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ABSTRACT

We extend the instanton model of the QCD vacuum

with guark-induced interaclions to nonzero tempera-

ture. Using the mean field approximation, we compare

the iree energies of the two phases, the «polymer» and

«molecular» ones, We have found that the phase tran-

sition should happen in a narrow temperature interval
around 200 MeV.
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1. INTRODUCTION

Alter the discovery of the topologically nontrivial fluctuations of
non-abelian gauge fields [1], the instantons, there .were a number
of attempts to connect them with such an important phenomenon as
spontaneous breakdown of the SU(Nj) chiral symmetry in QCD
[2]. Unfortunately, the dilute gas approximation used in these
works is not selfconsistent. Therefore the account for instanton inte-
ractions is inevitable.

The so called «instanton liquid model» suggested in Ref. [3]
contains two Iree parameters: the density of pseudoparticles (in-
stantons plus anti-instantons) n and their typical size p,. The analy-
sis of the data made in these works has lead to the following
values

n~(l fm)~% pe=1/3 fm. (1)

These numbers imply the existence of a set of «small parameters»
in the problem, in particular: (i) the smallness of the mean radius
of the instanton compared to their typical separation, po/R=1/3;
(ii) the smallness of quantum corrections due to the rather large
action of an instanton, S(pg) ~10; (iii) relatively small corrections
due to the mutual interaction |S;.| < S(pe); (iv) which, however,
are strong enough to enter the «statistical mechanics» of the prob-

lem exp |Sfm‘| ==l

The first attempt to correct the dilute gas picture by means of
«<hard core» type interaction was made in Ref. [4]. The variational
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theory of the interacting ensemble of instantons, suggesting a more
realistic interaction law, was developed by Dyakonov and Petrov
[5]. Recently one of us has performed detailed numericai studies of
the interacting instanton system [6], correcting both the interaction
law and the statistical mechanics of the problem. All the results
support the qualitative features of the instanton liquid mentioned
above.

The most important physical phenomena produced by instantons
belong to the light quark sector. Due to existence of fermionic
nearly degenerate (almost) zero modes, the quarks can propagate
far enough, hopping from one pseudoparticle to another. As shown
in [6], this phenomenon gives a good description for the quark con-
densate value, as well as for a variety of properties of the pseudo-
scalar mesons,

In this paper we study how this picture extends to finite tempe-
rature. In Refs [7, 6] it was numerically demonstrated that the
instanton liquid with quark-induced interactions exists in two essen-
tially different phases, depending on its density. In the dense phase
it is a «polymer» in the sense that each pseudoparticle is connected
with several neighbours by «quark bonds», while at low density it
splits into a set of instanton— anti-instanton «molecules». The
former phase is chirally asymmetric, posessing a nonzero quark
condensate, while in the latter this symmetry is restored.

Here we propose a simplified but analytic description of both
phases. For the polymer phase we assume that both gluonic and
fermionic interactions can be studied by means ol the mean-field
approximation. For the molecular phase we assume that molecules
are noninteracting. Also for simplicity of our formulae, we consider
only massless quarks (although there is no problem to account for
quark masses).

2. POLYMER PHASE

The partition function for the interacting instantons can be
written as follows

Ne Ny 4+ N

Fo Z __N+!lf'lu' .! exp{—S,-m}[detlrif ?Sr” -Hl d€d; ﬁ.-"v'f

Np=N_ i
d;=0C ﬂ,-h —Sq4z, dp; dﬁéuga} /su3) (2)
4

where we have for simplicity used the one-loop instanton amplitude
[8]. Sin is the gluonic interaction. The fermionic interaction is con-
tained in the fermionic determinant, evaluated in the zero mode
approximation [9, 6]:

2cosOR
Prpa(2.58 4 szPﬁ 24 _:'2

T = d*x " (x—2,) (D) w(x—2) ~ (3)

where 8 is the relative orientation angle and R=1z, —z| is the dis-
tance between instanton and anti-instanton. The constant C (inclu-
ding the gluonic zero-mode prefactors and the proper power of a
certain lambda parameter) is treated as a free parameter, to be
fixed from (1). The parameter b= (11N./3) — (2N;/3) is the usual
one-loop beta [unction coefficient.

The gluonic interactions have a complicated space and orienta-
tional dependence [5, 6] which we take into account in a simplified
manner. We average the binary pseudoparticle interaction over its
orientational dependence and reproduce the residual repulsion by
means of the constant & defined as follows""

fi‘p?[}%—— g Sint -:1"1R dﬂgi”g} . 'f"'“

The mean-field approach to fermionic interaction is based on the
assumption that any given instanton randomly interacts with many
neighbours. Writing the initial determinant as a N, X N, one, we
assume that all non-diagonal elements of this matrix are random
and average to zero, while the diagonal ones can be expressed as
flollows

%=ZmﬂL (5)

Only these are kept in the final statistical weight, and we can
express tnem as a product of several factors. One is the angular
average of cos®®, where 0 is the relative orientation angle introdu-
ced in [6]

1'{.[,! — s CGSEH d!}s”f'},}‘xgzhumj = % {6}

Another one is the integral over distances R

" D.1.Dyakonov and A.D.Mirlin have checked, that the gluonic interaction is prac-
tically temperature independent (privite communication).
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e,

=227 —Z%2 - —0.494. (7)
(2.58 +27)
Finally, A contains the anti-instanton density
Aly = Ladppy 5 falpa) dpy - (8)

Proceeding in a symmetrical way for instantons and anti-instan-
tons and redistributing the corresponding determinantal lactors over
the pseudoparticles, our mean field estimate for the zero mode
determinant amounts to defining an effective one-instanton ampli-
tude

d'[p}=Cpf;_J‘ H (Mye: D) (9)

in terms of a «delerminantal» mass

}

Masi =1 lalgp \ n=(p’) dp’|'?2. F10)

The temperature dependence of the amplitude was determined in
Ref. [10], we take its simplilied lorm

9 AT N i i
dip)—dip) P}q‘}[ — ._“»r;— Y (mpT) ‘] (11)

which has correct zero and large temperature limits (at small tem-
peratures the expression is somewhat more complicated).

The iree energy density is maximal for the following  distribu-
tion

B = o il N2 21 . =1 .'"'l-".. 3 e {
B pl==0p 4:__||r'i"" ) }E?Kp l - —.b—g—— i_.‘-T.gZIT__I'—R!_}_IUJH:l (12)

where the constant & was defined in (3) and

Feflap/2s b=ty % N, (13)

For sake of analytic simplilication, we neglect the small shiit of the
distribution due to the factor exp (p/p), and then get the mean squ-
are radius to be

b4 2N.4 N
AP 3

a4+ kp'n. (14)

Finally, the seliconsistency equation determines the total density
6

n=C(Fe)"* i P a= e (15)

|
o™ 2

Note, that F~n, and at N;=2 the situation is quite speciiic: the
density enters linearly into both sides. In this case, the initial para-
meter C is determined by the py value only

C=375/p">"° (N;=2) (16)

while in general it depends on the total density, too.
[i all parameters at T=0 are fixed, we may consider the tempe-
rature dependence of the density. From (14, 15) we get:

| — &2

J 1= N /2 i

R T
.f'l{_ .rl| =i 4 IN, ':?.'J'l.'r.' _|_ ,'i'I.'r.I ] S H.I:; ?"I b— 44 2N, -

0 P e e B o =1 (17)
“'LD.-I 31 b .."'2 2' a1t

The non-zero solution oi this equation exists only below some tem-
perature T, so the polymer phase is a low temperature phenome-
non. Note, that jor N;= 2 at this point the density drops to zero
lrom a finite value. We give the corresponding temperatures for
several values oi N

0.40/py=240 MeV  N;=2

Ty= { 0.34/po=200 MeV N;=3 (18)

0.30/po=178 MeV  N;=:

We have substituted here py=1/3 im and got T, close to
200 MeV, which is a quite reasonable value ol a critical tempera-
ture of the chiral transition. However, one should keep in mind, thai
even at arbitrary large temperature the instanton density is nonzero
due to the existence ol «molecules» mentioned ahove.

3. MOLECULAR PHASE
The amplitude for a single molecule can be written as follow s

2 a'lllr'r,- .'"Il‘l. '3 3 3 o] 3 s CLELS
:_— :I‘T‘-;_p'i'--l,—;]g’_]] | Ty, " d*Rdprdps (19)

dmor = ‘:r-—:j[_F] h“?:] e exp [ 303

i

where the «overlap integral» T is evaluated as [3, 6]
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e 2R cost ;
O = _ (20)
A p1pA2.58 + R?/pipd)®. W

The integral over relative distance R in (19) is taken irom above

the «core» size Ro/\pips = Ro({=1)

o0

o=\ | R/(2.58+ R?)*) ™ 2n*RdR. 28
R

The orientational integral over the SU(3) group is equal tg

LN = cos™™0 dQsus, /Qsia - (22)

Note, that these integrals contain some numerical smallness, which
is the more pronounced the larger is N,
The Tinal integral over p leads to the molecule density
B—2

i ON. 4+ N fien
T C?L;l'rp rgl;[.f P 2' ,r'?:l ,."'r"-]' [( %} | g T_] EEB}

where the value of constants C, p were determined above (at zero
temperature). Note that at large T the molecular contribution de-
creases as T~ 2% which is possible to get by mere dimensional
arguments.

4. DISCUSSION OF THE RESULTS

[n order to compare both phases we have to equate not the den-.

sities but free energies. For the non-interacting molecules the proba-
bility to have N molecules in the volume V i1s just Poissonian

3 | L"H it _:' : : § r - .
Jr'__-'l;': T exp(— L 'r:n'.‘i'[u"_;l : 121 }

and the free energy at extremal N is just the molecule density.. Of
course, if the density of molecules is too high, they are interacting,
too. The simplest way to account for it is to include an «excluded
volume» correction..

However, for the polymer phase the free energy is not just equal
to the density, in our approximation it looks as iollows

LS

/ ; f | rl' AL B ) ﬁ
F(T)= —n(T) { e N MH“T‘H‘E [m:rf] } , (25)
i 4 A 6 nit))

and it decreases nc
Sity.

In Figures | —3 we show the free energy for both phases for
N.=3 and N,=2, 3,4 (ior the last case there exist the most reliable
lattice data). For N;=3, 4 the endpoint oi the seliconsistency equa-
tion (18) is not real because already at smaller 7. the iree energy
changes its sign and the trivial solution dominates irom this point.
(This happens at temperatures 190 and 165 MeV, respectively.) For
the molecular phase we have shown several dashed curves, corres-
ponding to different excluded volumes per molecule.

Of course, at temperatures at which the free energies of both
phases are comparable our approximations probably fail, so that we
have neither a random polymer nor well separated molecules, but
more complicated matter, may be with some finite clusters, strong
correlations etc. We may hope that the true free energy is still in
hetween of these two exiremes. Only numerical simulations for this
liquid, accounting for all competing interactions, can give an accu-
rate description of the transition region. Let us remind in this res-
pect, that simulations described in [7, 6] revealed a sharp struc-
tural transition with two coexisting phases, thus it is most probably
a first order transition.

Considering the quark condensate and quark propagation in
oeneral we remind that it is most effectively described in terms ol
spectrum ol eigenvalues of the Dirac operator. The polymer phase
leads to a Gaussian shaped spectrum, the width of which (being of
the order of the hopping amplitude or the determinantal mass) dec-
reases with rising temperature. On the contrary, the molecular
phase leads to a completely different double-humped shape, with
zero density al zero eigenvalue. The transition between these phases
cannot be expected {o be smooth, and the true shape oi the spec-
trum in the transition region is very complicated and sensitive to
subtleties of the correlations between the pseudoparticles.

the end point T= T, stronger than the den-
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Fig. 1. Free energy, divided by its value at T=0, of the Ll‘l::lm_ﬂun liquid versus tem-

perature T for 3 colours and 2 massless flavours. The two solid cur.es represent ous

results for the polymer and molecular phases, respectively. The dashed lines corres-
pond to difierent excluded molecular volumes.
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fig. 2. The same as Fig. 1, but for 3 flavours.
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Fig. 3. The same as Fig.
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