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ABSTRACT

The statistics of unstable N-level quantum systems are
considered. The distribution function for complex ener-
gies and the density of overlapped resonances are ob-
tained. It is shown that thie instability removes the le-
vel repulsion at the energy distance less than the
width meanwhile the complex energies repulse quadra-
tically. In the case of the strong overlapping & «collec-
tives states (& is the number of channels) are lormed
absorbing the total width.
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I. The statistical approach is only possible one for description of
high-lying levels of complex quantum systems. Statistical spectro-
scopy dated back to Wigner and Dyson (see [1] and references
therein) grows more and more important for various fields of quan-
tum physics [2]. It is found now [3] that the statistics of quantum
spectra are closely connected with the local instability of trajec-
tories in the phase space of corresponding classical systems [4].

Actually, the excited states have a finite lifetime. Their proper-
ties are studied by means of reactions. In the statistical analysis,
reaction amplitudes are assumed to be random variables. The
Porter — Thomas distribution for neutron widths of separated reso-
nances and Ericson fluctuations of cross sections in the case of
overlapping resonances are typical examples of corresponding sta-
tistical regularities. In Refs [5] the statistical approach to nuclear
reactions has got further development.

One can construct the general phenomenological description of
resonance reactions in terms of the nonhermitian Hamiltonian

ﬁf’zﬁf—;—f‘. Eigenvalues %’ﬂzﬁﬂ—%[‘” of an operator F give

energies £, and widths I’y of unstable states. The amplitude 7°° of
reaction a—b can be expressed with the use of matrix elements #,,,
and decay amplitudes A} as
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Here the superscripts a, 6=1, 2, ..., k£ label the reaction channels
whereas subscripts m, n=1, 2, ..., N run over the basis states of the
decaying system. Due to the unitarity condition, the matrix elements
[ of the antihermitian part [ are related to the amplitudes A°:
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Such an approach makes it possible to interconnect the statisti-
cal spectroscopy as it was formulated in pioneering papers [l] with
the statistics of reaction amplitudes. Important results along this
line were obtained by Weidenmiiller with coworkers [7—9] consi-
dering the statistical properties of the amplitudes of processes going
through unstable intermediate states.

As distinct from Refs [7—9] we will study the statistical distri-
bution of resonances as revealed by spectra of random nonhermitian
Hamiltonians. In this respect our treatment is more close to the tra-
ditional one,

2. Let us formulate our statistical hypotheses. As usually, we
assume the hermitian part H of the total effective Hamiltonian 2¢ to
belong to the Gaussian Orthogonal Ensemble (GOE) of random
matrices NX N. Physically, N is determined by the number of states
decaying into k& common channels. As it well known [1] the distri-
bution function for the eigenvalues ¢, of such matrices is given by

Pler,.oen)=Cy [[ len—eal exp(—ﬁzei). (3)
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Similar to Ref. [8] we introduce the factor N in the exponent in or-
der to locate for N>>1 the eigenvalues in the fixed interval ~a.
Then the mean distance D between adjacent eigenvalues is of order
a/N. The distribution (3) predicts the linear level repulsion at small
distances.

3. Our main goal is to investigate the influence of the coupling
with continuum on the statistical properties of spectrum. It is physi-
cally obvious that the finite level width should wash away the
strong correlations at small energy distances.

Concerning the statistical properties of the antihermitian part [,
we formulate them in terms of the random channel amplitudes A°.
As in Refs [8, 9] we assume them to be real. Ii implies that the to-
tal Hamiltonian matrix $#,, is symmetric. It is the natural generali-
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zation of GOE of symmetric matrices used for T-invariant stable
systems.

Let the decay amplitudes A; into various channels be statisti-
cally independent Gaussian random variables so that

(A Aty #6“" Sma v°. (4)

Here again we have introduced the scale factor 1/N to ensure the
independence of Tr I' of N. For equivalent channels (y°=y=const)
one obtains from (4) the chi-square distribution of diagonal matrix
elements I'yy=v,>0 (the Porter— Thomas distribution in the
one-channel case k=1)

P(Vn)= (—iil_)_l' %(-};—:‘)EJJ_ iexp ( ‘—N;—;) . (5)
&

In particular, this formula directly describes the width distribution
of isolated resonances.

[t should be noted that, independently of statistical hypotheses,
the algebraic structure (2) of the matrix [' leads to the important
conclusion concerning its eigenvalues: if the channel number £ is
less than the level number N there exist in general only & nonzero
eigenvalues of this matrix.

4. Having the statistical ensemble of matrices & completely de-
termined we will find out the distribution of complex energies #,.
The ensemble under study is invariant with respect to orthogonal
transformations. A general nonhermitian matrix % can't be diago-
nalized by a transformation of such kind. Nevertheless, one can dia-
gonalize with such a transformation either hermitian & or antiher-
mitian [ part of the total Hamiltonian . Correspondingly, one has
two versions of secular equation for #,.

We write down these equations for the one-channel case:
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In the second case we have used the degeneracy of N—1 zero
eigenvalues of I to diagonalize, in addition, the (N—1) X (N—1)
submatrix of the hermitian part, &, (v=2,3, ..., N) being the eigen-
values of this submatrix. In (6b) I')y=Tr F'=w is the sole nonzero
matrix element of I, h=H, and h,= H,,=H,, are the elements of
the first row (column) of fé’ after additional diagonalization.

To obtain the distribution function for energies and widths of
unstable states we have to convert from variables [e,, v.] (or
{h, w, hy, &y} in the second case) to the physical ones {E,, I's). One can
calculate the Jacobian of the transformation with the help of the se-
cular equation (6a) (or (6b)). The result is
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The properties of this distribution depend on the value of the para-
meter x=vy/a. In the case x< 1 the typical value N~y/N~xD< D,
so that for |E,—E.| >xD eq. (7) reduces to the product of inde-
pendent distributions (3) and (5) for energies and widths respecti-
vely. However for |E,—E,.| <<xD the finiteness of widths removes
the level repulsion. On the other hand, the probability of coincidence
of two complex eigenvalues is suppressed quadratically in accordan-
ce to the lack of T-invariance in decaying systems.

In the opposite limit of x> 1 the above mentioned (see the last
paragraph of the previous section) property of the matrix I' beco-
mes essential. In particular, for the one-channel case one level only
has a large width whereas the remaining widths are small. Gene-
rally, in the case of & channels (k<< N) %k «collective» rapidly de-
caying states are formed. Just such a picture has been observed
earlier in numerical simulation ol nuclear reactions [10].

5. Thegmain density of states of an unstable system is

N
p(E,D)={ ) SE—E)8(I'—Tn) )=
n=1

=“N§

n
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The direct calculation of the integral in eq. (8) is here even more
difficult than in the case of the GOE [l]. As usually, it is more
convenient to start with the calculation of the expectation value

gE, )= — (Tr(Z —3¢)"") Elgvrr (%)),
_ 9)
F=F— —T
9

of the trace of the Green function G(Z). The problem of finding
p(E,I') is mathematically equivalent to the reconstruction of the
two-dimensional charge density from the given electrostatic field.
Drawing on this analogy one obtains

N [ag(E, T) . ag(E, I')
E = — — 5
L RE 4::[ dE = ar ] il

It means that p(E, T') does not vanish in those points of the plane
(E,I') where the function g(E,I') of the complex variable Z is
nonanalytic.

One can verify that in the basis where the hermitian part A is
diagonal

Tr G(F)="Tr Go(®)+ K(¥), (11)
_ L ARO[ P opgy]T
c i 2 dF [1+ 2 R(g}] ‘ o

where the function R(#) is defined in eq. (6a) and Go(%)=
= (% —H) ' is the Green [function of a stable system. As it should
be, the only singularities of Tr G(#) are poles in the points where
eq. (ba) is satisfied. The contributions of the poles at # =e¢, cancel
in the sum of two terms in the r.h.s. of eq. (11). Therefore for
I'>0 one should take into account in eq. (10) the contribution of
K(Z )only. After some algebra one obtains

: |/ 1dR(#F) ] e i
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p(E. = 2I(|=2] 6914 —R®)) ) (13a)
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In eq. (13b) we have used the integral representation of the two-di-
mensional Dirac §-function and have carried out the averaging over
random variables y, (see eq. (5)). Thus the problem is reduced to
the averaging over the GOE.

6. In the limit N— oo for x> 1 we get from (13)

L 2 |980®)| 52 R G0
pE )= o7 [ B2 62(14+ L veu#) (14)
where
g %)= lim % (Tr Go(#)Ye= E:F (7 —Vo2—1a? ), (15)

It should be stressed that the density function (14) has the normali-
zation

§ dE T arpE r—1 (16)

— oo + 1

while the function (13) is normalized to N (see eq. (8)). The dis-
crepancy is due to the fact that in the limit under consideration only
one pole has the nonvanishing imaginary part whereas the re-
maining N1 ones drift to the real axis.

Such a behaviour of the eigenvalues follows from the secular
equation (6a) which is equivalent to the two real ones

N

N
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Supposing that {E—an_)gmagcg:TFg (i. e. #*/4>1), one can con-

N
vince oneself that the solution '~ w, Ex L Z Ye&n— 0 exists
W p=1

since y.~w/N and the distribution of ¢, around the point e=0 is
symmetric. The first correction to that width is of order 4w/%* and
for other N—1 eigenvalues I'y~4w/x2N—0 because of the condition

N
» Fa=w. Just that <eollectives solution '=w=y, E=0 is the
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only one contributing to the asymptotic density function (14). As to
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other states, they are distributed over the interval (—2a,2a) of the
real axis according to the standard semicircle rule [1].
Quite similarly one can take an average of the S-matrix. In the

one-channel case
—1

i i i
&mzhﬂﬂm=p—;wwﬂp+?maﬂ. (18)
In the same approximation as above one obtains
I—??Hcﬂ:Ej

(S(E)y = —2 (19)
|+ < vaoE)

in agreement with [9].
Thus, we have shown that the level statistics of unstable
systems differs significantly from that of stable systems.

The authors are grateful to Prof. I. Rotter for useful discussions
and for making her results available prior to publication.

REFERENCES
I. Statistical Theories of Spectra: Fluctuations.— N.Y.: Academic Press (1965).
2. Brody I1.A. et al. Rev. Mod. Phys., 1981, v.53, p.385.
3. Berry M.V. In: Chaotic Behaviour of Deterministic Systems. Amsterdam,
North-Holland, 1983, p.171.
4. Chirikov B.V. Phys. Rep., 1979, v.52, p.263.
5. Mello P.A. Phys. Lett., 1979, v.81B, p.103;
Mello P.A., Seligman J.H. Nucl. Phys., 1980, v.A344, p.489.
6. Kobzarev Y. In: Material of VII Winter School of LINP, (1972), p.298.
7. Agassi D. ef al. Phys. Rep., 1975, v.C22, p.145.
8. Verbaarschol 1.J.M. et al. Phys. Rev. Lett., 1984, v.52, p.1597.
9. Weidenmiiller H.A. Ann. Phys., 1984, v.158, p.120.

10. Kleinwichter, Rotter |[. Phys. Rev., 1985, v.C32, p.1742.
1. Pastur L.A. Theor. Math. Phys., 1972, v.10, p.102.



V.V Sokolov, V.G. Zelevinsky

On Statistical Theory of Overlapping
Resonances

B.I'. 3eaesunckuii, B.B Cokoaons

K crarucruueckoii Teopuu nepekpniBaommuxcs
pe3oHaHCOoB

OtsercrpeHuniit 3a puinyek C.T.TTonos

Pa6ora nocrynuiaa 9 uiona 1987 r.
[lognucarno B mevars 13.10 1987 r. MH 08411
Gopmat Gymarn 60X 90 1/16 O6bem 0,7 mew.., 0.6 y4.-H34.1.
Tupam 290 sk3. Becnaardo. 3akaz Ne 140

Habpano e astomarusuposannod cucreme na 6ase goro-
Haboproco asromara PAI000 u IBM «3aexrponuras u
OTREYATaHo wa poranpurre Hrcruryra sdepuoil pusuxu
CO AH CCCP,

Hosocubupck, 630090, np. akademuka Jlaspenrsesa, 11.



