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ABSTRACT

d
An algebraic operator [ Li, Le] = } yiu Li of the nonli-
{=]

near equations integrable by the inverse spectral
transform method is discussed.
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A central point of the inverse spectral transform method (see,
e. g. [1—4]) is a correspondence between a nonlinear differential
equation and a certain set of auxiliary linear problems

LY==, =) d, (1)

where L; are linear (usually, differential) operators. Namely, a gi-
ven nonlinear equation is a condition of the compatibility of the Ii-
near system (1) [l1—4]. Algebraic (operator) forms of this compa-
tibility condition are the well known Lax pair [5], the commutati-
vity condition [L, Lo] =L L,—LyL;=0 [6], Manakov's triad
[Li. L) =BL, [7] or Zakharov's algebraic system [8]. A rather
general method of construction of the compatible multidimensional
linear problems has been proposed recently in [9].

In the present paper we discuss the operator form of the compa-
tibility condition for the linear system (1). A rather generic form of
these compatibility conditions is

d
Lds lal = ZT’.‘M Loy ol leme ], 0 ), (2)

[}

where vy, are some operators and [L, Lel = Lily— LL;. The rela-
tions (2) are equivalent to nonlinear equations [or the coefficients
of the operators L. In the generic case the number d of the auxili-
ary linear problems (1) and number of the independent variables
X1, .., X4 in the corresponding integrable equation coincide. We pre-
sent here different examples of the nonlinear equations represen-
table in the form (2).
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We firstly consider the case of two independent variables x and
y (d=2). In this case the system (2) is

| L1, Lo] =v1Li+v2Le. (3)

For yi=v:=0 it is the commutativity condition [L,, Lo] =0, for
vo=0 (or y;=0) it is a Manakov’s triad representation. The
example of the linear equation which has the generic representation

(3) is the equation

Agy(x, Y) — 40+ 6a2(@- A7 (@) xy) s+ 6By~ A (9%) =0, (4)
- : 0}
where @(x, y) is a scalar Tunction, A=ad. ﬁé‘y, &xza a, :l:@
tpr-d—lP-—, @HE? and a, p are arbitrary constants. Equation (4) is
0x ; Yy
equivalent to the relation
| Ly, LQ} = —QG{PJLI _[F'yLE ' {5]

where

- | l 3 o [ P
Li=0x0,+ 'E‘*?F(}y—" T"T"y_ T“ﬁ (9°) xu »

3 o
Ly=sistl 403 ragdit —guk S agt ol Mo (6)
4 2 4 2

The nonlocal equation (4) can be obviously rewritten as a local
system by introducing the function W (x, y) such that AW = (¢°) .
At p=0 equation (4) is reduced to a very simple equation

Pry— 240, {.[PE}#:D- (7)

An example of the system which has the Manakov’s triad represen-
tation is the system

Ag(x, y) — alqe) + Blgy)? —2ad, ' U.+2Bds ' U,=0,
AU(x, y) +20(Uqy) x—2B(Ugy) y=0. (8)
For this system

Li=0.0,+¢:0,1+ U,
Ly=0d7 +Ba; +2B4,0,+20d, U, (9)

and y,=2Aqg and y;=0. The system (8) is a stationary version
(gi=U,;=0) of the system constructed in [10, eq. (5)]. A statio-
nary limit of the known three-dimensional (¢, x, y) integrable equa-
tions with the Manakov's triad representation (see e. g. [10—13])
gives the other examples of the two-dimensional equations which
possess the representation (3) with y.=0.

It is interesting to note that at o« =0 the system (8) with ¢g=g¢,
is reduced to equation (7). For =0 it is reduced to (7) with the
change x<y.

Equation (7) is also the stationary version of equation (7.29)
from Ref. [14] with the additional reduction U*=U=y.

Emphasize now that for given integrable equation which pos-
sesses the representation (3) all the operators L, Ls, v, y2 are not
determined uniquelly but up to the transformations

2 2 =
L~Li= Y QulLe, C—Ci= ) CiQu, (10)
k=1 k=1

where Ci=vy,+ Lo, Co=vy:— L, and 'Q;k and Qg are arbitrary diffe-

b
rential operators which obey the constraint ) QuQu=0s In the
]

particular case Qi=0Qu=1, Qi2=0,,=0 and Qayi=— 0 =0Q the
transformation (10) is reduced to the transformation L,—Lj=1L,,
Lo>Lo=Lo+QLi, vi—>vi=vi+ [Li, Q] —72Q, yo—=>vi=72 At y2=0
(Manakov’'s triad representation) these transformations coincide
with those firstly considered in [14]. One can use the uncertainty
(10) to find (similar to [10]) equivalent matrix triad or even com-
mutativity ([L}, L] =0) representations for general case (3). Note
that the noncommutative representation of the two-dimensional
equations different from (3) has been considered in [15].

In the generic three-dimensional case (x;, xo, x3) one has three
auxiliary linear problems (1) (d=3) [9]. The simplest example of
such system is the thiee-dimensional integrable chiral field type mo-
del which is described by the equation [9]

L ] ['Jllf
S8 U Ul Ul U+ UL Ul =0, (11)
i X dgg e 5 A{ et ' :
WhEI‘E‘ Uik: __"""'gk +gk gk : [qu. Ak] =0a i""‘r-{'.::]'rgs'g]
ox' ﬁ-f""i"ik

are constant and gu(x,, x2, x3) (k=1,2,3) are NX N matrices. The
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summation over repeated indices in (11) and further formulae is
absent. In this case it is more convenient to use the double —indices
notations. The corresponding linear operators are [9]

Ll'kzaxj 'a.u + U:.it 61 + Uri 6“ » . (I, fe:l* 2* 3:} [12]

and the equation (2) is of the form

‘_Lr‘h Lnkj ='L1r'n.kLIri+ﬁa’nkLik‘i‘"FinkLnkm {L, k? ﬂ=l,2, 3- I;ﬁk#ﬂ, I#”‘):{IS)
where

U, aU;, 24
Clink = Py N P “_| Urak+ U:'k| '
AN T Y
Bink = = — — | Ungs U]
ak' iy ;
. S B i
Yink = ax s Py _| Uk Ir-"'rr'ﬁ| -
=gt
Cllr_;'[t'k

In the two-dimensional limit (e. g. =0) the system (11) is

ax?
reduced to the well known two-dimensional chiral field equations
(8,87 ") (8,87 "), =0 (g=gs) where Up=—g.g7' Uy=g.,8""
and U]]:j = _’U;a =, Uiiz = _%gxug_ S Ulgz = —%Hx.a‘-ﬁ'—_l
rators Ly are reduced to the following three operators (d,—A):

. The ope-

Lm_}-f‘g__&aﬁaxﬂ_ %giz g laJﬂ'l ot %grl g_!atz E]

=A<+ 1o, —Ag, g7, (14)
(A—1)d,—Ag, g .

LIE_"

1
LoaLs

The relations (13) are reduced to the following
[ Ly Ls}h=0, (15a)

— - -

r I_ P —l" 3 1 a |

N S = = ¥ i x L = s ¥ : Xy -L #
[ L, Li] 5 (@™ Iuli— (e 8 Y Lo
. = | LY g 1 e T

| La, Lz] = — g (. & ]_.:'_ruL] 5 Y &y, & I}rp Ly, (15b)

The operators L;, L, and the commutativity representation (15a) of
the principal chiral equations are well known [16]. The system of
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relations (15) characterises the two-dimensional principal chiral
field equations as the stationary version of the corresponding
three-dimensional equations (11). Note that the relations (15) have
a structure which is distinguished irom that discussed in [15].

In the degenerated (non generic) cases the three-dimensional in-
tegrable equations have two auxiliary spectral problems [8, 9]. In
such situation the corresponding general compatibility condition is
(L, Ly] =y1Li+7v2Ls. In particular, Zakharov’s algebraic system,
described in [8] for the operators Li=A(4d,)d, —Bid,) (i=1,2)
where A; B; are the differential over x3; operators, is equivalent
to the operator equation [L,, Ls]=viLi+vy2L, with
vi=Di(6,,)0,, — Ci(d,,), y2=D(9,,) 0, — C> where D;, C; are dilferen-
tial over x; operators.

Emphasize that in the generic case one should solve simulta-
neously all the linear problems LW¥W=0 (i=1,..,d) together, in
contrast to the usual situation [1—4]. For example, lfor equation
(4) one must compatibly solve the two two-dimensional linear prob-
lems L iW=0, LosW=0 where the operators [y and L, are given
by (9).

Note also that the weak commutativity condition [L;, L:]%¥=0
which has been discussed in [13] is equivalent to the Manakov’s
operator triad representation.

The author is grateiul to S.V. Manakov for useful discussion.
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