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ABSTRACT

The method to derive the analitic estimations for
wake lields ol an ultrarelativistic charge in an accele-
rating structure, that are valid in the range of distan-
ces smaller or compared to the effective structure di-
mensions. The method is based on the approximate
space-time domain integrating of the Maxwell equati-
ons in the Kirchhoil formulation.

The method is demonstrated on the examples ol
obtaining the wake potentials for energy loss of a
bunch traversing a scraper, a cavily or periodic
iris-loaded structure.

Likewise formulae are derived for Green functions
that describe transverse force action of wake fields.

Simple formulae for the total energy loss evalua-
tion of a bunch with the Gaussian charge density dis-
tribution are derived as well. The derived estimations
are compared with the computer results and predie-
tions of other models.

© Hucruryr adepuoti pusuku CO AH CCCP

I. INTRODUCTION

Wake field of a single bunch of charged particles traversing a
resonant cavity or periodic accelerating structure is of considerable
interest for high-energy particle accelerators and storage rings due
to its strong effect on longitudinal and transverse particles dynamics
(if a charged bunch is travelling close to the speed of light then the
space charge forces are negligible compared to forces ol the inter-
action of the charge self-field with an external environment). Na-
turally the correct knowledge of wake field is also required for
wake-field accelerators.

The optimal description of the wake fields, in particular for com-
puter simulations of beam dynamics, is that when fields can be cal-
culated by convolution of the bunch charge density distribution and
the Green wake function, which is delined as wake potential. Wake
potential represents the electromagnetic time response ol the envi-
ronment caused by a leading particle towards the particle behind as
a function of the distance between the particles. In this paper wake
potential is solely defined the Green function for the energy loss,
i. e. lomgitudinal wake-lield forces.

Known analitic solution for the wake potential is an infinite sum
over the resonant eigenfunctions. The series terms are analitically
calculated only for closed cylindrical cavity [l1]. In other cases
computer methods for calculations and summation of series terms
are used. Unfortunately the summarized series converge rather
slowly in particular for short distances, therefore high frequency
approximation of the opticle resonator model is added to computer
summarized series [2, 3]. ;

Wake potential also can be evaluated based on the knowledge of

3




energy loss by a bunch of finite length and the causality condition
for particles moving at the speed of light, which means that there is
no wake contribution from particles which are behind the considered
particle. Energy loss evaluations for a bunch of finite length were
obtained in the physical optics approximation with the diffraction
modei of a bunch seli-lield scattering on a perturbing obstacle
[4—6]. Based on this model formulae for wake potential in the
range of very short distances were derived [6].

Nevertheless nowadays only computer methods of a time domain
integration of the Maxwell equations (see for example [7]) give the
main information about wake fields. However it should be noted
that the wake field of a point charge and therefore wake potential
cannot be obtained with the computer programs, because of compu-
ter resource limitation (the number of mesh points varies inversely
with the bunch length to the third power for given aceuracy of field
evaluation).

Generally wake potential can bhe derived as a solution of the
Kirchholl space-time integral equations together with boundary con-
ditions. It seems unreal to get exact solution in broad band of dis-
tances. However it is possible to derive accurate solution in the
range of distances compared to the structure dimensions. In further
consideration it will be shown how formulae for wake potentials
can be derived based on general principles of electromagnetic field
theory and mathematical formalism.

Analogously to the Panofsky — Wenzel theorem there is the rela-
tionship for calculation the transverse wake by integration the wake
potential, so formulae for transverse wake will be derived as well.

This method also predicts a set of simple formulae for wake
fields of a bunch with Gaussian charge distribution traversing
scrapers and cavities. Results will be presented in MKS units.

2, MODEL CONCEPT AND MATHEMATICAL FORMALISM

Superposition, causality and conservation of energy are the basic
principles of the model concept. The total electromagnetic field
(Esor, Hiwt) in any structure can be considered to be the superposi-
tion of the bunch seli-field (E,, Hy) in free space and actual wake
field (Ew, Ho) e

According to the Kirchholl space-time domain integral formula-
tion of the Maxwell equations (some authors call it as space-time
Kirchhoif — Kotler — Sobolev equation, see for example Rei. [8]) the
value ol an electromagnetic field component at any point of some
volume is determined by the integration the functions vs electro-
magnetic field over the boundary surface surrounding the volume.
This is valid entirely for points lying on the boundary surface. To-
gether with boundary conditions it gives the integral equation which
can be solved by iterations. However not too long study reveals the
fact that required number of iterations depends upon time interval
of interest. If the time interval multiplied by the light velocity is
less or compared to the actual structure dimensions then the result
of the first iteration is very close to the exact solution. In further
consideration this estimation for magnetic field components will be
used.

Taking into account the boundary conditions for the total field
on metallic surface

[AXEs] =—|AXE), #".Ho=—#.H,

the relation for the magnetic wake field at the point lying on the
boundary surface takes the following form

£ i Gl 7' H 7 H ¥—x'N d¥
gw s i { : [L DL.;.] [ri Hy d ( ) .l,.):l } 91
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where R=|X¥X—X"|, A" is the unit normal to the suriace, gy is

- dielectric constant of free space, ¢ is the light velocity and all field

components in the right-hand side are taken in the retarding time
moment

'=t—R/c.

Total energy loss U of a bunch is equal to the energy of the wake

field left behind in the volume that can be cilculated by the time in-

tegrating over the field energy flux P(f) directed inside the volume:
U=\ P@) dt, i
Pt)y=— \(ATEeX Ha]) dS: wl2:2)

surf

that in its turn is calculated by integrating the Poynting vector
along the boundary surface using (2.1). On the other hand total
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energy loss of a bunch can be described with wake field V(s) and
charge density distribution ¢ (s):

U=\ V(s) g(s) ds,

(=)

Vis)= | W(s') gls—s') ds, (2.3)
0

where s is the particle position in the bunch. Wake field distribution
V(s) is in its turn the convolution of the wake potential W(s) and
the charge distribution. Note that the wake field distribution is in
the relation with energy flux

V(s) =P(t=s/c)/q(s)/c. - (2.4)

As it can be seen from the comparison of (2.2) and (2.3) the
formula for wake potential is easily derived il integral for energy
flux in (2.2) is transformed to the proper form as for wake field in
(2:3).

If a bunch moves in free space or in longitudinally constant
shape tube in z-direction at speed V close to that of light the bunch
self field has only transverse components and is described as

Ev=1(z,0) RB(x,y), Hy=¢eVXEj],

Hz, ) =25 8ls—cit2) (2.5)

Qnep

where 6(2) is the delta-function and g(s) is the charge density dis-
tribution in a bunch. Function R(x, y) normally can be expanded in
an infinite sum of azimuthal modes. In a cylindrical tube of radius &

Rd(r, ) =% e i ({‘—)[1 +(%) m] ms{rmfp) !

m=1

i m 2m &
R'““’-“’}:mzl (=) (e =

where m is the azimuthal number, A is the displacement of coordi-
nate axis against the bunch trajectory.

And finally Green function of transverse wake G(s), that deter-
mines the transverse momentum kick Ap, (s) upon particles in a
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bunch by the transverse forces of wake fields according to

Apy(s)= | G(s) gls—s') ds’.
0

Analogously to the Panofsky — Wenzel theorem there is the relati-
onship which is used for calculation the Green function of trans-
verse wake by integrating the wake potential

5
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0

o

This statement can be easily derived based on the theorem in
irequency domain and the Fourrier transformation.

3. BEAM SCRAPER IS A LONELY IRIS IN A BEAM TUBE

This is the simplest structure, for which wake fields are of inte-
rest. Actually, when an intense bunch traverses a scraper, the later
can significantly degrade the energy spread and bunch emittance
due to the longitudinal and transverse wake field forces.

Let b, a, L be consequently the radius of a beam tube, the inner
hole radius and the longitudinal scraper length.

Energy flux Pn(t) of the m-th azimuthal field mode is

Pa(f) =2 Pi() +- PN , (3.1)

where P is on the left or right side and P} is inside a scraper. The
later is equal to zero for the azimuthally symmetric fields according
to (2.1), (2.5), so that longitudinal effects do not depend upon
scraper thickness.

The first part P (¢) according to (2.1), (2.2) and (2.9) is

[ b 2n
Pi(f) = A2 f?[é‘;}c Sd_fg fro S dg(s’) cos((m+1)g) b
dn°gg J ™ J 1 ds’ R
a ]
s'=cft—R,

R=\/r2—2rrucos L
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Using (2.4) and substitution of variables, integration by parts and
integration over the variable r the above formula is transformed to
the formula for the wake field distribution along the bunch

: o0
2m

I-"r:ulb::' — ""1‘_ (i) { E?{é} Kur—' ]— S i]l"l::-‘?rj f:m(S_S!) fin‘;;} .
ney \ a na : a

It was used that bunch length and radius of a scraper aperture are '-
less than beam tube radius. Function K, is defined as \m
e, In {affd) ot m=0 : )
i { 1/2m for m =1 i

and the function Fn(x) is !

[+
Foul) = 1 S cos (mep—p) dg
¥ , cos Pp(cos p+xcos )™’

tg p=sin ¢/ \x*—sin’p,

o — | arccos (1-Snno oy “Hiax =0
o {:n; for - £ 222

Nonvanished second part in the right-hand part of (3.1) is ¢ue
to the fact that energy loss into transverse modes increases when a
bunich goes into a scraper because of the bunch seli-field reconst-
ruction inside scraper apertura as the consiquence of boundary con-
ditions. This part can be-rewritten in the following form

: ; i L
Pl et (i) gict) | Hict+2,2) de, (3.2)
251] a 0
where
Ht, ) =5 (<) %
: ; _Eﬂja{. a
L o :
><§ dz’ §{ — qu;‘] + QE}{E—:—E’}— qlﬁgj [z—z’]} cos mgdy,
|

S =ct—R—2".

After simple transformations (3.2) gives the second part ol the
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transverse wake field distribution

P TP

Vin(s) = —] (i) tee’e | (‘?is—s’} - qls—¢’ --2”) X
£ dmn’eg a 2 o s+ 2L
0
- |II Ff
> sin (Qmarcsin ‘""S{S;_EL}) as’.
o

So the total wake potential is

Wals) = f—(’i) Em{ e (i) 4 _l-mm(%; %)} . (33)

TEg \ & na a 4na

where

D lx, y) = (0,) — sin (0

H
mx

o= | 2maresin [ Vx(x+25)/2]  for 0<x <\ 44 —y
| ey ! anywhere else

S { 2m arcsin [ Vx(x—2y) /2|
: ma anywhere else

for uSx<\y +4 4y

According to (3.3) the amplitude of the longitudinal wake field
experienced by the central particle of a Gaussian bunch with
r. s. m. length o<la is :

2¢ L
Vo= —3)-5; In (-—’3—) svha
(27)" “eo00 & a~/2m

and the total energy loss of a bunch is
f ]
_—— ln(—) —_— :
{Q:’[.J d Ep¥ . {1 I:-t\j:;

Q'J.'
Finally the Green function of transverse wake field according to
(2.6) and (3.3) is

; 2m—1

A 2m s 1 i :
m« 1 —d | - — Frﬂ e e 1 L e ar 1 . 34
Gul$) Eﬂ'{-ﬁoﬂzm{ : smg [ (a) 4 i(a ﬂ)] 3 } 3.4




For practical use formula (3.4) can be simplified for two extremal
cases: '

L<Ca (thin scraper)

o Al 2ms m o A
G:Sh=—————{l—- ” __}-
S, 2nega’” a - n o

L=a (very long scraper)

.-f!.gm_] m D nty sla
Gm(S} — W{ 1 + ? - _;_ [}5 Fm(x) d,-f} ; (3?)
4, CAVITIES

Notations for scrapper radii mentioned above are valid also for
a cavity. The new additional parameter g defines the cavity gap
length. However the method slightly differs from previous conside-
ration.

In this case field energy fluxes from different sides of cavity are
not summed but partially compensated and the reflection at the
right side of the wake field emitted from the left side must be taken
into account. So one part of energy flux is

b 2n
Pu(t)=2 \ rdr { Et)[ H(ct) — Hoct+g)] do, (4.1)
a 0

where f(ct) is the magnetic field induced on the right side of a ca-
vity by its «own» current and Ho(ct) is the field induced by the
left-side current.

The second part of the energy flux is due to the deformation of
a bunch self field in the right-hand tube connected with a cavity.
Corresponding energy flux is exactly the same as energy flux (3.2)
inside scraper apertura of the length equal to the cavity gap size,
i. e. L=g. Using this fact and above expression one can derive the
total wake potential

Eﬂm:ﬁﬁz“{%iiﬁﬂ{ $:@)_
(2 ton(3 D).
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where F,(x) and ®©,(x, y) are already known functions. This esti-
mation is valid for any integer m and for that range of distances s
when no wave created by the leading particle can reach the outer
wall of the cavity, he reflected and arive back before time moment
f=s/c, since this wake potential does not depend upon the cavity
radius.

With the help of (4.2) and remember (2.6) formula for the
transverse wake is appearing in the following form

s V(s +2g}

A 2m—1] ’ ¥ ;
GulS) = —pmmgerr { g d.lm(:f»; ﬁ) 3 S f(i) afxf} L (43)
et M epl o a 4 il

0

As examples in Fig. 1 are shown wake potential (m=0) and
Green functions for dipole (m=1) and quadrupole (m=2) wakes

\ GREEN"S FUNCTIONS
3

{
|H=8 G/A=2

Sl 1 i i
i : i {
.98 1:;/8 1:0 S/A

Fig. 1. Wake potential (m=0) and Green functions for dipole (m=1) and gquadru-
pole (m=2) wakes.

of a bunch traversing a cavity with the relative gap length g/a=2.
Potential is normalized by 1/x%a and Green functions are norma-
lized by (A/a*™ " /n’eoa®. For practical use when

S R e (4.4)
a 2g g
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wake potentials are approximated by

Feri

A

JTI Euﬂ‘_"n.‘—_l ( ES )

Wﬂt': 5) —

2

This formula gives when m=0 the estimation for energy loss ol
the central particle in a Gaussian bunch

1
s (VE-3
Znegn 2o 2

and the total energy loss of a bunch in a cavity

2 =
=32 (/£ 1)
2n’eqa ]

The Green function of transverse wake for parameters obey the
condition (4.4) is

mﬁzm =

il
GulS) = ——=mgT (T V2gs —5) :

nEpd

In the case when the cavity gap length approaching to infinity
wake potentials become independent of g, and approaching the for-
mulae for infinitely long scraper. So the wake potential for energy
loss is defined by (3.3) and the Green function of transverse wake
is described by (3.4).

5. PERIODIC IRIS-LOADED WAVEGUIDE

Iris-loaded accelerating structure is also can be represented by a
reriodic sequence of cylindrical cavities of radius & and length g
joint by concentric tubes of radius a and length D—g, so that ‘the
period of structure is D.

The first order approximation of the wake potential per a cell
when a bunch moving in periodic structure is equal to the wake po-
tential when the same bunch traversing a cavity ol the adequate
parameters.

Deriving more precise formulae needs taking into account indu-
ced by the currents of all irises additional part to the magnetic field
on an iris considered by integrating the function versus bunchs field
along the surface of crescent regions seeing from considering point.

|2

T

Taking this into account the wake potential is described by

5 A A
Wfr” ()= W,,,I:_S} + ;Iﬂ—nﬂ?}*_}_—l- b
Y Z {—,_-_fi% A (W’S‘r“'”E”?) 5 Llrr:;;} , (5.1)
s(s 4 2gx) a 4
=1
w=1-+k —D-,
g
where
Bix, 0] Blx, x—1) Bl (e —1) /=, 0}
e WA, U Xt e 4 ol
L= § far Loy do— | fnrw@yde— | Ia(x—Z20) de,
Poiidt Pre Bx, 1/l —1))
| = i{l —v)
B(x, v) = arccos —
ﬂ,ﬁpﬁ—xiv

m—+ 1

cos(ma 4 (a0 — @) — ) ( sin m)

i b
x! '1"'1! T 2 _
[ ¥ xvcosyp(veos g—xcosy)™ \sing

sin g
g = ————
1/;;‘1-*) — sin“gp
tg o — vsin @ ‘

v—1
COS (f — -—— X COS (
W

and finally

1]f:t=(1},ﬂ(-‘?—; g_#) —Eﬂjm(i; glx— 1]1 —i—mm( STt g(x—zj) ,
a 2 .

a a A

Transverse wakes can be derived using (5.1) and (2.6).

CONCLUSION REMARKS

Aiming to varify the derived formulae the comparison with com-
puter results for wake fields was carried out. As it came outl Ehc
computer results based on the method [7] compare very well for
the bunch length up to the structure aperture size. i

The derived formulae were also compared with the results o
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summation of eigenfunctions for SLAC and LEP accelerating struc-
tures, presented in Refs [2, 3]. There is a sufficiently good agree-
ment. However in the range ol very small distances the derived for-
mula for wake potential gives an increasing to an infinite value like
Uwi.-“r:; instead of the finite value result of summation.

The derived formulae for energy loss in cavity and iris-loaded
structure can be also used for evaluation the energy loss by a point
particle of finite kinetic energy, if one changes o to the eflective
particle field length a/y, where y is the relativistic factor. By using
this substitution in (4.5) the formula for energy loss in a cavity

takes form ;
2ntega a

that slightly diifers from the formula predicted by Lowson [9]
when y> 1.

The author would like to thank V.E. Balakin for useful discus-
sions and also A.A. Kulakov for the help in preparing the paper.
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