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ABSTRACT

This is the first work of the series devoted lo the
instanton-induced effects in QCD. We report the
results of numerical simulation of the ensemble of
interacting pseudoparticles, or the «instanton liquid».
All its qualitative features suspected earlier on the
phenomenologal grounds are indeed reproduced. The
chiral symmetry is broken, and the value ol the quark
condensate is measured..
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I. INTRODUCTION

After discovery of the topologically nontrivial fluctuations of the
non-Abelian gauge fields [1], the instantons, it was suspected that
they are very essential ingredient of the vacuum of quantum chro-
modynamics, explaining such important phenomena as explicit
breakdown of the U(1) chiral symmetry [2] and spontaneous
breakdown of the SU(N;) chiral symmetry [3]. Unfortunately, the
very-small-size instantons, described by the semiclassical theory
(2], produce too small effects to be noticeable, while for larger
instantons, (with p>1 GeV~'=0.2 fm), account for their interac-
tion is inevitable [4].

‘The question about their role remained open for some time, till
he analysis of the data [5] (by means of the QCD some rules
[6]), leading to the so called «instanton liquid model». (Below
papers of this series are referred simply as AI—AIV.) The main
consequence of this model was existence of a set of «small parame-
ters» in the problem, in particular: (i) the smallness of the mean
radius of the instanton compared to their typical separation,
o/R~1/3; (ii) the smallness of quantum corrections due to rather
large action of an instanton, So~10; (iii) relatively small correc-
tions due to the mutial interaction |Sim| < So; (iv) which, however,
are strong enough to affect strongly the «statistical mechanics» of
the problem exp | Sine| > 1. '

The «microscopic» theory of the interacting ensemble of instan-
tons was started by the paper [7], in which the variational ap-
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proach to this problem was developed. Although it was devoted to
the simplest case possible, the SU(2) theory without quarks instead
of real QCD, all features.(i—iv) mentioned above were qualitati-
vely reproduced.

However, this pioneer work |[7] was based on a number of
assumptions, in particular: ¢i) only the simplest trial function for
the field configurations was considered; (ii) the so called
«current-induced» corrections were neglected, although no their
estimates were actually presented; (iii) the integral over collective
variables, or the «statistical mechanics» of the problem was made in
a very simplified way, by means of some mean-field approximation.
Therefore, it was necessary to check whether the important conclu-
sions of this paper do survive, if one makes more accurate calcula-
tions. :

That was the aim of the previous series of our papers [8] (be-
low referred as BI—BIV), were we have developed the more quan-
lilative theory of the instanton-induced phenomena in gauge theo-
ries. Systematic application of powerful numerical methods made it
possible to consider more complicated trial functions, to control the
magnitude of the «current-induced» corrections and to make some
estimates for the «non-binary» forces among the instantons and
anti-instantons (below for brevity, pseudoparticles or PPs). As a
result, much better understanding of the «gluonic» interaction was
reached.

Important progress was also reached in the fermionic sector,
producing even more complicated interactions among the PPs. As
any diagrammatic methods proved to be too complicated here, and
any type of approximations too suspicious, we had decided to per-
form the integration over all collective variables explicitly, by the
rather time-consuming and straightforward Metropolis method,

which ,is very reliable and avoids all types of approximations. It

was not quite trivial that it can really work with so complicated
weight Tunction, but it did. And again, although quantitative correc-
tions to [7] are sometimes large, the mentioned qualitative features
(i—iv) of the «instanton liquid» model were reproduced once more.

By this paper we start the new series of papers (referred as CI,
CIT etc.) devoted to applications of this theory to QCD with three
colors and three light quark flavors, or to the real strong interac-
tion physics. Thus, unlike for the results of BI—BIV which could
only be compared with the lattice data, now we are going to con-
front our theoretical predictions directly with the experiment.
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2. THE MODEL

The metivations and details of our approach can be found in our
previous works BI—BIV, and therefore we are not going to repeat
them here. Instead, we just formulate our model for the interacting
ensemble of PPs. First of all, their interactions can be split into
three different categories, the «classical», the «quantum» and the
«fermionic» ones.
| The «classical» type of the interaction was, in fact, the most di-
ficult conceptual point of this theory. The problem is how to select
few most important «collective» variables out of the infinite set of
them, describing all configurations of the gauge field possessing
PPs. It is desired to do it in such a way, that all integrals over the’
remaining variables be just Gaussian and can be calculated semi-
classically, while all the nontrivial («non-Gaussian») part of the
problem be included in the subsequent explicit integration over «col-
lective» variables. In BI we have discussed the properties of the ideal
set of configurations (called the «streamline») and in BII we have
checked whether various «trial functionss are really close to it. As a
result we have found such trial function which does the job, at least
for interparticle separation R> p, where p is the PPs radius. (It
will be shown that only few percent of the particles have more close
neighbours in our ensemble.) |

The resulting form of the «classicaly binary interactions of the

instanton —anti-instanton and instanton —instanton pairs is as
follows

Siti/So=1ul*|—¢ ]
4+ R*/p1, pa2)? = (34 R*/pips)1’

1 ke d--8 1.6

g/ Sy==lul ( 4 )[1+R2fp|pz}3’ (b
where R is the distance between the centers, p,, p, are the PP radii,
and |u|? d are some parameters describing relative orientation of
the PPs in the color space. (This point is generalized compared to
BII in order to include the SU(N) gauge group.) Out of the «rela-
tive orientation matrix» O= U U, (where U,, U, describe color ori-
entations of the PPs considered) only the 22 upper left corner is
relevant. One may write it down in the following «quaternion form»

O=ius+ a7 (2)




(T are the Pauli matrices) and the parameters |u|? d entering (1)
are defined as follows:

Pl =ta -

d=1=4|Ru,|?/R®|u|® (3)

In the SU(2) case the matrix O is unitary, therefore |u|?=1. For
the SU(3) case to be considered their variation range is as follows:

—é-f::]ulg-:::l,
e e (4)

Now we come to the «quanfum» interaction. Expressions (1)
define relative action variation of a PP, Si.:/So. The absolute action
(in fact, in the Plank constant unites) is equal to Sy=8n%/g?
where, in the quantum theory, the coupling constant g is not actu-
ally a constant but is logarithmically scale-dependent. The question
is then which particular value of g one should actually use.

This problem may be formulated in somewhat different form.
Quantum fluctuations around the instanton in Gaussian approxima-
tion was taken into account by ’t Hooft [2]. and his expression [or
the size-p instanton probability

b’ 126
dQy(p) = Cudpyd'z /of 6% (5) X
Xexp| —B—(2N:—b"/2b) b [2b Inp, /B;] (14 O(1/B)),
3 9 3.5 13 N;
b= "N — — N;~9; b= —N — — NNy +— ~064;
g Moy 3 TRl 8

= 1 , o 4 66exp(— 1.68N,) &
ﬁ’_bmg(pfﬂw)' Cw. (Ne— D)1 (N, —2)! ()

includes this scale-dependence of g (in fact, in (5) it was genera-
lized [7], accounting for the two-loop effects as well).

Now, expression (5) holds for well-separated PPs, while our
trial function prescribe also the shape of a somewhat «deformed»
configurations appearing if two (or more) PPs are close. If one
looks in BII for their explicit expressions he will Tind parameters
also called p, the PP radii. However, they do not describe the field
distribution in such fluctuations in exactly the same way as for the
isolated instanton. Moreover, we have argued in BII that it is more
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reasongble to use instead a somewhat corrected version, better re-
producing the real field distribution. Such «renormalizeds radius

7 [l—i— z exp(—p.ﬂfeﬁji exp(—0.2R)T
| s Mo
Vel A
B avicy
Ry=Eth; Ry= Gl (6)
/ f

depends on the position of the neighbours, and if one uses p in (5)
instead of p he has what we call the «quantum» interaction. (Such
terminology is, of course, a matter of convention.)

Coming finally to the «fermionic interaction», we remind the Tea-
der that in the theory with massless fermions each PP can be consi-
dered as some effective vertex, emitting a quark — antiquark pair of
each light flavor [2]. Moreover, these lines for a single PP cannot
be closed in loops, because chirality of emitted quarks and anti-
quarks are opposite. Therefore, in the massless limit the emitted
quarks can only propagate to the PP of the opposite topology, and
then be absorbed. Therefore, the probability for any configuration of
PPs to occure in vacuum depends on the probability amplitudes of
all such «jumps» of the light quarks. Unfortunately, diagrammatic
expression for such probability is rather complicated, containing
many contributions of different signs.

We have taken into account these effects as follows. We remind
that formal integration over fermions leads to the standard

Mattew — Salam «fermionic determinants of the Dirac operator

{ DY Dy DAye™* =1 DA, det (iD +im) e~ S, (7)

which 1s evaluated in the following approximation. We assume that
all nonzero fermionic modes (leading, in particular, to charge
renormalization) are correctly included in the ’t Hooft factor (5)
for each PP individually. The zero-modes, describing such «jumps»
of the light quarks, form a basis in which the Dirac operator and
then its determinant is calculated explicitly. This is done by forming
the matrix

B 0 T,
LD:(T;; UM (8)

out of the «overlap integrals» T, for all instanton— anti-instanton
; .




pairs. Its value in BIIl was approximated by

2uz —zy) |
i E ; 9
2 OrPa | 2.58 +(z —EAJEfP;PA]E )

The determinant of iD (8) is real because the matrix is Hermitean.
Moreover as all its eigenvalues go in pairs due to the chiral
symmetry, +A, it is (up to the sign factor (—1) ") even positive,
as the statistical weight function should be. If the quark masses are
small but nonzero, the matrix (8) has on its diagonal also im. As
we diagonalize rf) numerically, there is no problem to account for
the mass while a determinant is calculated.

Collecting all this, let us now summarize the statistical sum of
our model. It is a product of ’t Hooft factors (5), times exponent of
the «classical» bynary interactions Sin¢ (1), times the [ermionic
determinant (8) calculated in the zero-mode basis as explained
above

[ﬂ dQ a(pr 4 ]exp — Sint) X

Ny N

X H [1.34 det{iﬁ+im,}-[-—l)‘"’fMllpH] : (10)

f=1

where N and N; are the numbers of instantons and flavors, respec-
tively.

3. THE INSTANTON—ANTI-INSTANTON MOLECULES

Before we dive into discussion of the «instanton liquid», let us
present some results concerning its elementary «building block» As
it was explained above, due to the fermionic zero modes the indivi-
dual (or well separated) PP has vanishing probability to occure,
and therefore the smallest element of our ensemble is the instan-
ton — anti-instanton molecule.

The «fermionic bonds» binding it are scale invariant: the «over-
lap integrals» depend only on the ratio of the distance R to the PP
radii. The gluonic interaction in principle brings in its own scale
and therefore molecules of different size have slightly different pro-
perties. However, this effect was found very weak and actually all
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results are quite close for all p. The physics is, as usual, some com-
promise between the «energy» (the weight function) and the <«en-
tropy» (or the multiplicity of configuratjons). As it is explained in
BIII, the weight function is maximal at the distance R=0.93p and
corresponds to PP orientation such that |u|*=1, d= —3. We wan-
der how strong deviations from this pmnt are produced by the
quantum fluctuations. :

There are 26 parameters describing a pair of pseudoparticles in
the SU(3) case, but actually the weight function depends only on
half of them (in particular, common displacement or common rotati-
on is irrelevant). In order to simulate the distribution over all these
parameters we have chosen very straightiorward (and therefore
very reliable) numerical method known as the Metropolis algorithm.
It actually generates a random work in our configuration space,
corresponding to the weight function described above, by means of
subsequent «updating» one variable after another. Only the radii of
both PPs were hold fixed, considered to be our m{put parameters
(the results to be reported are, in fact, for p=0.4A;, ).

In Fig. 1 we show the distribution over the overlap integral T,.
Note that it is not peaked at its maximal possible value (marked by
the arrow), which means that the «entropy» takes this system far
from the weight function maximum. At the same time, too strong
fluctuations (7;,—0) are also strongly suppressed.

Fig. 2 shows the distribution over the «classical» gluonic inte-
raction §;,. Compared to the action of a PP of such size, §;=38.2,
these modifications are rather modest. Note that they are shifted
toward the negative values, which means that the attraction slightly
wins over the repulsion. (This is not surprising: as noted in BIII,
fermionic «bonds» prefer the relative orientation which leads to
attraction.) It is important that the width of the distribution in
Fig. 2 is not small, so the small mean value does not imply that
one may just ignore this type of the interaction.

«Polarization» of the PPs in relative orientation is demonstrated
by the distributions over the invariants |u|®? and d (4) shown in
Figs 3, 4. For comparison we have shown the corresponding distri-
butions for all pairs of PPs in the «instanton liquid» (the dashed
lines), more or less corresponding to random relative orientation.
The distributions for molecules are essentially different, and the ten-
dency toward the maximum values |u|?*=1, d= —3 is well seen.

Concluding this section we may say, that although quantum
fluctuations are strong and 100% sngmhcant the _system is alsn
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very far from being completely random. The energy —entropy com-
promise is made somewhat in the middle, thus neither of the two
extremes can be used as a reasonable approximation.

4. PROPERTIES OF THE «INSTANTON LIQUID»

“We have studied ensemble of the interacting PPs in the same
way as «molecules» reported above, namely by means of straight-
forward numerical integration over all collective variables using the
Metropolis algorithm. For this we take some fixed number of pseu-
doparticles Ny, (in fact, 16 or 24) in a hypercube of (Euclidean)
space-time with the periodic boundary conditions. As each PP with
the SU(3) color group has such collective coordinates as size, posi-
tion and 8 orientation angles, we have actually integrated over
13X Npp (208 or 312) variables. Although the weight function of
our integral is rather time-consuming, especially the fermionic
determinant, we have not used any particular simplifications and
have computed it at an «updating» of any variable.. The speed of
this calculation is the main limitation of the PP number under con-
sideration.

Our weight function is not only rather time-consuming, but it is
also very complicated in the ordinary sense. Indeed, one should take
care of the fact that no pair of PPs be too close to each other,
otherwise the «classical» interaction is too strong and the contribu-
tion of such a configuration is negligible. Also, none of the PPs
should be too much separated from all others, otherwise the fermio-
nic «bonds» are weak and the fermionic determinant is nearly zero.
Thus, operating such a complicated system is a delicate business,
and we emphasize necessity to make more extensive numerical expe-
riments with it in the future.

First of all, in order to get some qualitative insight into the pro-
perties of the system we have made simulations at various PP den-
sities (or the various volume of our box). As such data were not
reported in BII, BIII even for simpler cases, we now give them in
more details. In Figs 5, 6 we present the distributions over the PP
radii, both over the «intrinsic» parameter p entering the ansatz and
over the parameter p defined in (6). For small densities these dis-
tributions are close to the input semiclassical expression (5). Note
that it is peaked at very large p~0.7A;;', at which this formula
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cannot in tact be trusted. However, for dense enough «liquid» the
interaction suppresses large instantons and a peak at p~(1/3)A,;
appears. The p-distribution is less spectacular, but the tendency is
similar. The upper scale in Fig. 6 gives the absolute values of the
instanton action, and one can see thalt most of the distribution is
indeed at the action of the order of 10, with relatively small admix-
ture ol the region where Sy<<5 where the semiclassical formulae
used are not reliable.

The interplay between attraction and repulsion, as well as with
the statistical weights of configurations is very nontrivial. Density
dependence of the mean interaction per PP is shown in the upper
half of Fig. 7. It demonstrates that repulsion dominates at high
density, while at low ones attraction takes over (may be due to
molecule formation). Again, small mean values (compared to the
typical Sp~10) should not be misleading: the dispersion of its
distribution is always of the order of 2, therefore exp | Sins| changes
from one configuration to another. by significant factor and this
interaction can by no means be neglected (or accounted in the
«mean field» approximation).

The average determinant per particle, defined as
([det (D))" y where Npp is the number of PPs, is shown versus
the -PP density npp in the lower part of Fig. 7. It does not decreases
much as the «ligiud» becomes dilute, demostrating that this system
is very far from the «randomly distributed» gas of PPs. We return
to this point in the next section.

The density dependence studied so far is, of course, only an aca-
demic question because the PP density in the QCD vacuum is some
fixed quantity. In BIl we have made its measurements for the
SU(2) gluodynamics by the explicit calculation of the change in
probability caused by imbedding of one extra PP pair into the
system and demanding that this probability is unchanged (in other
terms, that we are at zero chemical potential). Unfortunately,
adding a new pair randomly, we have very bad efficiency of the
averaging, and should do it many times. With the time-consuming
fermionic determinant and with much larger number of color orien-
tation angles we are so far unable to do the same, with the reliable
accuracy.

However, we remind the reader that in this series of papers we
are going to compare our results not with the lattice data, but with
the real experimental numbers. Therefore, even if we have succes-
sfully measured our PP density in terms of Ap,, the existing uncer-
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tainty in its numerical value will invalidate all these etterts for
Apy =150=250 MeV the uncertainty in the density nyp~. Apy are not
smaller than one order of magnltude‘ In view of this we have pre-
ferred to fix our «physical unites» from the direct comparison of our
results to data, making a kind of «lambda measurements»
(similarly to what is done in the lattice-based studies). In the next
section we return to this point, using the value of the quark
condensate.

5. THE CHIRAL SYMMETRY BREAKING

General introduction into the subject, the history (and necessary
references) of the applications of the instanton physics to the des-
cription of this important phenomenon can be found in BIII.

Now we start directly with the well known relation between this
phenomenon and properties of the eigenvalue spectrum of the Dirac
operator. Indeed, the quark propagator is a kind of inverse to this
operator (in the massless limit), and thereiore its zero eigenvalues
makes the propagator to be ill-defined. This fact, il observed, means
that one should take one ground state out of some set of possibi-
lities, signalizing the (chiral) symmetry breaking. |

Moreover, there exist an important relation between the density
of the eigenvalues of the Dirac operator iD at their zero value and
the guark condensate

m—0 VF—oo

i 1 dN
|(1IJ1IJ}1=Z i = lim lim " fpp —— !}‘:ﬂ. (11)

As explained in Sect. 2, the projection of the Dirac operator to the
«zero mode subspace» is used in our calculations explicitly. The cor-
responding spectrum of its eigenvalues was measured for the
ensemble of the PP configurations, and the results are shown in
Fig. 8 [or several PP densities.

First of all, it is seen that the shape of this distribution is chan-
ging with density: for the «dense liquid» the distribution is wide
and it possesses a maximum at A=0, while in the «dilute» regime
we have found a dip at A=0, similar to that characteristic for the
«instantonic molecules» (see Fig. 1). (This fact together with seve-
ral other indications shows that molecules are indeed an important
ingredient at small densities.)
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Our second comment to the data of Fig. 8 is as follows: the
smallest » contained in the first bin obviously are out of the trend
suggested by oqther points. This systematic error is presumably a
manifestation Jf the finite size effects, known also on the lattice.
(Of course, in any finite system the continuous symmetry cannot be
spontaneously broken, because its spectrum is never continuous.)

[T we disregard the first bin, we may extrapolate to zero using
other points and conclude that the density of the eigenvalues at
»=0 is nonzero, together with the quark condensate. (Only for the
smallest PP density this conclusions is questionable.)

However, for quantitative measurements of the quark condensate
it is better not to use this tricky extrapolation, but to use instead
quarks with the finite mass m. Using the spectrum one may study
dependence ef the quark condensate on the quark“mass. Our data
(for npp=1Ap, but for two different numbers of pseudoparticles, 16
and 24) are compared in Fig. 9.

The dip at m below 0.1A;, is presumably an artifact due to the
finite size effects. Although we were unable to change the size of
our system significantly, we do see that for the larger system this
effect seems to be indeed smaller. In any case, these data suggest
that we should not work with very light quarks in our applications
to follow. Thus, in the subsequent works the nonstrange quark mas-
ses are taken to be m,=my=0.1A,, =20 MeV. (Note that it essen-
tially smaller than it is typically used on the lattice.)

The data given in Fig. 9 can be used in order to compare the
condensate values for different quark flavors. In particular, it fol-
lows from them that

£55) ~05—06. (12)

()

This may be compared to the numbers extracted by various authors
from the data analysis:

0.5. [9]
(3 0.8—0.9 [10]
auy 0.81 [11] (19)
0.8 [12]

Significant SU(3); violation in vacuum (12) has deep roots in
our model: it is connected to the fact that the typical matrix ele-
ments of the Dirac operator (describing «jumps» from one PP to
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another) are of the order of 0.2—0.6A,,, which is not greater than
the strange quark mass ms;~150 MeV. Therefore, we claim that the
standard chiral perturbation theory should not generally be appli-
cable for the strange quarks. (If this is shown for the QCD vacu-
um, then the «standards derivation of the quark mass and the con-
densate values should be reconsidered.)

Now we bfiefly consider analogous isospin-breaking parameter

- {a@y _{ 0006 [9] 14
B (dd) _{ 0.008 [12]° St

Unfortunately, it is difficult to measure it at present because
results depend strongly on the extrapolation to very small quark
masses. In particular, the linear fit shown by the solid line in Fig. 9
gives & value of about 0.02, while that shown by the dashed line
leads to much smaller value, of about 0.005.

Generally speaking, this point is potentially interesting, as one
of a few observable consequences of the shape of the eigenvalue
spectrum in QCD. On general grounds even the sign of the quantity
(14) is not obvious. Therefore, it would be nice to reach better
understanding of the finite size effects and perform more accurate
analysis, both of the «instanton liquid» and the lattice data.

Coming now to the quark condensate value, we show our data
on its density dependence in Fig. 10. Its lower part shows that the
following dimensionless ratio

Roc L1 (pw) 13/ ¢{gGa) )" (15)

which is remarkably stable over the whole density interval of inte-
rest:

Ry =0.30-+0.32. (16)

It can be compared to the phenomenological values of the «stan-
dard> quark and gluonic condensates [6] which give about
R=029+0.06. The agreement is good enough, so we may claim
that we have reproduced one of the most nontrivial known numbers
characterizing the QCD vacuum. |

Taking the «experimental» value Ap, =220 MeV and demanding
that our measured quark condensate is equal to the standard value
() = — (250 MeV)®, one may fix the PP density

e B (17)
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Certainly it is of the reasonable magnitude, slightly smaller than
that following from the «standard» gluon condensate, ~1 fm™*

However, in what Iollows we are not going to trick with such
numbers very much. The reader (who had followed the lattice-based
literature) is probably tired of multiple papers with «real numbers»,
demonstrating good agreement with phenomenology. The sad point
was that the scales used were different in different papers, extrac-
ted from conilicting data or from quite different sources (e. g. the
string tension, or the rho masses, and so on).

We are not going to claim that our model of the vacuum is able
to predict accurate values for all physical quantities. At the moment
our aim is to check whether it may provide at least semi-quantita-
tive description of wide range of hadronic phenomena, and this will
be made in the next papers of this series. Only having at hand rich
variety of observables to be compared with, one may seriously
speak about such important and delicate problem as «the lambda
measurements», fixing the absolute scale in QCD.

6. VEVs OF MORE COMPLICATED OPERATORS

Although in principle we are now able to evaluate instanton-in-
duced contributions fo the vacuum expectation values (below VEVs)
of any relevant operators, we restrict ourselves to only two quanti-
ties, the key ones for the understanding of the qualitative distribu-
tions of fields in vacuum. The former one is the following ratio

((gG)*™)

Rio= e h

(18)

As it was shown in Al, it can be estimated for a dilute instanton
gas (with fixed instanton radius p.) with the result

2 Pl
I nFPF'L‘

6
Rﬁ}‘:T (19)

Thus, in this limit, it is expected to be essentially larger than unity.
Our measurements (for n,, =1A;,) gave the following number

(Calculation of this quantity was made as follows. Naive avera-
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ging with random selection of the space-time point has too low effi-
ciency, while evaluation of G, is based on our rather complicated
ansatz for the gauge field and it is rather time-consuming. The
measurements were based on generation of the ensemble of points x
with the distribution according to the weight function

1
o 21
Wix) ; [ Frz.d +(x—z 4)%°® (21

with the subsequent averaging of (G,,)*/W.

~ Our result (20) is essentially larger than unity, which means
that the gauge fields are distributed very inhomogeneously in space
time (the <«twincling vacuums», as it was called in AI). Let us
remind the reader in this connection, that the so called «iactoriza-
tion hypothesis» suggested by Shifman et al. [6] assumes R,; to be
close to unity. This hypothesis is often used in practice, for example
in the estimates of high dimension corrections to the QCD sum
rules [13]. Thus, we claim that these estimates are wrong at least
by one order of magnitude!

Another ratio we are going to consider is the following one

o i (22)

Similarly to R,;, it characterizes the homogeneuity of the quark
fields in the QCD vacuum. However, in this case it is not possible
to propose some simple estimate of its magnitude for the dilute
instanton gas. (If one assumes random distribution of PPs over
space-time and orientation, he gets

(P ~n'"?/p,,
Ryq~const (npp—0) , (23)

but, actually, in the limit n,p—0 one has a «molecular phase» with
zero quark cnndensatg, (see BIII for details).
Our measurements have given the following result

Rua=~15-+20 (24)

suggesting that the quark fields, unlike the gluon ones, are distribu-
ted in space-time more or less uniformly.
This conclusion is of great importance for the hadronic phenome-
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nology: it means, in other words, that hadrons made of quarks
should be lighter than the glueballs! (The general roots of this con-
clusion follow in our theory from the observation: gluonic fields are
concentrated in small spots, the pseudoparticles, but the quarks

ones are not: quarks should necessarily «jump» from one PP to

another.)

7. CONCLUSIONS

l. We have formulated a definite model describing ensemble of
pseudoparticles in the QCD vacuum, interacting by means of «clas-
sical», «quantum» and «fermionic» interactions (derived in BII, BIII
and now slightly generalized to the arbitrary color group).

2. We have performed numerical studies of this model, taking 16
or 24 pseudoparticles in a 4-dimensional box with the periodic boun-
dary conditions. We have found that, depending on the density (the
box size), there are essentially two regimes for the «instantonic
liquid». At densities comparable to 1Ap, repulsive interaction is
important, pressing instanton radii distribution the be peaked at suf-

ficiently small value, pmﬁf‘@'. In more «dilute liquid» the interac-

tion is mostly attractive, the typical radii are shiited toward 1A, ,
and there are multiple signs that the «instantonic molecules»
dominates in this case.

3.The qualitative picture of the «dense regime» is in nice agree-
ment with the phenomenologic model suggested in Al. In particular,
most of the pseudoparticles have actions S; one order of magnitude
larger than the Plank constant, justilying our semiclassical ap-
proach. The interaction is relatively weak compared to Sp, but signi-
ficant for ensemble generation. _

4. Unfortunately, the absolute normalization of the PP density in
terms of Ah, was not defined because of the technical reasons.
However, as the value of A, is not known with the sufficient accu-
racy as well, anyway we have to «fix our scale» in MeV by the
comparison of our predictions to data. (If it is done for the quark
condensate, quite reasonable numbers are obtained.)

5. The chiral symmetry is broken at all densities, except pro-
bably at very small ones. Dimensionless ratio (15) was found to be
nearly constant for all densities. It is also consistent with the cor-
responding phenomenological value inside the uncertainties.
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6. According to our theory, the strange quark mass is definitely
not a small parameter of the vacuum because it is comparable to
the typical matrix elements of the Dirac operator. This statement
manifests itself in the significant SU(3) asymmetry of the quark
condensate. Note, that recent lattice works have also found strong
variation of many parameters at surprisingly small quark masses
(e. g. the order of the chiral restoration phase transition) which is
in qualitative agreement with this statement. All this makes applica-
tions of standard chiral perturbation theory to the strange quarks
rather suspicious. .

7. Concluding this paper, let me compare our calculations with
those made on the lattice from more general point of view. Of
course, their virtue is that the integration is made over all possible
gauge field configurations, while we restrict ourselves to only their
subset. Evaluation of the quark condensate is in both cases made
via the eigenvalue spectrum of the Dirac operator. Therefore, the
calculation resembles those for, say, the conductivity of a metal
(which is proportional to the density of states at the Fermi sphere).
The lattice approach starts with the «first principles», and consider
all quark states (analogous to all electrons of a metal) and deals
with huge fermionic operator, while we have selected specific quark
states, analogous to «valence electrons».

If the «small parameters» claimed in our work are there in
QCD, it would be a mistake not to benefit from this significant sim-
plification in such a complicated problem. We emphasize that the
number of variables (per unite space-time volume) in our approach
is about 4 orders of magnitude smaller than that on the lattice. And
moreover, the difference is qualitative: we hope to understand the
«instanton liquid», while the understanding of the lattice ensemble
seems to be much more difficult.
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* 3 PV ; particle is 8.2 unites, so the mutial interaction is in fact relatively small effect. An
5 arrow shows the mean value.
Fig. 1. The distribution over the overlap integral T (measured in A,,) for an instan-
lon— anti-instanton molecule. (Here and below the radii of both pseudoparticles are
equal to 0.4A5'). |
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Fig. 3. The distribution over the invariant |u|® characterizing relative orientation,
lor an instanton—anti-instanton molecule. Note that the value |u|®*=1 means that
‘both pseudoparticles are imbeded into the same SU(2) subgroup. The dashed line
(shown for comparison) shows the distribution over |u|? for the random pairs in the

«instanton liquids.
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Fig. 5. The distribution over the instanton radii p (in Az ) in the «instanton liquid».
Different points are for the PP density (the sum for instantons and anti-instantons)

Fig. 6. The same as in Fig. 5 but [or the «renormalized» radii p delined in the text.
equal to npp/Apy =2.4 (opén points), | (solid points) and 0.1 (stars).

The upper scale is for absolute actions per instanton, in unites of the Plank constant.
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Fig. 9. Dependence of the quark condensate on the quark mass m (for npp=1Ap,).
The solid and open point are for the PP number 16 and 24.
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the analogous dependense of the «scale ratio» R,; defined in the fext. The «star»

with the error bars below corresponds to the phenomenological value corresponding
to the «standard» QCD sum rules value.
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