A a
(i) :Hi.g(,\/w-‘f%?, (14)
kJs R*

where k, is a component of the wave vector normal to the z-axis
and k is, as before, a component of wave vector in the direction of
z-axis; the index s is used to designate sound waves. It easy to see
that a sound wave which is propagated in the absence of the flow
in the negative direction of the z-axis (which corresponds to the
lower sign in the dispersion relation (14)), may have negative
energy. Namely, it happens at

e
u=sf 1 " (15)
X

The transverse component of the wave vector oi a sound wave
is defined from the condition

(/R p=(00/Fk);.

Let’s first find the conditions under which bending oscillations
with positive energy radiate negative energy sound waves, i. e.
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under which the following conditions are satisfied:

b . w | ;
& — _'S;J l __:}Dr {lb}
l—l—nt‘u_i_” u \/ +k*’

Simple calculations give that this is possible at the conditions

— 5 o
a=> Se./n, u}se—F‘\/az—T]-sﬁ. (17)

From the equilibrium condition of an unperturbed tube it follows

that '
1
SE} a‘\/E_ ﬂFTt 1

where wg is the specific heat ratio. Correspondingly, the regime (17)
is realized only if y<<2.

Let’s elucidate now whether a negative energy bending oscillati-

ons can radiate a positive energy wave, 1. e. whether the condition

: (u ‘fJ—fH-S\/E;E_-
G k*

éan be satisfied. It is evident that this condition cannot be satisfied
because it reduces to the equality

2

_ 2
—x=nu+(14+n) s\ [1+7F

whose Lh. side is negative while the r.h. side is positive. Note_that
this conclusion is a consequence of our assumption that there is no
magnetic field outside the tube; in the general case such a mecha-
nism of instability becomes possible. | _
The growth rate of instability in the situation when the bending

positive energy wave becomes unstable with respect tq_:: radiatior} of
secondary negative energy sound waves is calculated in Appendix 2

and is of the form

{U':FI_ )’ (vp—u)®—s:] EiR?.
st vgl (14+m) vp—u]

Yrad

A
w 2

One should bear in mind, of course, that the instability has a thres-
hold with respect to the flow velocitly (see EIZ1E:

There exists a similar mechanism of instability for slow oscilla-
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tions as well. As has been mentioned in Section 2, the outer [low
has a weak influence on these oscillations; in particular, their
energy remains positive in the presence ol flow. So that, instability
in this case can be caused by the radiation negative energy sound
waves. The negalive energy have those waves which are propagated
against the flow in the coordinate system connected with the fluid;
their energy becomes negative under the condition (13), i. ¢. when
they are propagated along the flow in the laboratory system. Thus,
we draw a conclusion from the phase synchronism condition that
the instability condition has a form (cf. (16)):

__k{
Cr=U— 358, l—|—? }0,

which is possible when [ullilling the requirement

U= Cr+Se. (18)

So, a slow wave propagating along the flow can be unstable.
The growth rate of this instability (see Appendix 2) is ol the form

y )
Yrad T Pe t?f[_f.‘-l.-—u_l' bR

ey S 4

S 0 a;

The threshold of this instability with respect to the flow speed is
defined by the condition (18)

5. EXPLOSIVE INSTABILITY OF NEW

[n the system containing the waves with different signs of
energy there exists a specific nonlinear instability called explosive.
This instability was first considered in Ref. [10] and illustrated by
the waves with random phases. Later on, it was analysed in
Rei. [I1] for a triplet of coherent waves, where the term «explosive
instability» was proposed. The main feature of this instability is that
the amplitudes of interacting waves achieve iniinitely large values
for a finite period of time. This assertion, of course, is formal in
some extence: higher-order nonlinear processes limit the growth of
amplitudes at a finite level.

When studying nonlinear, in particular, three-wave processes it
is convenient to assume that the sign ol frequency corresponds to
the sign of energy. With such an approach taken the explosive
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instability condition for a three-wave process may be writlen| as
iollows:

W+ wr+ ws=0,
I N S (19)

| my| 4= | mal 4= [ms| =0,

where indices 1, 2 and 3 refer to three interacting waves. Since we
analyse the oscillations with m=0, +1, it jollows irom the last
relation in (19) that either all three waves must have m=0, or two
i them must have m = =41 while the third has m=0.

Let’s show that the conditions (19) are satisiied and, therefore,
the explosive instability can occur for the interaction ol one slow
wave (m=0) and two bending ones (m= 41). As before, the indi-
ces assigned to slow and bending waves will be respectively T and
b. Then, instead of (19) we have the following conditions:

wp +wy, oy, =0,
Ry +Fy, + Ry =0. (20)

The signs «+» and «—» of index b correspond to the waves propa-
gating along and against the flow, respectively.

As it was mentioned above, the environment properties have a
weak influence on the slow oscillations and we can regard them as
positive energy waves with unchanged dispersion relation (8). From
the dispersion relation (4) for bending oscillations at the condition
(15) b_ — waves propagating against the flow have negative energy
while b. are positive energy waves. Thus, it is easy to verify that
at k,> 0 conditions (20) are fulfilled if it is satisfied the inequality

{ e 2 -I—-..... —_—
Cr R S 91

U=

The condition (21) together with (9) provides the explosive instabi-
lity.

The usual analysis of nonlinear three-wave interaction leads to
iollowing equations for the amplitudes of coupled waves (in our
case these are radial components of velocity of tube’s boundary in
slow (¢;) and bending (v, ) oscillations):

14

du
> : =t U, U
o,
“5? =lsvrvp_ (22)
Ay
ﬁi :Jr;i UT Uy, s

where [, J» and J3 are matrix elements of interaction. It is easy to
show from energy and momentum conservation that in our case
matrix elements are approximately equal. Using the appropriate
scale we can write instead oi (22) the equations:

% —Q Gy, G,
i
ﬂ'G.[?-s e Q GT G!J‘_ i {23)
il
f]Gh .
—Q Gy Gy,
al QG oy,

where G, and G, having the velocity dimension are ol the order of
o and ©, ; Q is of the order of wave-veclor of interacting modes.

[{ at the initial moment of time in the system is excited only one
wave, for instance, T-wave with k= 0 (G;|,_,= Go) and the ampli-
tudes two other waves are determined by the thermal noises and,
therefore, are very small: G, |,_,=G1< Go, G,_l;—o= G2k Gy, ‘hen
one can see from the first equation of system (23) that at the early
stage G, remains almost constant. This enables to solve easily two
other equations of the system (23). The result is following:

Gh—: =( Gl"‘ —;—- GE] EQGM AR G?E:_Qﬁuf

G.‘J_ :(GE—]‘ _é G.) EQUM s L Gt E_Q('II'JI‘

and corresponds to the exponential growth of b, and b_ waves
amplitudes at the initial stage of development of instability. The
corresponding growth rate by the order of magnitude is equal to
k.vr. In a time of several inverse growth rates when the amplitudes
of all three waves become the quantities of the same order the
instability passes into nonlinear stage and takes a character of
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explosion. Indeed, at the stage when G, ~G, ~ G, =G the equa-
tion for ¢ has a form

[ L P
df _QG 1
which yields
iy 1
t—1y,

where fy is characteristic time of «explosions which is of the order
of v

6. HYDRODYNAMIC INSTABILITY OF BENDING OSCILLATIONS

As has been shown in Section 2 when the velocity of shear flow

exceeds the threshold u?:a'y"il—l—u, defined by formula (5) there
arises a new instability in the system. By the nature this instability
is close to tangential discontinuity in magnetohydrodynamics. We
have already mentioned that this instability is «coarse», implying
that at the above-threshold value of the order of unity the growth
rate becomes comparable with the irequency and the length oi
growth becomes comparable with the wave-length. Under the condi-
tions when this instability develops, namely, at

u=>a-fl+n.

the liner dissipative and nonlinear instabilities considered in Sec-
tioris 3— 95 become negligible.

[t follows from dispersion relation (4) that the unstable pertur-
bations propagate upwards along the flow:

i :}0
+1

Re (w/k) = -

Therefore, if a certain part of a tube is «blown» by an upward flow
of surrounding plasma the bending oscillations excited here are pro-
pagated further upwards. This instability must play an essential
role in different astrophysical objects where there are high speed
streams along the magnelic lields ior being an important agent ol
excitation ol oscillations. Particularly, in Solar atmosphere the exci-
tation of magnetic fluxtube oscillations is thought as a rule to be
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connected with the oscillatory motions of the point ol intersection of -
the tube and photosphere bottom, which is due to the nonstationary -
convection in this region. Of course, there exist the oscillations of .
fluxtubes which are excited by the convective motions, but the ire-
quency of these oscillations is of the order of inversé time of re-ar--
rangement .of the granulation picture, i e. is ol the order of
[/ ~10~2=3:107% ¢, This frequency is'very low "and’ fhis cit-
cumstance presents a problem in an attempt to explain the energy
transfer irom photosphere to the upper layers of Solar atmosphere.
by means of these oscillations. _

The instability described above leads to the existence ol another .
mechanism of excitation of oscillations which is independent on the
motions in the base of fluxtube and which can take place far from
the convective zone. Now the oscillation frequency of fluxtube is,
naturally, by no means related to the inverse time re-arrangement
of granulation picture and can be considerably higher than 1/7.

SUMMARY

We have shown that in the presence of a relative plasma motion
inside and outside the magnetic fluxtube there arises in the system
a rich spectrum of phenomena not occurring in a stable plasma and
we have classiiied these phenomena.

First of all, in a system with shear flow there can appear bqand-
ing negative energy waves and the dissipative processes can cause
the instability of these waves. In particular, the dissipative instabi-
lity can be caused by a collisionless absorption ol bending oscilla-
tions in the layer of Alivén resonance inside the fluxtube. The speci-
fic type of dissipative instability is connected with the radiation of
secondary sound waves to the external plasma (in a system without
flow this process leads to «radiative» damping oi bending oscilla--
tions [2]); note that the instability is possible, in principle, in two
cases: when the bending wave has a positive energy, while the
energy of the radiated sound wave is negative and vice versa.

Dissipative processes are «weak» in a sense that their growth
rate is usually small in comparison with the frequency. The
«coarse» instability of bending oscillations (with growth rate
roughly equal to the frequency) similar to the instability of tangen-
tial discontinuity appears as the velocity of shear flow further incre-
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ases. In the reference frame where the plasma inside the tube is at
rest the unstable waves are propagated along the external flow.
This mechanism of excitation of bending oscillations can play an
important role in energy transfer in the Solar atmosphere.

We have analysed also the three-wave interaction processes
between bending NEW and positive energy slow oscillations. The
conditions have heen revealed of the existence of nonlinear explosive
instability.

The elfects described above are assumed to play an important
role in the dynamics of various processes in Solar atmosphere, in
particular, in the processes ol energy transfer from the lower to the
upper layers of atmosphere, in the processes of energy accumulation
and release, in the evolution oi magnetic structures, in the pheno-
mena associated with solar wind and others,

Appendix |

Equations of Small Oscillations of Magnetic Fluxtubes

In the presence of plasma ilow the linearized set of equations of
single-fluid magnetohydrodynamics is as follows:

g e R e o : i e bt
f:%-i-.[_uwvﬂw;uz_vla;;+4_.“ratb,;3]+|mtﬁ,m},

i)

%:mt[ﬂ'gl—kaEﬁ",
{]

ddp

e div po++div dpir =0, (L.1)

%F-METVJFMEW;&&F:U.

Here F=pp~7, and v, b, 8p and 8p are the perturbations of velo-
city, magnetic field, density and pressure. These equations should be
complemented by the equilibrium condition of a magnetic fluxtube in
the unperturbed state

pir)+

B3(r)
e 2
R e (1.2)

Here p. is the gas-kinetic plasma pressure outside the tube.
We will consider a model of fluxtube which is axisymmetrical in
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the unperturbed state and homogeneous along the axis (coinciding
with the z-axis in the cylindrical coordinates), i. e. we will assume
that the unperturbed density p(r), pressure p(r) and magnetic field
B(r) depend only on the radius. The shear flow is also assumed to
be directed along the z-axis: w=u(0,0,u(r)). All the perturbed
quantities are assumed to be proportional to exp/{ —itﬂf—]—f{?’!{[‘-—}—ikf}.
For such perturbations the [irst equation in the set (I.1) gives:

i b.B kB
—i(o—Fku)pv, = — (;—r dp—+ ) e S B

dn 40
1 4 b.B ik
Pl Yy — & — by, (1.3)
i(o—ku)pr, = ﬁip(ﬁp—l— 4n)—|— 5o
: b du kB 4 dB
B e ﬁ—pUra—r drfw — Ru) =0

From the second equation of (I.1) we get
kB

— — Ty
b, w— ki :
T kB (1.4)
bip— (U—k‘,ﬂ, 1P
1 4 imB du
—i(0—ku)b.=— — —rBu,— Vgt b —.
rdr: r ar

In deriving the last equation we have taken into account that
div 5=0. Correspondingly, the third and fourth equations of (I.1)
take the forms: -

a im ;
—i(w—ku)dp+ i— Erpﬂr—l— Tpvm—lﬁ;kpuz:ﬂ i

a 0D
—E{rﬂ—ku){ﬁp—sﬂﬁpj—l—ﬂ{%*szﬂ—lr) =0, (1.5)

where s?=+yp/p is the sound velocity. |
To put the sets of equations (1.3), (I.4) and (1.5) into a more

compact form, it is convenient to express all the perturbed quanti-
ties in terms of v, v, and the total pressure perturbation 65 =

=0p+ 5:B  Atter some algebra we obtain the following set ol equ-
' 4n
ations for small oscillations of fluxtube in the presence of shear
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flow:

: LTSt ST S T I T :
fﬁ?:pgi{b—i_a} ksa[iiri_'_ﬂﬁ],
r oA R T e

Q? — k252

BOF . o~ g9y Ty

— = ip(Q"—ka”) —, 1.6
e o( i (1.6)

I s a3 p2ay Ve
: 0F = ip(§ a’) 0

=1

Here a= (B?/4n)'/? is Alfvén velocity and Q =0 — ku.

The set (1.6) describes all the types of linear oscillations of
fluxtube. In the present paper we only deal with the dipole mode
m= =41, corresponding to bending oscillations, and axisymmetrical

one m=0 with the phase velocity ¢, = , corresponding to

‘\j'a‘q—l—sg
slow («sausage») oscillations,
For slow oscillations the set (I.6) reduces to a single equation
for v,. Indeed, excluding 6% irom (l.6) and taking into considera-
tion that in this case v,=0, we get

O a1 Ll DR T g0 o Hh
i e S B O ) o, LA 1.7
F ogF P DF . f2s? £ ar A (2 i %7 Q (1)

For bending oscillations in the long-wave limit the set (I1.6)
reduces to Eq. (10) in the case of a non-uniform fluxtube and to
Eq. (1) in the case ol a homogeneous one, where we use the displa-
%. As has already been said,
to the mode m =0 correspond also torsional vibrations of fluxtube
and oscillations with the sine-phase change of gas-kinetic and mag-
netic pressures (analog of fast magnetosonic waves), but the first
of them are weakly influenced by the longitudinal flows of matter,
while the second have, even at kR« 1, a very high Irequency
(~a/R) and, therefore, are rapidly damping due to the radiation of
sound waves to the environment. As to higher azimuthal modes
(m=+42, +3, ...), they are not a matter of interest because of
their weak influence on the «global» characteristics of -fluxtubes.

cement vector instead of velocity: ¢
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Appendix 11

Radiation of Sound Waves to Outer Space

The density peérturbation in a sound wave outside the tube may
be written as follows:

dp=cos mqa[%f(r] exp{-—fmf—l—ikz}—{—c.c]. (II.1)

As usual m=0 corresponds to slow oscillations and m=1 to pla-
ne-polarized bending ones. The functionf(r) satisflies  the equation

Jodl ol i 2p (00— ku)®
r dr r{f!‘ » f_k f—l_

r SE

fe i

The solution of this equation which corresponds to divergent sound
waves is

f(ry=AHW(k, r), (11.2)

where

e ,
ky :\/{‘u ;“J'_k? :§V(”¢“”)2_SE : (11.3)

Of course, the radiation of sound waves is possible only if the radi-
cand in (I1.3) is not negative. The conditions under which this case
is realized are formulated in Section 4.

At large distances from the tube (k, r>>1), the solution (I1.2)
has the asymptotics

f:A\/ﬂz : exp(ikl ot ””T“ e ITT) . il L)

For & r>1 the solution (II.1) with f as (Il.4) is close to plane
waves. Now, let’s calculate the energy density of a plane (in a local
sense) sound wave of the h::rm_

l

= ?6;}0 cos me-exp(—iwt+4ikz+ik, r)4c.c. (I1.5)
We have
e 2 g
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It is seen that W, is negative under the condition (15). Using the
relation (I1.4) we have
S |A]|? nsi—F

L cosimg. | (11.7)

W=

nk, r pe M

‘Here x=1/k% +%*. The energy flux from unit length of the tube

Q=2mr ( W,), R, S
n
equals
252 |A)E wse—kRu( 1, m=0
= Do i {I;‘Q, m=1 k)

Now, we have to express the coefficient A in terms ol the amplitude
of oscillations ol fluxtube. To do this, let’s consider the solution
(11.2) near the tube boundary, that is at k, r< 1. For slow oscilla-
tions we have (see Refl. [4]): -

f=[1+§lnﬂ?r]1 (11.9)

where € is the Euler constant. It is seen from Eqs (I.1) that for
outer region (which is free Irom magnetic field) the density pertur-
bation is connected with the radial component of fluid displacement
g, by the following relation:

Es ;
s 52 ﬁﬁpl (11.10)

ploy — ku)*  ar

e

Writing now the displacement of tube boundary in slow oscillations
as

£, = —E& exp(—iot+ikz) +c.c. (IL.11)

ik
2
with help of Eqs (I1.1), (I1.9) and (II.10) one can find that

. el S
A=~—%ME§U. (I1.12)

So that, for slow oscillations we have
2
T pDe ; I ’
QT: EIJ Uq’.{vip_u) 21{331’?2 |Eﬁ|z-
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Let's consider now the bending oscillations. Using the expansion
of Hankel functions H{"(k, r) at &, r< 1 from (I1.2) we have at the
small distances from fluxtube:

2iA

nk,r

for — (11.13)

Writing the radial component of tube’s displacement in bending
oscillations as

E,=cos ¢ H &) exp(—iot+ikz) —I—c.c.]

(where &, is the deviation amplitude of the tube axis from its unper-
turbed position) we obtain irom (IL.1), (I1.10) and (I11.13) that

s in Ry R?pf{m—kujg =
i e e
i

Correspondingly, the energy flux from unit length of the tube is
equal to
i it R
Let’s find now the energy of slow and bending oscillations per
unit length of fluxtube. For bending oscillations the result follows
directly from the expression (2):
It

3R o o, o’ yi e
Wﬂ——TIEM Rk (P:—I‘Pe) P +a Pi— U Pe] .

For slow oscillations some calculations should be performed. In this
case we have

; 2 g
pou; ze(ﬁ_p) 8By R?
2 il 2\ p o 8 >HR 4

W= <
where angular brackets indicate the averaging over the wavelength.
When writing this expression we have taken into account that the
transverse velocity of plasma inside the tube is small comparing
with the longitudinal one. Using the equation of motion and conti-
nuity equation and bearing in mind that magnetic field is frozen we

find that inside the tube
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a:ﬂ

I g
2sf R

g 8 E

where § is the radial displacement of the fluid boundary. So with &
given as (I1.10) we get
_ awlkl® pia®(a®4sf)
Wy =2 e

Therefore, with the help of formula y=0Q/2W we find the
growth rate of instability respectively for bending oscillations

refed

Ve (B — ) (0= 1) o]
2‘1';‘;-‘I-'EU*I| |"] +r.|}ﬂl|:_ﬂl

and for slow oscillations

rogd

= R a -.!2 5 \ 2 -
T | nRR Pe  Crler—u)
7 .

w 4 0 0
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