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ABSTRACT

Taking into account the electron Coulomb interaction
screening considerably improves the convergence ol
perturbation theory in residual interaction. The develo-
ped technique allows to take into account screening
diagrams in all orders of perturbation theory. Calcula-
tion of the correlation corrections to the thallium
energy levels is carried out as an example.
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The method of calculation based on Relativistic' Hartree — Fock
(RHF) equations with taking into account the second order correla-
tion corrections in residual Coulomb interaction provides as a rule
satisfactory accuracy of atomic calculations (e. g. energy levels,
fine and hyperfine structure, electromagnetic transition amplitudes).
But this method usually overestimates the values oi correlation cor-
rections (see e. S Refs [1—5]). Corrections are overestimated even
in the case of V' Zero appmmmatmn (basis set of wave functions
and energies being found in the frozen field of unit charge ion). In

_this case correlation corrections are in fact artilicially suppressed by

overestimated energy denominators corresponding to the internal
(core) electron excitations. And in a more realistic atomic potential
the factor of overestimation of correlation corrections can reach
1,5——2 (see below}).

In this paper the reason of overestimation ol correlation correc-
tion is pointed out. The residual Coulomb interaction of electrons
which induces the correlations is strongly screened by core elect-
rons. This is the collective phenomenon similar to the screening of
Coulomb field in plasma. A closer example is the screening of exier-
nal electric field in an atom. According to Schiff theorem homoge-
neous electric field is screened by atomic electrons (at the nucleus
it is screened completely [6], see also [7, 8]). Our numerical caleu-
lations [8] show that the screened electric field changes the sign at
the radius of external electron subshell and oscillates inside the
atom.

Similar picture should occur also for the electric field created |
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an external atomic electron. Let the external electron be in the point
R outside atomic core. The dipole component of its potential is
~rR/R® and the electron field ~R/R’=const inside the atom.
According to Schifi theorem this iield is to be screened by core
electrons. Thus the dipnle harmonic is strongly screened. But just
this harmonic gives the largest contribution to the correlation
corrections.

There are other arguments showing importance ol screening
effects. Diagrams describing the direct screening eifect are presen-
ted in Fig. 1. It is easy to verify that all diagrams of this tvpe are
proportional to (N.)" where N. is the number ol electrons in the
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Fig. 1. Direct screening of electron Coulomb interaction.

upper closed subshells whichk contribute to the correlation correction
(numerical calculation shows that effective number N.~4 for Tl), n
is the number of loops. All other high order diagrams (including
exchange screening diagrams and «ladder» diagrams) do not en-
crease so strongly with N,, and their contributions are smaller.

It was pointed out that RPA-chain of diagrams is of great

importance in the photoionization processes (see, e. g. Rel. [9]).
Here we consider a somewhat similar problem —summation of the
chain of diagrams induced by Coulomb interaction. However, there
are distinctions between these problems.

Let us now turn to the calculation of correlation corrections
taking into account the screening efiects. We will specily our calcu-
lation to the energy (ionization potential) of the lowest thallium
state —6p,,. Previously similar calculations with two different zero
approximations but without consideration of screening were carried
out by us [4]. In the first case we used relativistic Hartree — Fock
state basis calculated in the frozen field of TI™ ion (potential
V¥~'). All the subshells of this ion are closed. In the second case
we used the potential V,=V'— (1—P)Vo(l—P), where V, is zero
multipolarity direct potential, created by the external 6p, .-electron,
W=V""' 4V, is the atomic potential acting on core electrons, P is
the projection operator to core electron orbitals, P= ) [n) (nl.

n= N-—1

Both potentials allow to obtain complete orthogonal basis sets and
calculate correlation corrections by means of perturbation theory
(see diagrams on Fig. 2). The advantage of the first method is its
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Fig. 2. Correlation corrections to electron energy.
=

simplicity. And the s potential is a reasonable approximation for
the potential acting on the external electron. However, a drawback
of this method is that the core electrons move in the ion potential,
. e. without 6p,,-field. Consequently, V"' method strongly overes-
timates energy intervals between occupied core states and iree sta-
tes. For example, the minimal 6s—6p interval differs from the cor-
rect one by large Coulomb integral Fy(6s, 6p). As a result the cal-
culated interval exceeds the experimental one by a factor of two.

The V, potential is chosen to be free of this drawback. Core
electrons interact with the potential V¥, the external electron — with
the potential V'~' —PVya~ V"' However the calculation technique
is more cumbersome here”). As for results, the zero approximation
with V, potential proved to be better than V'~' potential whereas
the energies with correlation corrections were worse. As we under-
stand it now the overestimated energy denominators in the e
method imitated the suppression related to the screening ol residual
Coulomb interaction. |

Formally taking into account the screening graphs in the lowest
(third) order of perturbatiom theory (see examples in Fig. 3) we
cget correction of opposite sign and almost the same absolute value
as the corresponding second order diagram (see diagram 2,a for
this example). In such case one has to sum the whole chain of scre-
ening diagrams. In the standard Schrodinger perturbation theory
with many-body energy denominators such summation can be easily

7 Subtraction graphs with potential (1—P) Vo(l—P) appear in the perturbation
theory in the exact and Hartree —Fock Hamiltonian difference H— Hyy.
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Fig. 3. Lowest order screening corrections to diagram 2,a.

performed for the diagrams of the type shown in Fig. 1 under the
condition E;+ Es=E3-+ E,. In this case the screening graphs consti-
tute simple geometrical progression. [t is possible to use also
time-dependent Hartree —Fock equations or the ramdom phase
approximation here. In the case of loop summation in the correlati-
on correction (see examples in Fig. 3), tuere is no simple geometri-
cal progression here due to overlapping of energy denominators of
diiferent loops (intermediate states with large number of excited
electrons appear if loops overlap, see e. g. second and third graph
on Fig. 3)”. The summation problem is exactly solved by the Feyn-
man diagram lechnique. This technique involves single-particle
denominators but an additional integration over firequencies is
necessary in each loop (see, e. g. Ref. [10]). Feynman Green’s
function is of the form

L NS g ) ¢n| o,
G{E}_Z g —gy+1id +Z E—gi—i0" o (1)

¥ n

Here |n) is an occupied core electron state, [y) is the state outside
the core. The simplest way of the Green’s function calculation is the
W+E sunafnation over the discrete an_d

(4 2 continuous spectrum. However, in
”O”"‘ practice a higher numerical accu-

% £ racy is provided by another method.

Fig. 4. Polarization operator. As it is known the radial Green’'s
function G, for the equation without

nonlocal exchange interaction can be expressed in terms ol solutions
wo and y. of Schrodinger or Dirac equations that are regular at

") Approximate summation can also be done here il the virtual excitation energy
of the exiernal electron w=FE—FE, is much less than the core electron excitation
energy. This is the case for alkaline atoms. The sum of the second and the third
graph on Fig. 3 is approximately equal to the first graph here. There is also way of
summation related to the introduction of pair correlation functions (see, e. g.
Ref. [12]).
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r—-0 and r—oo correspondingly: Golri, re) coyo(re ) %e (= ),

‘r_ =min(ry, ra), r.. =max(ry, r2). Exchange interaction V. is taken

G— Gy 2 Gl G

into account by solving a matrix equation
Polarization operator (Fig. 4) is

=)

Hw)= S %i- Glo+¢) Gle) . (2)

— o0

It is convenient to carry out integration over € analytically closing
the integration contour e. g. in the upper hali-plane. Aiter the integ-
ration:

A i(e, —E-) g
2 =Z [:EﬂiﬁﬂifE_l.mE ,q_)“"' l:ﬁ} ¢'v(rt] IIJ*I- ':,FE) ‘-i:'ri{lrz} -
n,y

=i Y bu(r1) [ Glen+w) + Glea—0)] ¥alra) (3)

In the Feynman technique the second order energy correction is
given by two graphs shown in Fig. 5. In this order it is easy to per-
form analytical integration over o using the formulae (1), (3).

R ; w
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Fig. 5. Correlation corrections to energy in Feynman diagram technique.

After the integration the graph 5,a transiorms to 2,a and 2,c Note,
that the graph 2,a originates from the sum over the free states |y)
in eq. (1) and 2,c—over occupied states [n). Similarly the graphs
2,b and 2,d originate from 5,b. ;

In order to sum all the screening diagram chain one should per-
form the summation before integration over . In a practical calcu-
lation polarization operator [l is a matrix in a discrete coordinate

space: ﬁ{m)—r—llﬁwr\m}. Here k is the multipolarity of a Coulomb
i
quantum. The Coulomb interaction operator is Q—+Q;, = F}"q’_—r Mul-

tipole expansion is carried out both in Coulomb interaction and
polarization operator, i. e. the angular variables are separated. It is
convenient to include the integration measure dr, drs into Coulomb
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Fig. 6. Screening diagram chain for effective polarizalion operator z{w).

matrix. In the V, method it is necessary to take into account sub-
traction diagrams with potential (1 —P) Vy(l —P).

[t is easy now to find all the sum of screening diagrams on
Fig. 6:

t(w) =Ti(w) [ 1 +iQ ()] ~". (4)

Integration over @ is carried out numerically. [t is convenient to
rotate on 90° integration contour from real axiz lo the complex w
plane parallel to imaginary axis. For example, integration contour
for diagram 5,a is presented on Fig. 7.

Ime
rr x
- P ?_'I _*
XX R¢ w
Fig. 7. 90°-rotation of integration contour over w in diagram 5,d. Points denote

Green's functions poles, Grosses denote polarization operator poles.

Results of correlation correction calculations for 6p,,, energy
level are presented in the Table | (basis orbital set is obtained in
V,-potential). Contributions of different multipoles are listed for the
2,a and 2,c diagrams. As it was expecled the strongest screening
effect appears for k=1. Screening factor is 0.4 —0.5 here. For lur-
ther applications we introduce the average screening factor [ for
Coulomb integral: f.= (screened correction/nonscreened correc-
tion) /2. E. g., for k=1 [,=0.7. For k=0 there is strong cancellati-
on between Coulomb electron-electron interaction and subtraction
contribution of (1 —P)Vy(l—P). Therefore we use the values of
correlation corrections without subtraction for [y calculation. One
can use these factors to take into account screening effects approxi-
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Table 1

Screening of Correlation Corrections (Fig. 2,a, 2,0, 2,c, 2,d) to Energy

of 6p, ,-Electron. Basis Set of Orbitals is Obtained in V, Potential.

Units are cm ',

= Graph k a b (i d
0 = 246 137 0.66"
1 —9751 | 2079 | —4822 | o0.49
2.a 2 —3428 | —2668 | —2826 | 0.82
3 —1466 | —1248 | —128¢ | 0.88
456 o A S i 096
) | —15389 | —2302 | —9507 | 0.62
0 558 120 324 0.58
| 10004 | —4505 | 4285 0.43
2, 2 120 100 104 0.87
3 275 220 230 0.84
4 13 12 12 0.92
2 10970 | —4143 | 4955 0.45
2,6 3170 2090 0,66
2. — 3485 — 1253 | 0.36
2,a,b,c.d — 4734 —3745 | 0.79

) For k=10 withoul subtraction contribution

(fr) = (—2193) /( —3301) =~ 0.66.

(1 —P)Vu(l —P)

k is multipolarity of Coulomb interaction; a—correlation corrections without scree-
ning; b—with screening in two-loops approximation (see, e. g. diagram 2,a- diag-
rams 3); ¢—with exact screening; d—average Coulomb integral screening factor
squared: (f:)®= (screened correction/unsereened correction).

Table 2
Energy Levels 6p;;s, 6ps2 (lonization Potentials) in Thallium.

L

Units are em™ ',

a b c fi)
6p1 2 46296 51030 50011 49264
0P 12 38677 42204 41471

a—zero approximation — Relativistic Hartree—Fock (RF'v) calculation in V, poten-
tial; b — RHF +4second order correlation corrections; ¢— RHF 4 screened correlations;
d —experiment [11].




mately in calculations of correlation corrections to other physical
values (hyperiine structure, electromagnetic amplitudes, parity
violation effects etc). Of course, it is possible to introduce radial
dependent empirical screening functions.

Comparison of calculated and experimental energies is presented
in the Table 2. It is seen that consideration of screening efiect
essentially improve the accuracy of calculations.

Our preliminary (slightly more rough) calculations have shown
that accuracy ~19% results also for 7s, 6d levels and 6p fine
structure interval. |

In conclusion we would like to pay attention to another pheno-
menon where screening of Coulomb interaction is essential. This is
the electron coupling in superconductors. Consider for example hole
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Fig. 8. Plot of electric field E;=Eo+E., in Cu™ on the z-axis (solid curve). E. is the
electron field induced by external field Eq=F,,. The dotted curve is the radial proba-
bility density of 3,d-electron. The distance is shown in atomic units.

conductive zone originated from the deep 3d copper electrons which

strongly interact with ions (a situation similar to high temperature
10
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superconductors). In the strong (electron-ion) coupling approxima-
tion there are (wo contributions to electron-electron interaction.
Firstly, both electrons can be at the same atom. We calculate the
largest zero multipolarity Coulomb integral Fy(3d, 3d). Its unscree-
ned value is 210000 cm ' Single-loop screening reduces Fy to the
value 115000 cm~'. And after summation of screening diagrams we
obtain 147000 ¢cm~'. We see that the screening effect is large but it
does not change the sign of electron-electron interaction.

Of course, we estimate here only high energy ‘excitation contri-
buticn. There are also low-lying electron levels which depend on
superconductor (e. g. splitted hybrid 3d(Cu) or 2p(0O) ion levels).
Their contribution to screening can be very essential.

Secondly, electrons can be at the different atoms. As we have
noted screened external electric field changes the sign on the radius
of outer electron shell. Graph of screened field on z-axis (E=E))
for Cu™ is presented in Fig. 8. There is also radial probability den-
sity o Tor v adielectrans i thisT T ' Fighre U WlE) = 1xlr) i,
Pp(r) =Y, (0, @)yir)/r). It is interesting that the maximum -of proba-
bility is in the area of inverse field. We can consider it as a hint
that interaction of electrons situated at different atoms is strongly
suppressed or even changes the sign due to atomic screening effect.
And finally atomic screening effect could essentially influence usual
phonon pairing mechanism due to screening of ion lattice deforma-
tion lield.

The authors are grateful to V.F. Dmitriev lor valuable discus-
slons.
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