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ABSTRACT

It is shown that so-called Berry’s phase (BP) must be

taken into account when the mean field adiabatic fluc-

tuations (colleckive modes) are being quaﬂtiz_ed, For

the many-fermion system, the BP-counterterm in effec-

tive action is shown to be equivalent to that of kinetic
energy of mean field fluctuations.
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The phenomenon of Berry’s phase i. e. «quantum adiabatic holo-
nomy», known from Refs [I, 2] where the well-known quantum
mechanical adiabatic theorem [3] has been reconsidered is formula-
ted as lollows. Let the Hamiltonian of the system, A, (with its
cigenvalues Ey) is defined as a function of several parameters g,:
h="h(q,). Then, if the system evolves adiabatically along the closed
curve C in the parameler space, the eigenvector (EV) |k) acquires
a phase gain, exp (il'(C)), BP, per a period T, in addition to the
convential dynamical phase:

.
| kil +T)) = exp (iT4(C)) L‘xp[—i [ Exg(t) df] k(1)) . (1)
0

Obviously, the BP will be substantial whenever a functional deter-
minant ol the operator ié,—#h(?) (i. e. inversed Green function) for
the system in periodic time-varying external field is being cal-
culated.™

One fased with this problem when investigating the many-body
system in terms of functional integral having in mind to construct
an effective low-energy dynamics [5] connected with the collective
degrees of freedom ol the system. In that case, the eflfective
mean-field (background field) created by the particles themselves
plays a role of the adiabatically changing external field. Now, we
address the question what is the eflect of the BP and what is its

7 The corresponding contribution to an effective action of the Fermi-system inte-
racting with the external boseflicld has been considered in Ref. [4], bul the authors
were concentrated mainly on the topological ieatures of the BP.
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physical meaning? The goal of this work is to manifest the simple
physical sense of the BP, that is, the BP corresponds to the kinetic
energy of the mean field fluctuations, therefore, taking into account
the BP itsell makes us able to quantize the collective excitations of
the system in the functional framework.

Let us consider a non-relativistic system of fermions occupying
the energy levels e; and coupled by the two-body interaction (for
example, nucleons in valence shell) described by the propagator
G(T)="Tr [exp (—iHT)], which we shall express in terms of a path
integral:

r
6(r) = DUy DU *exp{ £ § [ Wi 60— ) Wi WiH Wi Vi W7 W]}
0

where the W, W+ means Grassman elements [6]. Throughout the
paper, we agree that repeated indices are summed over. Let us in-
troduce the Bose-type field oiwlt) = — Vi .t W, making use of the
properties of Gaussian integration, to linearize the fermion action:

T
G() = Do} D{W) D+ exp{ § dt oult) Viirtw oett) +

0

+ "P}+ (i010ie— hin(t)) qjlk]} -

Here we introduced the inversed interaction kern, V™', as well as
the single-particle Hamiltonian of the fermion in external field,
hie (1) =eidie—0ir(1). Executing the integration over the Grassma-
nians W, W1, we obtain the effective theory for the fields o ()

T
G(T) :g Dia) Exp{ i S dt oilt) Vieww olf) + log det[fé‘;—h{f}]} =
0

=S D| o) Z Exp{ i:S dt oirl(l) 'f"r'Ea'*!k’ Orwe(f) — ; (W'_ _;_) o4 GI} :

Vel

where the last expression is rewritten in the form of the «fermion
statistical sum», i. e. sum under all the configurations of the
single-particle occupying numbers, vy=0.1 [4, 6] with the

*) Note, that the «occupying numbers» v, are leaving conserved as adiabatic inva-
rianta under the slow evolution of the system.
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single-particle energies E, replaced by the Floquet indices, as, which
are r_mn-iocai functionals of the o(¢). The spectrum of the w, is de-
termined by the solutions to the equation

[id,— h(t)] | &(f)) =0, (2)

acmrrji_ng _tc: op=—arg [|k({4+T))/Ik(f))]. Under the adiabatic
appro.x:'tmahun, the evaluation for the a«. follows from eq. (1), and
the effective action S.; in the G(TJ:SD{Gj Zef‘g“” takes the

[ve
form [4]: }

T .
St atrouln vt o5 (e , f
fi .;,S Oirlt) Viegw O (1) Z("-’k 2) [DS di Eg(o(t)) —1 ,E] : (3)

where E(o(f)) stands for the solutions of the «snapshot» eigenvalue
problem

h(o(?)) | k(o(l)) ) = Ex(a(t)) | k(o(t)) ).

When neglecting the BP, we obtain temporarily local action descri-
bing a static field, which corresponds to the Hartree — Fock approxi-
mation.” As for the fluctuations of the field o, these are described
by the BP counterterm in the action which contains time-derivatives
of o, and we are going to calculate this contribution now.
Let us search for the |k(Z)), satisfying eq. (2), in the form
U(a(l), o(0))I&(t)), where |k(¢)) is an unknown vector and

U(o(?), 0(0)) =exp| (0u(t) —0ix(0)) 8/80:]

is the «shifting operator», which transforms the «snapshot» basis
ofd BV Er;; h at t=0 to one -at an arbitrary ¢ |k(f)})=
=U (o, 0'”) |k(0)). Substituting the anzatz into eq. (2), we obtain

i0d k() = A(t) — U~ (0,0 i(0.:U(0, 6™))] I R(2)) ,

where the A({) =U""'(a (1), 6'")id,U (o (t), ¢'?) is the diagonal ope-
rator in the basis {|k(0))} with the eigenvalues E.({)=E;(c({)).
Note, that the «Coriolis term», U~ 'ig,U, is nonrdiagoﬁal in that ba-

sis. Starting with the instantaneous EV ' for” h at (=0, |
|k (=0))=|k(t=0)) =1|k(0) ), one have the solution to eq. (2) in

") Rigorously speaking, one deals with the Hartree approximation when neglecting
the exchange term.
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the form of chronological product:

| k(1)) = Ulo(?), 5(0)) ’r{ exp [—:: { dr(ie) —fU"{ﬂ.rU]jl]} | 4(0) ).
0
For the case of adiabaticity, when transitions may be neglected [3],
we have
i

k(1)) = U(o(1), o(0)) exp [-—-f [ Ext) a’f’] %

0

X | B(0) ) ¢ k(0) |Texp[f5 U- lsa;rUd:’] £(0) ), (4)
(

where for =T the matrix element coincides with the one of equiva-
lent definitions of the BP, ¢'* (for ex. [4]). On the other hand, in
adiabatic regime, one may solve the eq. (2), treating the term
U~'i3,U as a perturbation. Proceeding the calculations up to second
order of U 'ig,U and comparing the result with eq. (4), one have
for the BP:

Ckl U= U k'Y (B ) UTYiaU |k
Ex(o) — Ex'(0) i

(5)

=

r
5 di
R 1)

i

k

Interesting the collective effects at low energies, we consider the
configurations which are the nearest ones to the «classical» path,
i. e. ones lying on the bottom of the «valley» of the Eucleadean ac-
tion surface [5]. Such configurations, i. e. ones which the collective
trajectories of the system (dominating the path integral in the
G(T)) pass through, may be ascribed, as usual, by means of seve-
ral parameters g, The latter ones called collective coordinates be-
ing undetermined a priori, mostly may be choosen, more or less
successfully, by use of specific’ physical considerations [7]. For sim-
plicity, propose the consistency requirements arising in this frame-
work to be satisfied, so the most important configurations o(f) 1. e.
ones corresponding to the large fluctuations of the effective field
are parametrized successfully by means ol some ansatz 6=6(g,)."”
Then we have for the I's

") Speaking the language of the Faddeev-Popov procedure of introducing the col-
lective coordinates [5], it means that the contributions of the transverse modes de-
terminant as well as the transition Jacobian are neglected. :

6

:
Fe= Y | dt1fy (6(g)) duds,
k' k()
where §=d,g and
My (5(0)) = CR(B) |5 | #1(8) Y (R(6) | 5= 1 (E) ) ENE) — Ei(6)

Correspondingly, S, (3) takes the form

:
- B o g B : Wi L
Sefj=\ dt [a,-kt_qj Vit Gewe(q) +.;L (? —-w-) Ef6(q)) + Buq) @’uffv] ,

0 3

where the last term corresponds to the kinetic energy of the fluctua-
tions of o, and the mass tensor B is given by the formula
Bulg)= ) velle(6(q))

e R ==

in the absolutely agreement with the result of the cranking model in
the theory of the collective excitations in nuclei [7]. The existence of
a set of «collective trejectories», yielding approximately the same
action and, consequently, entering to the G(T) with the near
weights, is the manifestation of an initial symmetry the system pos-
sess. In fact, for the case ol an exact symmetry (nuclear rotation or
collective motion of an instanton in QCD), the action is really a
constant when going from one collective path to another. The cor-
responding collective coordinates ¢, appear to be angular ones the
collective action being indepenedent on them. Hence, the equations
4. =0 split from the whoie set or the Lagrange ones vielding the
conserved moments. It provides one with an opportunity to specily
the collective trajectories according to this quantum number. Then,
the stationary phase quantization [6] being applied yields the selec-
tion rule for those moments. Therefore, the resulting effective action
from which these angular degrees of freedom are excluded, acquires
the dependence on the quantized values — «topological charges» (for
ex. eigenvalues of Casimir operator for corresponding group of
transiormations).

For the case of the rigid rotation of the system the Euler angles
play a role of those angular variables. The angular momentum
plays a role of «topological charge»; in this case, the zero mode
(Goldstone’s mode) corresponds to exact initial symmeltry. More-
over, there are some other smooth modes in the systems like a su-
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perfluid nucleus, allowing an approximate classification of the col-
lective states (such as O(5)-symmetry [8]). In this case, the semi-
classical approximation, starting from the nontrivial classical solu-
tions with the pronounced symmetries might be a powerful method
of the investigating the microscopic structure of the low-lying
excitations.

The author is indebted to Prof. V.G. Zelevinsky for the attention
to the work, and to Drs LV. Kolokolov and A.S. Yelkhovsky for
discussion,
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