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ABSTRACT

Random phase approximation in continuum with effec-
tive forces has been used to calculate the cross-secti-
ons of (y, N) and (e, ¢’N) reactions on oxigen nucle-
us. The spectra oi nucleons and their angular correla-
tions are calculated. The comparison with experimen-
tal data was periormed revealing importance of more
complex than 1p—1# configurations contribution.
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1. INTRODUCTION

With modern electron accelerators and development of a method
of an internal target in electron storage ring [l] there appeared a
possibility of coincidence experiments not only at high momentum
transfer where quasi-iree scattering dominates [2] but at lower mo-
mentum transfer as well where giant resonanses (GR) and even
isolated levels can be excited [3].

In this region of momentum transier the (e,e’N) reaction is
close in kinematics to (v, N) reaction and their comparison can be
useful for study of nuclear structure. From the other hand there is
a difference since the momentum of a virtual y-quantum in (e, e’N)
reaction is several times greater than the momentum of a real
v-quantum in the (y, N) reaction. In this case the GR with multipo-
larities higher than the dipole ones can be excited. In addition, the
possibility of study 0%-strength exist for electron scattering, the
possibility that absents for the (v, N) reaction.

For these reasons it is interesting to analyse together (e, e’N)
and (y, N) reactions. We have chosen for the analysis an oxigen
nucleus where the cross-section of (y, N) reaction was measured
starting from threshold up to the end of resonance region (4] and
the data on (e, e’N) reaction at g=~0.5 im~' appeared recently [5].

The structure of GR is determined by a superposition of lp—1#h
states. In light nuclei the number of such states is relatively small.
For example, for giant dipole resonance in '°O there are 5 states for
protons and 5 for neutrons. At small collectivity the rearrangement
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of strength into collective peak is not complete. Considerable part of
the strength remains in separate 1p— 1A states. Efiects of coupling
of GR and 2p—2h configurations give rise fragmentation instead of
spreading width. The escape widlh becomes comparatively large and
must be taken into account explicitly in all theoretical calculations.

There exist several approaches to take into account the single-
particle continuum. One ol them is based on explicil separation of
continuum states space. In this approach the system ol equations
can be formulated coupling the reaction channels and internal ruc-
lear states [6, 7]. This approach is closely related to Feshbach’s
idea of doorway states [8]. It is rather general approach capable to
describe emission of not only single nucleons but complex particles
like d. f. *He as well. In practice, however, the system of equations
for more than one type of emitted particles is very combersome and
lime consuming.

In other approaches the single-particle continuum is taken into
account using coordinate representation. We can reler here 1o the
papers of Bologna group [9] and to papers ol Speth an co-workers
(10, 11]. In [9] the system of integro-diiferential equations for
|p— 1h seli-consistent RPA amplitudes is formulated in coordinate
space. In [10, 11] the equations for RPA ftransition-densities are
formulated in the coordinate space and the Fourier-Bessel method is
used to solve the equations.

Our approach is based on paper [12] and we used it befare to
anaiyse the influence of spin-orbit interaction on magnetic properties
of nuclei [13]. In this paper using the mentioned approach we for-
mulate and solve the equations for effective electromagnetic fields
necessary for calculations of the cross-sections (parts 2 and e
results of calculations of (y. N) and (e, e’N) cross-sections are dis-
cussed in part 4.

9. THE CROSS-SECTIONS OF (¢, ¢’N) AND (y, N) REACTIONS

2.1. Kinematics of the Processes

et us start with useiul kinematical relations and description ol
the coordinate svstem we shall use below. In Fig. | the diagramm
of (e,e’N) process is shown. The p.=(£,p) and: h=1{( & p'y ate
the four-momentum of initial and linal electrons. The energy-mo-
mentum of gamma-quantum ¢, is g,={w,gy=p.—pu. In ultra-
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relativistic case one has

gi=w’'—q§ = —4 EE’ sin“(8/2) , AL

where 0 is the electron scattering angle in lab. system. The p;, p; and
bk are the momenta of initial, final nucleus and emitted nucleon. In
. o =R
the lab. system one has p;, = (M;0), p,-..:(;".-‘l,-+.-’3 -+ %J—,q—ﬁy
/

where M. and M, are the masses of initial and final nucleus and E*
is the excitation energy ol the final nucleus.

For description of angular distributions: we shall use the coordi-

—

nate system with the axes shown in Fig. 1. The orts are gi= 1

1§
gXxXp s = oNE . e i ST R .
= T al and & =&,Xé&.. Our coordinate system is the same as
gX P

used in the de Forest’s paper [l14] and differs from those used in
[15]. The last one is 90° rolated around z-axis relative to our
systerm.

2.2. Cross-Sections

The amplitude oi (e, e’N) reaction in Born approximation is

2
Tji= %J{pr} Vo tlp) Ju(q) (2.2)

where J’!.(r;}z{p[q},.i’*{q]} is matrix element of electromagnetic
current. The u(p) is the solution of free Dirac equation. The distor-
tion due to electric field of a nucleus can be neglected for light nuc-
lei where Zao < 1.

For the cross-section differential in energy transfer and angles
of scattered electron and emitted nucleon one has

d*a 1 §. B L ik
dod0dn, Mg | (1PI1*4+4¢°1117) : T
Bk =TT ) 4 EE’ {'UE:— ! . bl ﬁk
2 M,
where

o’ CUSE%
e (2.4)

4 E* Sin*?

is the Mott {:russ-se_ction, P,.=p,+ph m is reduced mass ol emitted
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nucleon, 0 is the angle between g and k. The bar means averaging
over initial and summation over final nuclear states.

The cross-section (2.3) is written in lab. system. However, it is
convenient to calculate the invariant expression in brackets in the
center of mass, system of final particles where the matrix element ol
nuclear current is well defined.

Taking into account the transversalily of electromagnetic currentl
one gets for the cross-section [15, 16]

WP s Tl
[—.@; V. (0) [p(g) "+

d%a I
T T U_-"l'l P
dw dtl dﬂk I .‘E]

+ ‘E‘I‘. Vir(®) Relp(@)-U+(g) —I-(q)] + Vi) (1) P+ 1 -(@)1") —

(o m X |
— Vyr(®) 2 Re(J5(q) -/ —(q) a] o , (2.5)
R ;
[t ‘—1- e cos By
where

Vi(0) = (2.6)

2 = ) ’
Vi) =— 5 EEE 112 @)

|
.|: @

V() = tg”% L % (2.8)

a
Vrr(0) = — 5‘;- (2.9)

W /M; is kinematical factor appeared due to transformation into cen-
ter of mass system [13]. W2 = M?42M;0 + g2; the circular compo-
nents of a nuclear current are defined in a standard way [17]

. o e e+ il e
STy A, (2.10)
V2

For the (y, N) reaction one can find expression similar to (201
The recoil of a nucleus can be neglected for photo-reaction. For po-
larized gamma-quanta the differential cross-section is

do _ o mk e (1 (1= ) —

datl,, in @

|

s SR (T gl s R i L) | (2.11)

where £, &2 &3 are the Stocks parameters of the density matrix of
gamma-quanta [18]. In neglection of parity-violation effects the
cross-section (2.11) does not depend on circular polarization para-
meter &, Furthermore, choosing the x-axis along one of the main
axes of polarization density matrix one can omit the parameter , or

[

t,. Finally (2.11) can be written as

_d_fl- it i |'|r|'|'ll." = . R s fr{?'.';.‘ ._.Irjfr p f—* ‘
flhe L8t l[.|.|"+| 4 |/ _| :Il;-. —Vrr-2Re(J4-J) l’ 212

1 it -
where Vy' =1 and s =

2.3. Multipole Expansion of Nuclear Electromagnetic
Current

In (2.5) and (2.12) we have matrix elements of the Fourier-
components of nuclear electromagnetic current:
qr

1

plg) = | d*rp(r) e

Iig) = {drir) ™. (2.13)

There are several variants of multipole expansion that differs in
definitions of multipole transition operators. We shall use the
following definition:

Lo u]

olg) =(n)'? ¥ @I+ 1)'2 T/ (g), (2.14)

f=i

5(g)=—@2n)'? ¥ ' @I+1)"(Thq) +ATig) . h==x1), (2.15)
f=1

where Coulomb, electric, and magnetic multipole transition opera-
tors are:

Tr(g) =\ &r p(7) is(gr) Yrol?) ; (2.16)
Thie) = — [ @' iilar) TaF) ot (1) (2.17)
Triq) = § &r jrtgr) Vi) -7 (7) : (2.18)
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j;(gr) is a spherical Bessel function.

For charge and current densities we have expressions with the
1

2 o
('~ sreew)
0.71 GeV?

account of nucleon formfactor (f,(¢%) =fn(g?) =

z
()=} fd “‘)G{r—r.)+ fu(qr §F =71, (2.19)
=1

i)=Y ik =877}  +

+

+Zh(¢”]'{ - ,G[F—FE}} + V X @7) , (2.20)
21, o+

i=1
where | , . means anticommutator, and spin magnetic moment

density is

Z
II F- Z 2) gﬂ 2';:’!2 1-6(
o p

Inserting into (2.16—2.19) the expressions for charge and current
densities we find for multipole transition operators

—,0(r—r;) . (2.21)

[§

N
F—7) + Z fniq®) g
_ L

T/ (F)=isgr) Yn(?) (2.22)
Tb;r=—~—m———1—_ir' r e {'r' r} =
J’l:_.) [ q _vlmn—_i_” ﬂr( L’{q J)+ ‘\',f{.l'—|— } om .U(q ) ;3
| ; A : G ¥
<+ = — h(iff)] sl =+ ?MN gy q jilgr) o- ﬁa(") ; (2.23)
m I +1) :
Tp3(7) = L'\/zprl LT 7+ ~u~ gv 4 X
m J+1 r

x(_\/;:rll j1—1(gr) E-?’;a"{?J—‘\/I pegn @ Tntk )) (2.24)

where p, is nuclear magneton.
Thus, for electric transnmns we have two types of tensor opera-
tors with parity (—)’. We shall denote them below as .';

8

f=Yp(), &=5Yh{. (2.25)

For magnetic transitions we have three types of tensor operators g
with the parity (— e

M=5.77'%, &'=§7"'0, &'=F0'¢", (22

where j=145/2.

3. CONTINUUM RANDOM PHASE APPROXIMATION

3.1. Shell-Model Calculations

It is convenient to start calculation in independent particle mo-
del where the wave function of final state is the simplest one. In
this case

Y=k (7) $ju—m(7) (3.1)

where 1;:} ¥ Y i the wave functmn nf a hole, i. e. time reversed
wave function of a state ¥, (7). g ' (F) is the wave function of a
final emitted nucleon, having definite momentum & and spin projec-
tion o. For the following steps it is convenient to expand the wave
function % '(F) over states with definite angular momentum j:

W)= 27 @) ) e ™ Qnls) Rusr) 3.2
pem -

Here Qi (7) is the spherical spinor function, and §; are the scat-
tering phases of a nucleon in mean-field potential of a residual nuc-
leus. Rpu(r) is a single-particie radlal function with the asimptotic
behaviour at large distance:

Rm(r)+—1~ sin(ﬁar— %"+aﬂ) T e (3.3)

The matrix elements of charge and current densities (2.14, 2.15)
can be written in the following way:

Ho@ iy =22 ¥ [4n(@214 D)2 e (1 - Qunlh)) X

Jilm

X (jim| T (@) | jnma), (3.4)
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D = ‘1—" Y (2n(2d + )] 2 o™ (d Qi) X
{‘- Jrj:'ﬁ.'l.
C L2t T _ oy =
X jtm| Thlg) +AT5(g) | jn e ) . (3.0)

For longitudinal, transversal, and interlcrence contributions to the
cross-section (2.5) the following expressions can be obtained aflter
summation over all angular momentum projections

| ¢t 1iy [2= Y Wi(g, k) Pyicos 8); (3.6)
f==)

V2 Re[ (Jip@ iy (K[ +lgy—I-1g)li))] =

irj}lll-r':_.q: 'Eg;l PJIJ [{:UQ UH COS @y ; 1.3?}

1

-8

R @ 1) 12 LT (@ ViY 1 P= Y W (g, k) Pricos 84) ; (3.8)

f=0l

2 Re| <I|I+,i:'q,1|£>" <f!f {g)liy| =

/

w7 (g, k) PficosBy) cos2qi; (3.9)

g

I . e . .
where P"(cos ) is a Legendre polinomial.
The formiactors W are expressed in terms of reduced tensor
operators (2.16—2.18):

j T Y Il.'i_} ! g | _]
g, by — 163 y [.xzf—l—l_l-,.f +1_.|] .

I 4
FEfie
et s L R EE B il
Wil 1 <j’e”|l}}llﬂ>{. - -:}X
It !
X CI o GUITE (@) Nindn) U N T (q) 1 jnln Y Loec
| 32’ @/ + 1)@+ 11"
Wil(g, k) = 3 [ ‘ |
N ) P Yafil+1) ;
S :
. it A ] , R ¢ i et
X Clt o il 1TF(g) — TH(@) | jalad (VN TE(@) i)' (S
10

?——

Sk 5 12 9F 4+ 1)(2J° e
Wity =182 Pl DB 1]
k- i 4 n
Tt
I s L | + c 3
e T et oL U e
. s W <_r'ﬂ”||hil;f>{f.lj f.,}:x:

S CP o GUNTE (@) — T (@) ke Y LN TEQ) — T (@) 1) (3.12)

| /2

TT, 16 n’ (20 41320 41)
Wi (q. k)= —3 [_"" ey el i
: b Z dall— 1) I+ 1){T+2)

TOTRl

R G SR ; R
*(i—) : {Jf|!};'r|ljf>{1.'. JI ff}x

S G20 GUITE@Q) — T @) ik (VN TR + T (@) jalny. (3.13)

L

Here (j/lIIY,]1ji)> is reduced matrix element of Y,,(0,q) taken be-
tween states with definite total angular momentum /.

3.2. Equation for Effective Field

An interaction between quasi-particles responsible for formation
of giant resonances can be taken into account in two ways. In the
first way the wave function in continuum coupled with decay chan-
nels is constructed [6, 7]. In RPA the wave function is

e = Z| Xiiph) aifan— Yi(ph) ai"as] 1 o) (3.14)
i

where ¢ is set of quantum numbers in decay channel. [t includes
together with total angular momentum and its projection /M the
parity and quantum numbers of particle and hole.

The system of integro-differential equations for particle-hole am-
plitudes X¢ and Y° is formulated in coordinate representation o take
into account the continuum [9].

In the second way the RPA equations are formulated for transi-
tion density operator [10, 11] and the matrix elements are defined
by the integrals (2.16—2.19) where instead of charge and current

" densities the transition charge density and transition current density

should be used. The transition density depends on single-particle
quantum numbers of the exit channel as in the first approach.
This dependence can be avoided il one uses as initial and final
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states the unperturbed shell-model states. In this approach the

effects of particle-hole interaction are taken into account in an effec-
tive transition operator. Let us define the effective field operator in
the following way:

Cpal T s ) = { AR A RO (3.15)

where a= (C, E, M), and [¢°) is a shell-model state used in (3.4,
3.5). Let Hy be shell-model Hamiltonian and W the residual interac-
tion. The state |¢%) is coupled with corresponding shell-model state
by the equation

I
—E. 4+ Ho4+ W

iqa;f,:(l— W’) pSY, (3.16)

from (3.15) and (3.16) one obtains the equation coupling efiective
field and external field operators

1f“=(1—w e, )?“(1—_-1—_,—1!:»’); (3.17)
Hn“';— W"—Ei. Hu—'— W—E.
reversing the equation one has
—(1—w———) v{( W) 3.18
T (1 v——) V(1 + 55 Y): (3.18)
or
VT W e w— WV ——W. (319)
Ho—E; Ho— Eq Ho—E: Ho— Lo

The state [¢2) is the one of particle-hole type. Omitting the last
term in (3.19) one can obtain the RPA equation by retaining in in-
termediate states in r.h.s of (3.19) the states of particle-hole type as
well. The second term in r.h.s. of (3.19) describes propagation of a
particle and a hole interacting in a final state. The third term in
r.h.s. of (3.19) accounts for ground state correlations. The last term
in (3.19) omitted for symplicity leads to renormalization of residual
interaction W to the effective one.

It is convenient to draw the Eq. (3.19) in graphs. In Fig. 2
(a—e) the graphs corresponding to each term of r.h.s. of (3.19)
are shown. There are several graphs for renormalization of residual
interaction and only one of them is shown as an example in
Fig. 2,e. Introducing now the Feinman propagator of quasi-particle
G one can write down our equation in a unified form (see Fig. 3}:

e

_—_

Ve=T"4-FGGV", (3.20)

where F is the eifective quasi-particle interaction. This interaction 18
choosen in Landau— Migdal form:

F(F.F') = COF—F)| [+ [T+ T2) +£(61-52) +g'(31-02)(Ti-T) ], (3.21)

where the normalization constant C=300 MeV-im® [19]. The inter-
action constants f, [/, g, g’ are, strictly speaking, functions of den-
sity. This dependence is important, however, only for the constant [,

and we write it in conventional form [19]:

p{r) —p(0)

3.22
plO) ( )

sz,ffn_""iffx_fm)

where

p(r) = Ed o, (3.23)
1 4 exp (__a )

For local interaction (3.21) the eifective fields V* are coordinate
functions. For spherical nucleus it is convenient to separate an an-
gular dependence in V°(r) expanding it over set of tensor opera-
tors. The expansion is for electric transitions:

VE(F) = Er n,,ff’;jr} r_f+;: "’_{‘” ,rjj(qr}} £t (3.24)
=T2 VI 41) L 2m +

for magnetic transitions:
V’“ v VM M ._LW/EI-{—] jlgry M *
() j_—;ﬁ j r) i +Lm 1o i b oy (3.25)

for Coulomb transitions:
Ver = ¥ Vit . (3.26)

j=1,2

The expansion of the interaction (3.21) in a series of tensor opera-
fors (2.25, 2.26) has no contribution of the operator #', and interac-
tion (3.21) is momentum independent. For these reasons the last
terms in (3.24, 3.25) are not renormalized by particle-hole inter-
action (3.21).

Inserting (3.24, 3.25) in (3.20) we obtain a system of integral
equations for the components Vf(r} or ‘if’,-‘“{r):
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V_ff';i'fj = T;E{rj -+ F S dr’ A_,f[r. P ) l-*’,-E{r"j 'TBI-E.;'_r] : (3.27)
VM) =TMr) +F (dr Af(r,r o) vMiry 4+ B(r), (3.28)

where T%¢(r) are the «bare» components of the fields (2.22—2.24),
and B?(r) is additional r.h.s. arising due to admixture n compo-
nents with i= 1. 2 nonrenormalizable parts of (3.24, 3.29). Explicit
expressions for Af and Bf can be found in Appendix.

Above nucleon emission threshold the kernels A become com-
plex acquiring imaginary part. At these energies the effective fields
become complex as well. This is the main difference in our approach
from the one used in Ref. [11] where they start with equations for
transition densities using the real part of the kernels Aj.

The system of Egs (3.27, 3.28) has been solved numerically in
the following way. The kernels A; were calculated in coordinate
points with mesh 0.2 im. The eifective field V* as more smooth fun-
ction had a mesh 0.4 fm and linear interpolation was used for inter-
mediate points. Integration in (3.27, 3.98) has been performed up to
8 fm. At larger distance the efiective field has been taken equal 1o
the external one.

3.3. Separation of the Center of Mass Motion

Calculating the cross-section for E1-multipolarity it is important
o separate excitation of a «ghost» mode. In our case this is the
center of mass displacement mode. Due to linearity of RPA equa-
tions it is sufficient to exclude its excitation Irom the «bare» exter-
nal field. The effective field will not contain it automatically.

For charge density the bare operator (2.16) is not invariant
under translation. The correct translation-invariant operator is

A
S e P AIm—RI (3.29)
4

where B is the center of mass coordinate. Expanding (3.29) in
series of §-R and retaining only first term contributing to El-tran-
sition one has :

£

] A Z ;
e i Began (3.30)
& ey B ey

=

L i-f.:-n,

!—7

One has to calculate matrix element from ground state 10 to exci-

ted state |lw). In RPA

R b e b 4 :
. I 7 B s B R

¢ Z i 0y —(w] Y 7.l0)(0| % e 1OY =
| Ay | } T [ o | ) | -__j :
=1 : !

et
1

=1

A
F:{_FP:I - i e . ! o !
"_fi: gl r”_ [JI‘ 5 -.5.131]
,4 A P 2 ! ]

=

thus, al finite momentum transfer ¢ instead ol factor Z/A, known
irom photoreactions, the factor F(g)/A appeared where F(g) is the
normalized on Z charge formiactor of a nucleus.

This result looks very natural. At large momentum transfer ¢
nteraction between virtual y-quantum and a nucleon becomes more
local and iniluence of a center of mass motion musl disappear. In
other words the effective proton charge equal 1 — F(g)/A tends to |
at §— oo. The effective charge of a neutron is then — F(g)/A.

For the current density the subtraction is performed in a similar
way. In this case the subtracted operator is the total momentum of
a nucleus.

4. RESULTS AND DISCUSSION

4.1. Single-Particle and Particle-Hole Interaction
Parameters

To reproduce right positions of giant resonances it is important
to reproduce first the single-particle energies. We used the
Woods — Saxon single-particle potential

IU{?’::' = Ll Jhr)' + Uy, l."_T--I ( - ) I_ aitr) 3 Efllt'fuull-.r:] {41}

FHALC r dr

where

flr) = 1 ; (4.2)

14 exp (LTH—R)

For protons the Coulomb term must be added
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Llr‘:-.“.llﬂl:;r,] = ) (43}

Strictly speaking, the potential (4.1) does not reproduce accura-
tely enough the positions of p and d levels in '°0O. Therefore, we
used state dependent potential from Rei. [20]. The parameters of
the potential are listed in Table 1. For all parts of potential radius
R=3.08 fm. and diffuseness a=0.53 fm. For ls,, level which is
not known accurately enough from experiment we used the same
parameters as for 2s,,, level. For states in continuum parameters
were not changed in order to keep them orthogonal to bounded sta-
tes. For angular momentum L> 2, Uy=>50 MeV and U, =7 MeV.

Table 1

Potential Parameters from Fit of Single-Particle Energies of '°0

Protons Meutrons
513 te f.'!- L'.n Lrﬂ,,\:, E {.II 4 U]' ;.
MeV) {MeV) i MeV) {MeV) [MeV) {MeV)
1p; 1o — 1212 —15.64
57.95 9.89 57.39 9.64
Ipe | —18.44 —21.80
fid, s 1 450 +0.94
54 .36 h2T 54.94 5:27
bdiip | =060 A
28 /2 —0.10 h5.91 — —4.14 56.82
Table: 2
Parameters of Particle-Hole Interaction
c R o y ;
i MeV-fmYy {fm) {im) fin fes ! g &
300 SRR 0.60 0214 —2.235 1.3 0.4 0.6

The parameters of effective interaction are listed in Table 2. The
values of isoscalar constants f and [* were found from [it of the po-
sition of the displacement «ghost» mode and position of 37 level at
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613 MeV. The value of isovector constant [* was found by fitting
the position of main peak of giant dipole resonance. The values oi
isoscalar constants appeared to be close to those used for heavier
nuclei (see [19]). The parameter [ is 309 greater than usual and
this is consistent with results of Ref. [11].

The results are least sensitive to the constants g and g’ and we

used the values from Ref. [13].

4.2. The (y, N) Reaction

The nucleon spectra from (y, N) reaction for different values of
constant f’ are shown in Figs 4 and 5. An increase of the [* does
not change appreciably the paosition of main peak but increases con-
siderably the width of the peak decreasing thus its height. With the
increase of [/ the transition strength is shifted up to higher excita-
tion energies rising the right wing and plato behind the resonance.
Peaks at lower energies are mostly sensitive to single-particle ener-
gies. Most of them correspond to spin-flip transitions therefore their
height depends on spin-spin constants g and g”.

The comparison of calculated curves with the experiment lukeln
from review paper [20] shows the general shape of a spectrum is
reproduced in RPA correctly. The difterence appears in fine strue-
ture of the giant resonance peaks. The fine structure indicates the
presence of more complex than 1p—1h configurations in the wave
function ol a resonance. _

The total absorption cross-section of y-quanta is shown In
Fig. 6. It has similar level of agreement with experiment compared
to the cross-sections in separate channels.

4.3. The (e, ¢’N) Reaction

The contribution of separate multipole transitions in the proton
spectrum in the reaction (e, e'py) are shown in Figs 7 and 8.

At electron energy E=130 MeV and electron scattering angle
0—53.1° the momentum transfer ¢=~0.5 im~?! and it is varying
slowly with @ [5]. In this case gR~14, 1. e. it is Several_ tin:1e5
greater than for (y, N) reaction. Nevertheless, the main mintnbutmnr
to the cross-section comes from the El-transition. Contribution ot
J=2, 3 multipolarities is important only near corresponding reso-
nances (see Fig. 7). The EO-transition in '°O in RPA does not show
resonant behaviour and its strength is distributed in the energy

17




region 15-—25 MeV. The transition with /=4 has no resonances as
well and contribution of higher multipolarities can be neglected.

The main feature of E2-transition is the existance of huge giant
quadrupole peak at the energy E=23.5 MeV. Nothing comparable
to such peak is seen in experimental spectra. The appearance of this
peak is in fact a drawback of the approximation used. In RPA the
main contribution to the E2-resonance comes from the single-par-
ticle transition between 1s,, and ld, states both with negative
energy. The coupling with continuum and, therefore, the width
arises in higher order in residual interaction. This explains small re-
sulting width and big height of a resonance. In real situation deep
hole state 1s,,, has big spreading width and its contribution to
E2-resonance is suppressed. Fig. 8 shows strength distribution of
the E2-transition when contribution oi the level ls,, is absent. In
this case the position of the resonance is shifted fo higher energy
and its height is much smaller.

The total spectrum with contribulion of the multipolarities up to
I=4 is shown in Fig. 9. As for the (y, N} reaction the calculated
cross-sections are less structured and slightly higher than the mea-
sured ones due to absence of more complex than lp— 14 configura-
tions. In addition, the E2-resonance is more strong in our calcu-
lations in comparison wilh measured spectrum.

The spectra for the (e, e’p)), (e, e’'ny) and (e, e’n,) reactions are
shown in Figs 10, 11, 12.

4.4. Angular Distributions

In Figs 13 and 14 proton angular distributions are shown for
two different excitation energy regions. In the resonance region, as
expected from differences in calculated and measured [5] spectra,
the angular distributions are reproduced in calculations rather
poorly. They depend strongly on details of strength distribution of
different multypolarities (Fig. 13). At higher excilation energy the
resonances disappear and transition strength depends smoothly on
the energy. The contributions of multipolarities higher then f=1 be-
comme comparable to contribution of the dipole transition leading to
strong asymmetry of angular distributions along ¢ direction. At
high ¢ such anisotropy,would be indication of quasi-free knockout
process. However, at our value of g ~100 MeV/c recoil energy of a
nucleon is about 5 MeV only. It is well below of nucleon emission
threshold £, =122 MeV. It is therefore possible to think only about

|8

far tail of a quasi-free process and some traces ol it are kept in co-
herent contribution of different multipolarities at forward direction.
Certainly the agreement in angular distributions is better in this

region.

The authors are grateful to P.N. Isaev who took part in initial
stage of the work to V.G. }’eim'inukx' S.G. Popov dnd B.B. Voitse-
khovsky for numerous discussions of the results.

APPENDIX

The effective interaction (3.21) can be expanded in the set of
tensor operators (2.25, 2.26)

F(r,r")=C ; ((fr) 4+ @ -T) (D & () g+ g7 -T2)) X
&

LT =T A M oA : Ay ; Mo MT Sh i o 2% i
.!j“['r} fj (r) + nu[r} £|” (F)+ L)l (r))] —=0r—r). {A.l)
i i ;

Using the expansion (3.24—3.26) for eflective fields one obtains
after separation of reduced matrix elements of the tensor operators
(2.25, 2.26)

Vi(r) = TXr) + F2 (r? dr’ Bir.r's @) THr') 4 Fi 7 dr Alr, r'; ) Viir') (A2)

where F! is a matrix in isolupica] 5paue:
FE=fifizi-Te); FE=F'=g4+g{@iT);

and

i o by) G & 18 1o ) Rr) Ruelr) X
Afi(r, r'; ©) = Zf-l- \\ijx Lol v &) e i &) ) )

>< il RArRAr) . (A.3)
gidse) R ¢ B

[ o

Introducing the Green function of a radial Schrodinger equation one
has for electric transitions

Ai(r, 7' o) = Z{;x Lo 15 o £) G B N Mo 1) e X

24 - + 1
X[ Gyl(r, r'les+ @) +(—) T Gulr, r'ie.—w)] Rr}RI{r), (A.4)
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‘nd for magnetic transitions

L™ i ) G Lo I8

e 1 Bon
AE‘;{{:’. r; m) e R (.l'v"

2] +1 £ Ml b) meX

X[ Gy(r, r'lev+ o) + Gy(r,r'lev—w)] R{r)RIr’). (A.5)
For Bjj one has: for electric transitions
Bk,
B, 0) = 57 57 & U b T i ) G L 87 ;R,{r}mr)x
g — w+m—16i
or
E " : J o
B“-{.",.I" 'm) ?J"-}‘-l ZU» z\ |“ ||fx J (fv’ iv’i“j ”Jrvjv} iy X
X{ R L Gutr, vt 0) +(=) Gur, ey —w)] —
= nl 8Gelr.lestw) ;3G rlesv—w)
R(r) Ry(r }[ - =) e ]} . (A7)
For magnetic transitions
Bi(r,r'; @) =83 Ag(r,r'; 0). (A.8)

The Green function G(r, r’|E) of a radial Schrodinger equation
has been calculated using two independent solutions the one regular
at r=0 and the other regular at infinity

o2m g (ro) gl (r.)

Gr.r'|E) =25 v

(A.9)

where W is the Wronskian of these two solutions.
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Fig, I. Kinematics of the (e, ¢’N) reaction in one-photon approximalion.
& : P PI

)~*=>-~+Q-+6+~r‘<{'

> > =

Fig. 2. Graphs, corresponding to the Eq. (3.19) for the efiective field:

a—the effective field; b—the bare field; ¢—propagation of interacting particle and hole in a
final state; d — ground-state correlations; ¢ — renormalization ol initial interaction.

Fig. 3. Feinman diagramms [or effective field equation.
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o MeV

¥
Fig. 4. Proton spectriin in (¥, Po) reaction for different values oi the constant [°. Tl}e
full line — f =1.3; dash-dotted line — f'= 1.5; dashed line — the spectrum in

absence of interaction.

& (g, total), mb
S

Fig. 5. Proton and neutron spectra in

(v, No) reaction. Full line presents theo-

retical calculation, dotts and dashed
line are mesurements.

Fig. 6. Total absorption cross-section of
v-quanta in '°O.
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