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ABSTRACT

This paper deals with a quantum mechanical motion
in two potential wells separated by a barrier. We il-
lustrate in this simple context the ideas used in the
previous papers of this series, e. g. explicitely lind the
¢«streamline» set of paths and the instanton —anti-ins-
tanton interaction law. We also obtain high-quality
<large lattice» numerical data for the path ensemble,
and make their comparison with the theory. Finally,
we describe a set of new numerical methods using
«small lattices», which may turn helpful for the lattice
studies of the gauge theories as well.

© Hucruryr adepuoti pusuku CO AH CCCP

I.INTRODUCTION

This is the [orth paper in the series, and in it we jump from
such complicated subject as the quantum gauge theories to just
quantum mechanics, There are essentially two diiferent reasons for
it.

The first is the pedagogical one: presenting the works [1] 1
came across the necessity to illustrate their ideas in some simple
context. And indeed, as we show below with this «toy models it is
possible e.g. find the «sfreamline» set oi configuration and to deter-
mine the «instanton—anti-instanton interaction law» explicitely. In
edntrast to the gauge theory contexl, we can in this case easily
check which trial functions are good or bad, etc. Thus, this paper
definitely may help to understand the previous three.

Another reason is practical: this toy model is nice object for tes-
ting these ideas, conironting them t{o the «experimental facts» in
form of the computer-generated ensemble of configurations. It is si-
milar to the comparison done previously for the gauge theories, but
now it is possible to perform calculations with the accuracy not so
far available for the gauge theories.

Another important aim of this paper is the development of new
calculational methods. In particular, we suggest the «small lattice»
approach, aiming to give more economic description of the tunneling
phenomena. We hope that these ideas may turn to be useful for ga-
uge theories as well, keeping in mind how severe are technical limi-
tations in that case.

And finally, in this paper we have discussed some new concepts.
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In the previous works we have concentrated only on the topological
[luctuations, but in this paper we also have paid attention to some
strong but nontopological fluctuations. In the quantum mechanical
toy model under consideration they are just an ocasion in which the
particle moves far into the classically forbidden region of coordina-
tes and then returns back. Following the name suggested in diffe-
rent although related context by A.M. Baldin, we call them «fluc-
tons». We show that they are in fact important ingredient of the
path ensemble, and that both their semiclassical theory and numeri-
cal studies can be developed quite analogously to that for the in-
stantons. Moreover, it turns to be impossible even to separate a clo-
se instanton —anti-intanton pairs from a fluctons, for they are just
two diffferent ends of the same «valley» in the coniiguration space.

This paper is structured as lollows. In Section 2 we introduce
known facts concerning the instantons in the double-well system
and their semiclassical theory. The «flucton» concept is introduced

in Section 3, where we also are trying to develop their semiclassical

theory. Section 4 is probably the central one in this paper: it deals
with the valley connecting instanton pairs with fluctons, here we
have studied several trial functions and compare them to the
«streamline» set of configuration found numerically. In Section 5
we report the results of the «large lattices numerical calculations,
while in Section 6 we present another possible approach, the «small
lattice» one, dealing with the «constrained» paths ensuring the pre-
sence of the fluctuation we are interested in. Similar method but for
the studies of the nongaussian effects around instantons and modifi-
cation of their density we study in Section 7. Finally, in Section 8
we address the issue of the instanton interaction, confronting the
«large lattice» data to the theory developed in Section 3.

2. THE INSTANTONS

Tunneling through some classically impenetrable barrier is one
of the most striking quantum phenomena, and its discussion is
made in any text book on quantum mechanics. However, it is usu-
ally based on the traditional Schrodinger formulation, dealing with
the Schrddinger equation. Unfortunately, its application for compli-
cated multi-dimensional «barriers is difficult (and for the quantum
’Eield problems it is hopeless), so we use instead the path integral
lormulation due to Feynman.

The particular problem to be discussed is the motion in the po-
tential with two wells separated by a barrier. Its particular action
(transiormed to the Euclidean time v=if) is as follows

S[E]=Sdr[~n;x—-2+ K(xz__fzjz] (1)

and below we use unites i=K= 2m=1. The only [ree parameter
is then f, half ol the distance between the well bottoms. Large [
means wide barriers, for which the semiclassical theory should
work. {In order to see how the deviation looks like we have made
calculations mostly for J=1.4, which is at the boundary of the
semiclassical region, see below).

Our interest in the particular system (1) is related to the fact that
it has in fact two different correlation lengths: t,., the oscillation
time near the well bottom, and the tunneling time t., Relation
between them can be written as

Tran = Tose/ P {2}

where P is small tunneling probability. Another [eature of this
system is the symmetry in respect to the coordinate reflection
(x— —x). At time periods 1~1,. coordinates are strongly correlated
in sign, but at larger time scale 1> 1, the tunneling mix them,
restoring the symmetry of the ground state [2]. This manifests in
the behaviour of the correlation function

K (1) %L { x(t) x(0) ) > exp (— AE -7) (3)

connected with finite «mass gap» AE=E,— E,. Evaluation of such
correlation functions, especially at large times, is the central point
of numerical experiments with quantum field theories, therefore we
pay special attention to this quantity in our calculations.

As emphasized by A .M. Polyakov [2], the «instanton» of this
problem is the path, leading from one well to another and posses-
sing the minimal possible action:

xult)=f-tanh|[2f(t—1.) ], Slxa] =S - e (4)

Gaussian fluctuation around this path were treated in Ref. [3]
(see also a pedagogical presentation in [4]). Let me mentioned few
key points here. Writing the path in the form
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X () =X ()~ bx (1) ()
and expanding the action in powers of the «deviations 8x one has

Slx ()] = So+ % { 8x(t) Odx (t)dv+. ..

: | 6)
e 1 &* i i 1 &% 2 9 (

The next standard step the diagonalization of the arizing quadratic
form:

[:I-;'Cn[T} —_ ;"wzx,q,('[} i '
S (7)
R Dx(t)exp(— S[x (1) |) ~exp (— So)- n (lf Vs j

= fl

However, the differential operator entering this expansion has
one zero mode

: Col T
Oxo=0; xoft)~ ol 1200 : I.
' dt cosh*| 2f (1 —1.)]

(8)

related to a shift of the instanton as a whole in the (Euclidean)
time. Thus, there is one direction in the functional space in which
the integral is nongaussian, and the integral over it can be rewrit-
ten as the integral over the instanton position t.. Therefore we in
fact evaluate the «instanton density» dn/dt.=d.

The product of the nonzero eigenvalues corresponding to the
«transverse» coordinates is divergent, but it can be «regularized» by
comparison to some problem for which the exact Green function is
known (e. g. that for linear oscillator).

Resulting density of the topological fluctuations (the sum for in-
stantons and anti-instantons) is equal o

d=82/n)'f ﬁf"ﬂexp( s %ﬁ*) (1—0.97/ .. ) (9)

where the former term corresponds to the Gaussian approximation
outlined above and the correction term in brackets corresponds to
the nongaussian effects, recently calculated by Alejnikov and
mysell [5].

Concluding this Section we note, that although the theory outli-
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ned above is technically compicated, it has important advantages
over the WKB theory. In particular, it can be directly generalized to
arbitrary number ol variables. Also it has absolute normalization,
while the WKB «tunneling rate» contains a constant which shuld be
defined by rather tedious consideration of the vicinity of the «stop-
ping point». (Advantage of the WKB expression, in turn, is as fol-
lows: it can be used for any state, not only the ground one.)

Our more general comment is that all semiclassical results are
applicable il the classical action for the instanton is large

S(classical)>> 1 (10)

(say, it exceeds 6, see below). This condition in turn, implies that
the tunneling probability P is exponentially small

P ~exp(— S(classical)) << 1 (11)

(say, exp(—6) =0.002 ).

However, the idea that quantum paths can be considered as
Gaussian oscillations near the well bottom plus some tuneling
events is meaningiul if

Pl (12)

(where P is the ratio of the oscillation period to the tunneling
time): one can tell «tunneling» from «<ordinary oscillationss».
Although conditions (11) and (12) look similar, they are rather dif-
ferent from a practical point of view. Thus, one of our aims is to
developed the methods capable to treat «deformed instantons» which
happen with small, but not exponentially small rate (say, in the
range 1/3—1/30).

3. THE «FLUCTONS»

In this Section we introduce new type of objects, the «fluctonss.
Like instantons, they are some strong fluctuations of the system, be-
ing well localized in the (Euclidean) time. However, they are not
related with topology or symmeltries, so we do not actually need a
barrier to introduce them, but just the classicaily forbidden coordi-
nate region. Unlike instantons, they do not coniribute much to the
long-range correlation function for the double-well system, but are
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important for the understanding of the ground state wave function.
As far as we know, such type of objects were not discussed in the
quantum field theory context.

It is convenient to start with the familiar methods based on the
Schredinger equation. The small «tails» of the ground state wave
function Wo(x) in the classically forbidden region are described by
the well known WKB formula

X

‘-P'nl;'x}:cmsi-exp(— E p(x’}dxf). (13)

Ksiopping

The quantum Tfield theory language we use in this work deals
with the ensemble of the paths [x(t)] rather with the wave functi-
ons. (Of course, this ensemble describes not only the coordinate dis-
tribution in the ground state but also many other dynamical proper-
ties of the system). One may ask which paths are responsible for
this «tail» and what is the analog to the semiclassical WKB theory.

Let me remind how the path ensemble is related to the ground
state wave function. For this we have o compare two general ex-
pressions for the Green function, the one due to Feynman and the
standard decomposition over the stationary states:

i

Gixi, %1, 7)== 5 Dx(t) exp(— S[x(t)])= Z"Jf:[x,j W.lxs) exp(—E.t). (14)

Xi

Thus, large Euclidean time limil corresponds to the ground state
term , and in principle the corresponding wave function can be read
from the large-time Green function dependence on its end points.

For a number of reasons it is not convenient to do so, and we
prefer to consider some arbitrarily long paths and take the «obser-
vation point» 1o, somewhere inside it. If we ask for the amplitude to
have at this point some given coordinate value xq, it is described by
the product of two Green functions and therefore to the ground sta-
te wave function squared:

Plxg) ~ G{x;, X0, T4 ) Glxa, X5, T— ) — | Yolx0)| . (15)
T o= 00
(We are not interested in the remoted end points, so we may well
integrate over them.)

Now, suppose the point xy in a classically forbidden region is fi-
xed and we ask how the paths which managed to reach it looks
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like. This question can of course be answered straightiorwardly, by
looking at the path ensemble generated numerically (we do it in
Section 6). However, if x; is deep enough in the forbidden region,
the question can be answered semiclassically. As usual, the idea is
that in this case such paths should be close to that possessing the
minimal possible action.
For simplisity we start with the linear oscillator
mw’x’

§7% = Sdr[mf + 22| (16)

The minimal action path which goes through x; has the form

B 1:}:{ xgcxp[—.m[r—tﬂﬂ = T (17)
xpexXp |t — 1) <" To

and this is the «flucton» shape for this problem. The corresponding

classical action is Sy=mw’xf, and therefore the probability to meet

it in the ensemble is proportional to exp(— Su). From this we con-

clude that asymptotics of the ground state wave function is as fol-

lows:

mom o

Wolxp) — exp ( e n) . (18)

Xy o0

(For this particular system all semiclassical results including this
one are in fact exact because the path integral is Gaussian exactly.)

For the double-well system (1) it is also easy to find the classi-
cal path corresponding to the same conditions, say for |xg| <[ it
looks as

. [ Flamnl=2Ht-=%g)) -¥==%a
¥et(Xo, T0, T) = { f-tanh|[2f(t —1o)] T<To (£
and the corresponding action is equal to
Ser= ot —2x0f" + . (20)

Under the barrier fluctons contribute to the wave function on
equal footing with the instantons. Consider for example the point x;
(see Fig. 1). Using the wave [unction language one may say that
here the wave function tails from both wells are added, therefore
the wave function is nearly doubled and the probability is about
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four times larger than if there would be just one single well. The
same consideration in the path integral language looks as lollows:
there are four different paths (instanton, anti-instanton and two
fluctons, see Fig. 1) which all are present with comparable probabi-
lity.

Now we will try to connect the ground state wave function with
the flucton density. Let us consider some classically forbidden regi-
on (e. g. |xo|=[ for our toy model) in which fluctons can be cha-
racterized by the maximum distance from the bottom xm.» and posi-
tion in time to. Their density is defined as follows

d Nflucmns == meax} dtﬂ'i’tmax [2 I }

The probability to find particle at some coordinate x is the integ-
rated density of sufficiently strong fluctuations divided by the velo-
city ¥ at which the particle passes this point

O

|1:[J'0(x}| 2~ E dxmur P{xmux)fjid{xrrmx) . (22}

X

This relation can be further simplified in the semiclassical limit.
Writing the probability as

P':ﬂ-’max}wexpi_* S[xfl{xmux)“a (23]

and expanding the classical action
Scf(xnmx} Srn!{x — Imax} -+ mx f_x _—:‘:P‘?‘Eﬂ.\:] {24]
one can integrate over xma. and to write the final result in a com-
pact form
P[Xr.'rm_r] = V[xmux} |q‘r0{xmﬂx”2 3 (25‘}
where V(x) is the potential. (We have used the energy conservation

at the classical path and have assumed that the potential well bot-
tom is taken at zero energy value).

4. THE TRIAL FUNCTIONS AND THE «STREAMLINE>»

The tunneling through the barrier and penetration into it to
some depth are, of course, strongly related. Similarly, the instan-
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tons are in fact connected with the fluctons, which becomes evident
if we consider the annihilation process of a instanton (I) with an
anti-instanton (A). In the paper I of this series [I] we have alre-
ady mentioned that a IA pair can continuously be transformed to
ihe trivial x= +/ paths via a kind of a «valley» in the functional
space. Unfortunately, that was rather complicated construction for
the Yang — Mills theory, but now we are going to study this valley
for the double-well system.

It is clear that any IA-type configuration is not the action mini-
mum: these «pseudoparticles» attract each other. Therefore, for a
long time it was unclear how to select a set of configurations, inter-
polating between the well separated IA pair and the fluctons.

At first sight, any interpolation can well be used, and one may
consider some arbitrarily taken «trial functions» . For example, one
may take the one suggested by Bogomolny [6], which satisiies the
equations of motion at all points but one

(Bhin frtanh[2f(r—1)] T=<<0
: {ﬂ-{—f‘tﬂ"h{ﬂﬂf—’?ﬁﬂ >0 (26)

We will call it «B» ansatz (from «break» or Bogomolny).
Another possible suggestions are, say, the «S» and «P» trial
functions (from the «sum» and the «product» , respectively):

xS (t)= f|tanh|2f(t — ;)] — 1 —tanh [2f(r —T4) 11,

¥'Flit)= —F tanh[2f(t—,)] tanh[2f(x —14)].

(27)

However, for an interpolating function taken at random the
semiclassical calculations become complicated at later stages. In
particular, let us write an arbitrary path in the form of the ansatz
one plus the «deviation»

x(1)=x""" (2, 1)+ 8x(7) (28)

where z is some parameter marking the ansatz configurations. The
«deviation» can be expanded into the «longitudinal» and «trans-
verse» part in respect to the ansatz:

ansalz

ﬁxa nsatz 5 dTﬁJC{'I::l = (2+ T]
l:"-i'w;||(ﬂl:j___ {z’ T} ansalz T
az d |dx B
S ‘ dz
(29)
6I_L = 61 — 6.?("
11



The «longitudinal» part of the deviation is not interesting now:
integration over it can be absorbed by the integral over z. The in-
tegral over the transverse one in Gaussian approximation looks as
follows:

| Dbx L exp [—S(.r‘m“”)— (def | (1), (x) — ;— (dvdx, O, %, +.. ] ~

1 (30)
~ expf — ™) — - 1L @@L e f1 () drdv'|

where f(T)Eg—f is the «force» (for the Yang—Mills fields in I it
was naturally «the current»).

The key point is that the «transverse force» term in the effective
action is parametrically as large as the former «classical» one. It is
not easy to evaluate it in practice: the main difficulty is, of course,
the inverse operator C07' (or the corresponding Green function in
the non-uniform «background field» x*"*"%(z, 1))

Some time ago the way out was suggested by Balitsky and
Young [7] and myself [8], it was based on the particular choice of
the interpolating set of configurations called the «streamliine» [7].
We have discussed its qualitative properties in I, but now we find it
explicitely. Its main property is that the force f(t) has no «trans-
verse» part, so the annoying «force term» in (30) is absent.

In order to find it numerically [8] one should do exactly what
he does coming back from the mountains: to start at the remoted
initial point (well separated 1A pair) and then just follow the direc-
tion of the «force» . It is done iteratively, calculating the force and
making small steps in its direction

Xnt1(T)=Xa(T)— &fu(T) (31)

where e is some small numerical parameter (we have taken it to be
0.001). An example of the results is shown in Figs 2, 3 in the form
of the paths themselves and the corresponding action distribution.
(Note that the force is growing rapidly as the pseudoparticles ap-
proach each other, so convergence of (31) is at first very slow and
then becomes more rapid.)

It is instructive to compare the «streamline» found to the trial
functions mentioned above, but for doing this one should introduce
some common parameterization. O course, any parametrization of
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these configurations can be used. The simplest one would be the ac-
tion itseli, ranging from twice the instanton action to zero. How-
ever, we use other parametrization which is simpler to use in «lat-
tice experiments» to be discussed below.

Our parametrization (chosen rather arbitrarily) splits the «val-
ley» into two parts, the «IA pair» and the «flucton» one, depending
on whether the path crosses the barrier center x=0 or not. In the
former case it is called the [A pair, and the parameter D (called
the IA separation) is the time distance betwecen two crossing of the
x=0 line. In the latter case it is considered as a flucton, which we
map by the maximal deviation from the well bottom x, (ranging
from 0 to f). (In particular, the D=0 pair and the x,,, =] flucton
is in fact the same configuration.)

Wondering whether the simple trial functions suggested above
are similar to the «streamline» one may introduce the so called «cos
M» combination

ansatz
[df(z, ) (2, 7)

a3 4
COs (D e [ 5' fﬂd'r 5 SdTﬂZ, txﬂxarmu[z }rﬁ,z]ﬂ‘i 172 (32}

where f(z, t) is the force and x®™' (z, 1) is the trial function.
Roughly speaking, the angle @ is between the force and the tangent
to the ansatz line. By definition, for the streamline cos®=1. For
the B ansatz cos®=0, for in this case the force is the delta-functi-
on and its norm is infinite. For «S» and «P» trial function its de-
pendence on D is shown in Fig. 4 . From these numbers one may
have an impression that these trial functions are reasonably good
approximations to the «streamline» .

This idea is also supported by the action dependence (see Figs 9, 6
for the «IA pairs» and fluctons, respectively): all trial functions fol-
low the «streamline» reasonably well. It means that the «transverse
force term» in action which is so diificult to calculate is in fact only
a 109% correction. (Hopefully, something similar takes place in field
theory context as well.) The resulting «IA interaction law» given in
Fig. 5 will be compared with the «large lattice» data in Section 8.

5. NUMERICAL EXPERIMENTS ON THE «LARGE LATTICE»

Studies of the double-well system on the lattice have already
been made in Refs [9, 10], so we do not discuss any details of the
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method. We just remind that in order to define parameters of the
discretized system to be studied in our numerical experiment one
should write down the following sequence of conditions

AL T LTy K T= Na. (33)

Assuming that each strong inequality corresponds to one order of
magnitude, one should take the lattice with the number of sites not
smaller than a thousend! Thus, although we now deal with one-di-
mensional (mechanical) system, its straightforward numerical sta-
dies need rather large lattice. (Fortunately, for such simple system
such conditions can really be satisfied, but not for the field theories
in more dimensions.)

Generation of the path ensemble is done by the standard Metro-
polis algorithm. We only mention that the measurements of the
correlation functions and other details to be considered below make
it necessary to have much better ensemble than, say, for the measu-
rements of the ground state energy or the corresponding wave fun-
ction. Thereiore, instead of hundreds of iterations as in Refs
[9, 10], we had to make up to 10° ones.

In our studies reported in Ref. [10] we have found some arti-
fact, the «lattice instantons», being the instantaneous jump from
one potential well to another, without a point under the barrier. For
the lattice step of the order 0.2 or so this phenomenon produces sig-
nificant systematical errors, therefore in this work we both use
smaller step and compare results for the following two lattice acti-
ons

SHEA=Y wi—xiqf/4a+a(x -] ,

L

iimproved) ! 2y (34]
ST =) —xip /a4 § de(—PP,

L

(The latter corresponds to the paths made of a set of straight seg-
ments. As shown in [10], by makng the path continuous one can ef-
fectively kill the «lattice instantons» .)

As discussed above, the time-averaged distribution over coordi-
nates in our ensemble corresponds to the ground state wave functi-
on squared. Our «large lattice» results are shown at Fig. 7 where
they are confronted with other calculations to be specified below.

New type of questions is how the strong fluctuations are develo-
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ping in time. «Hunting for the fluctons» one may select all events
in which, say, the particle reaches some fixed distance from the well
bottom. Superimposing maxima of such fluctuations we obtain the
average «flucton profile», examplified at fig.11. Note that such fluc-
tons are well localised in time and have typical «triangular» shape
(as those suggested by the semiclassical arguments).

Although it is generally impossible to make clear separation of
the IA pairs from the fluctons, one may make use of the existence
of two separate time scales 1., 1,, and ignore this problem for a
while. While trying to describe some gross features of the paths it
is desirable to make them «more smooth». More precizely, let the
averaging width (av) is taken somewhere in between of the two
scales

Tose & Tay K Ty - (39)

It helps to get rid of «quantum noise» at scales from a to 4
Relation (35) ensures that the results are practically independent
on 1, and the particular procedure used. (We have used Gaussian
expression

Bi= ) exp[—(teri—mu)/21] — =
k= — oo : 'V}E:I'E Tav

(36)
but it is not important.) For the smoothed paths the tunneling
events are clearly seen (see Fig. 8 ), and for them it is easy to lo-
cate positions of the instantons. Superimposing them we have found
the average instanton shape, see Fig. 9. (To avoid misunderstan-
ding we emphasize that it corresponds to original, not the «smoot-
hed» paths.) One may also find the instanton density and consider
their distribution in time. These data will be discussed in Section 7.
Lattice calculations for QCD tends to present measurements of the
correlation function, being the basis of the «hadronic spectroscopy» .
We have also made such measurements for this toy model and have
found that the existence of two scales leads to some spectacular be-
haviour of the correlation functions. It is convenient to plot not the
correlators by themselves, but their logarithmic derivative F (1)

d

- log (x(t)x(0)) . (37)

de
Flx)<— —

Our results for f=1.4 and 1.6 are shown in Fig. 10. At small
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T~T,. = 1/4f this quantity is rather large: correlation is affected by
the «ordinary» oscillations. At intermediate v it decreases: here the
correlator is nearly constant, close to (x) (averaged only over the
motion in one well). At large ¢ tunneling effects come into play and
«mix» the correlation. Here F({) tends to constant, the energy gap,
as is very clearly seen from these data. (Again, let us note that so
clean exponential behaviour is impossible to observe in the lattice
data for a field theory.)

Particular values of the parameter f used above correspond to
tunneling probability P about 1/10 and 1/30, respectively. As we
are going to show below, semiclassical theory is not capable to des-
cribe tunneling through so transparent barriers. Nevertheless, as it
follows from discussion above, the two time scales tunneling effects
can clearly be separated from «ordinary» oscillations.

The last point in this Section is the following statement: the
«smoothed» paths correctly reproduce the long-range correlations,
see points shown by stars at Fig. 10. It is important because the
«smoothed» paths can be parametrized by the collective coordinates,
positions of the instantons. Thus, the long-range correlations are in-
sensitive to the «quantum noise»!

6. EXPERIMENTS ON THE «SMALL LATTICEs».
THE GROUND STATE WAVE FUNCTIONS AND FLUCTONS

The previous Section has started with the formulation of rather
strong conditions for the lattice numerical experiments devoted to
studies of the instantons (or fluctons). Besides the general condi-
tions for any lattice calculations, our case is even more difficult be-
cause strong fluctuations happen rarely and one needs especially
long lattice for their observation.

The «small lattice»  approach is the method to generate paths
constrained by some condition, ensuring the presence of the instan-
ton or the flucton of interest. Thus, the calculations become much
more elfective compared to the straightforward «large lattice» ones.
Let us start with the case of fluctons. The first natural thing to do
is to generate paths coming through some fixed point xy,. We have
done the same in Section 3 in the semiclassical context, so one may
wonder to what extent'the average path behaviour follow the mini-
mal action one. An example of the kind for fluctons are shown in
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Fig. 11. Deviations are clearly seen, and they are due to the nonga-
ussian effects ignored in the semiclassical approximation.

[t is more delicate thing to «pin down» an instanton. It is
straightforward to generate only «transverses deviations from the
classical instanton path, satisfying the orthogonality condition

l'ixr.'ﬂ:'t ' Tc:] e

Edr | (1) — xcfT)] 0. (38)

Te

[t can be done by «updating» points in pairs, holding the integral
{38]}0 be strictly conserved. However, it is simpler to use another
condition x(t.)=0. (In both cases, one should of course add the
correspnnding Jacobian factor into the weight function.)

, [t is instructive to compare action distribution for the «small lat-
tice» constrained paths and the classical ones. Here one comes ac-
ross a p_rcablem of, so to say, ultraviolet type: the mean kinetic
energy diverges at time step a—0, and this E'arge «quantum noise»
pfri should be subtracted. The corresponding data are shown at
Fig. 12. Large time-independent level corresponds to <«ordinarys
f‘iuctuatinns, while the excess is due to the constraint and is qualita-
_tweiy similar to action distributions for classical trajectories (shown
in lower part of the figure).

Our m_ain quantity of interest is the fluctuation probability. In
order to find it one may, in principle, directly compare probabilities
of the individual paths for our problem (e. g. the double-well
S}r'S.tEHl] with that for some «reference point» (e. g. for the Iiﬂeér
oscillator). Generating path ensemble for the «reference point»
system one may try to average the following factor

Fwﬂghmd = ( exp [_ Sd'cﬂlf’{r)} )’ (39)

where AV=V,, — V.. is just the difference of the potential energi-
es. Note, that the problems connected with {he divergent kinetic
energy are gone. Unlortunately, this factor fluctuates too much. so
it turr_ls to ’]JE impossible to use such averaging and one has to ’use
more ingenious methods.

AS. a practical method we use the «adiabatic switching» one
[10], including less fluctuating quantities. Let us introduce a set of

17



actions with some parameter alfa, interpolating between the action
Ssc (for the linear oscillator) and Sy (the double-well potential).

Sa=Sosc(l — @)+ Spw = Sosc +2AV. (40)

The average value of AV can be written as the logarithmic deriva-
tive of the statistical sum

d :
<Sdmv>a=—Emggﬂx{r)exm—sﬂ), (41)
Integrating this relation back one has

Gpy=G,,, exp [— lgda <5dn:sv>u]. (42)

0

Evaluation of the integral in exponent of (42) can be done with
(rather standard) trick: alfa value is gradually increasing and then
decreasing again. The measured c<histeresis cycles» provide estima-
tes of the nonequilibrium effects.

Application of (42) to the calculation of the probablity distribu-
tion (the wave function squared) is straightforward. Most simple is
to look for the probability ratio for two coordinate values

I.'F,r_w I]} l vy Il‘lrnsc I]}

T | = o | (= 1da((§dedV)e ) — (fdraV), ;). (43)

(We remind that
| Wose(x1)/ Wose(x2)| ' = exp [ — ma(xi —53)]. (44)

Note also that in order to reproduce the wave function under the
barrieir one should include all types of paths shown at Fig. 1.)
Using this expression we have found results shown at Fig. 7 by
stars, which are close to those found in the straightforward «large
lattice» calculations.

7. THE INSTANTON DENSITY AND THE NONGAUSSIAN EFFECTS

We continue presentation of the «small lattice» calculations, de-
monstrating how one can use it for the estimates of the instanton
density. Again we use the «adiabatic switching» method, accounting

18

for the nongaussian effects, while the «reference system» is now the
formulae obtained in the semiclassical (Gaussian) approximation.
Thus, our interpolating action looks as follows

Se=S8g+aSyq ,
Sy = {ddx(1)0x 4 8x*] (45)

We evaluate corrections due to the nongaussian effects to the tran-
sition amplitude

Glxi= — [, xp=[,t)=exp|[— Epypt}-4f-d (46)

where the quantily d is, by deflinition, the instanton density. Combi-
ning this expression with that in the Gaussian approximation one
may express the quantity d

1
d=d; exp (—gda, (S,ug>u). (47)

0

Apart of the correction to the tunneling amplitude, the nongaus-
sian effects also modify oscillations in the wells, shifting the ground
state energy. In practice, the calculations were done as follows. The
presence of the (odd number of) instantons was ensured by the an-
tiperiodic boundary conditions. The measured efiect due to the non-
gaussian terms in action were subtracted from the results ol the
«control» measurements made for the periodic paths. The results for
the instanton density are given at Fig. 13 plotted as the ratio to
predictions of gaussian approximation (29). The results agree with
analytic estimates [5] (which actually were obtained later than the-
se data).

As already discussed above, the presence of the instanton can
also be forced by some constraints. The simplest one possible just
fixes the point at which the paths cross zero. Formally it looks as
the following trick: one introduces unity in functional integral

] == SdTE’[I(TcD -’E[:Tf} 1
Z={Dxexp (—S)= dr. | Dx(x) 8(x(x.)) &(xc)exp (— S)

(48)

and then put the integral over dt. outside. Note, that the Jacobian
is now simply a velocity at the constrained point, and on the lattice
it is relevant only for the points next to the fixed one. (Such collec-
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tive variable is simpler than that following from the ortogonality to
the zero modes: it leads to additional action which is local in time.
Another advantage is that Jacobian-induced action S=log(x({)) is
not very fluctuating from path to path: in the instanton center the
motion is most close to the classical one.) We have done such simu-
lations too, and the results agree with those obtained by the «anti-
periodic paths method.

Our conclusion is that the nongaussian corrections to the semic-
lassical theory are noticeable, unless the barrier penetrability is at
1% level, while the methods developed above can well be used in
the case when deviations from ils prediction is of the order of one.

8. INSTANTON INTERACTIONS

The issue of the interaction of the pseudoparticles was the main
concern in the theory of the «instantonic liquid» discussed in the
previous papers of this series. For the double-well system it does
not play so important role as for the gauge theories: the interaction
decays exponentially instead of some power law.,

We start with the «large lattice» data and first present some
«experimental facts». In particular, we have studied correlation in
the instantons positions, defined as the time moments when the
paths cross the x=0 line (we have in fact use the «smootheds»
paths defined above). The distribution over the instanton separati-
ons D are given at Fig. 14. For D> 1 the dats demonstrate very
good exponential behaviour

dN A
Emexpf_-—ﬂfﬂ} (49)

typical for the «ideal gas» of instantons, showing that the interacti-
on is only short-range. At intermediate distances we have evidences

for the instanton — antiinstanton attraction. This effect is compared

to the following correction

% NEXIJ | " Dfﬁ__ﬂsiu{emca’mn{D” (50]

where AS™ ™" s {hat lor the «streamline» set of configurations. It
reproduces well enough the IA attraction at small distances.
Thus, we have quantitatively described the IA interaction. which
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is the main conclusion for this section.

It is just simple exercise to make a program generaling ensemb-
le of points, the instanton positions, separated according to this in-
teraction law. Instead of the «streamlines» or any trial functions
one may use even the simplest step-function parametrization for the
paths

1 <0

91
—1 =0 )

xt)=- HE(T-—T:'_]; E——-{

i

Such simple description for the «instanton liquid» (which is in
this case only slightly deviating from an ideal gas) can reproduces
the «mass gap» of the theory and other details of the correlation
functions at large time scale.

9. CONCLUSIONS

The main goal of the present work was development of some
new methods for studies of the strong fluctuations in quantum
systems. Together with the well-known «instantons», related to tun-
neling through the barrier, we have also introduced the «iluctonss.
We have shown that they also are important ingredient of the path
ensemble, in particular atfecting its ground state wave function in
classically forbidden region. Moreover, we have explicitely found the
best set of configurations (called the «streamline» ), continuously
connecting the separated instanton — anti-instanton pairs with the
flucton sector.

This «streamline» is a generalization to the «classical paths» as
used in ordinary semiclassical theory. Indeed, in the latier case one
deals with the «action minima», while we study a (one parameter)
set of configurations being the minima in respect to «tranverse» de-
viations from this set. We have shown that such «streamline» have
correctly reproduced the instanton— anti-instanton interaction law.
One may also hope that this generalization of the semiclassical the-
ory will find many other applications in the quantum physics.

Second, in this paper we repoted results of the «large lattice»
calculations, capable to provide high quality data on the path en-
semble. In particular, we have measured some correlation functions
and studied the distribution of the pseudoparticles in time.

Third, new technical methads are suggested, based on the simu-
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lation of the paths on the «small latttices». These paths are subject
to some constraints, ensuring the presence of the fluctuations of in-
terest. With their help we have successfully studied the role of the
«nongaussian» eliects (deviations from the semiclassical theory) for
the instanton density.

Ol course, it would be desirable to repeat at least part of this
program for the quantum field theories. The most interesting points
are the analogs of our «fluctons» and the «streamline», as well as
the studies of the nongaussian effects on the instanton density. We
hape to report them in further works of this series. We again under-
line, that using the «small lattice» approach one may get rid of one
strong inequality, which may open completely new perspectives.

Finally, this work may also have applications in realistic quan-
tum mechanical calculations related with a penetration through so-

me multidimensional barriers: say, in quantum chemistry, nuclear
fusion etc.
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Fig. 1. Four topologically different paths coming via the same point x under the bar-

rier. The vertical axis corresponds to Euclidean time, the horisontal one to particle

coordinate. The dashed lines are the barrier center and the solid lines at x= =+ are
the well bottoms.
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Fig. 6. The action § (in unites of the instanton action Sg) for the flutons versus the

maximal distance of the curve from the well bottom xmac All notations are as in

Fig. 5. The ansatz B results shown by the dashed line also correspond to the semic-
lassical fluctons discussed in Section 3.
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Fig. 7. The time-averaged coordinate probability (or the ground state wave function

squared) at f=14. The poinis are straightforward «large lattice» simulations. The

dashed and the dash-dotted lines correspond to the semiclassical flucton theory des-

cribed in Section 3, the former for the linear oscillator and the latter for the doub-

le-well potential. Note that for the latter case one should add contributions of all

types of the paths shown in Fig. 1. The points shown by stars correspond to «adiaba-
tic switching» method and «small lattice» calculations (see text).
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Fig. 8. Some quantum path (above) and its «smoothed» version (below). An arrow
shows the_pumtmn r,;-f the instanton found by means of of such smoothening, while
auxilliary crossing of the x=0 line due to «quantum noise» are diregarded.
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Fig. 9. The instanton shape as given by the semiclassical theory (the solid line) and

that found from the «large lattice» numerical experiment (dots). The mean coordina-

te value for «ordinary oscillationss is not 4 [ because the wells are asymmetric (the-
re are cubic and other odd terms in deviations).
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Fig. 10. The logarithmic derivatives of the coordinate correlator. Parameter of the

potential F and lattice step a are given at the figure. The dashed lines are only to

guide the eye. Points shown by stars correspond to correlation of smoothed paths

with the width equal to 1.5: here only instantons contribute, but the long-range cor-
relation function is reproduced.

32

-

1

0.5 &

T

Fig. 1{. Example of the flucton profile resulting from the «small lattice» calculation
with contstraint at some point x=2. The curve corresponds to the classical path des-
cribed in Section 3 the open and the closed points are for the linear oscillator and
for the double-well system, respectively. (The calculations reported are made with
the very small lattice step a==0.025 and, unlike the data given al Fig. 10, are

insensitive to it.)
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Fig. 12. Example of the time distribution of the action, avereged over 200 superimpo-

sed instanton-type configurations of the «small lattice» of only 50 points (the time

step is a=0.04) with the antiperiodic boundary conditions. The dashed line below

corresponds to the classical instanton solution, the dashed straight line above shows

the mean «quantum noises level measured in control cofigurations without insian-

tons. Although a trace of the instanton is definitely seen, quantitative measurements
are impossible.
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Fig. 13. Open points show the ratio of the instanton density d including nongaussian
corrections to the value d calcuated in Gaussian approximation versus the classical
action § of the instanton. The triangles at F=1.4 shows values of the instanton den-
sity found in the «large latlice» calculations (with the smothening widths 0.1 and
1.5, upper and lower points). The star corresponds to 1/¢{D) found from instanton
separation distribution, see Fig. 11. The dashed line corresponds to the correcti-
on [&]. It is seen that the semiclassical theory becomes valid at S value about 6.
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Fig. 14. Distribution over the instanton time separation D. The open points corres-

ponds to the «large lattices» data with T=40, a=0.2 and the «naives delinition of

the instanton (as the crossing of the x=10 line). The closed points are for the paths

smoothed with the widths 0.1 (eliminating some «quantum noise» but affecting the

most close pairs). The solid line for large D is the exponential fit exp(—0.29-D),

while the dashed one correspond to the correcion for the instanton — anti-instanton
attraction, taken [rom the Fig. 5 for the «streamlines.

36

E.V.Shuryak

Toward the Quantitative Theory
of the «lnstanton Liquid» 1V.
Tunneling in the Double-Well Potential

3.B. Hypsax

K KO/W4YecTBeHHOW TEOPHH «MHCTAHTOHHOH XHIKOCTH>.
IV. TyHHeaupoBaHHe B ABYXAMHOM MOTEHLMKAJe.

OTsercreednbiit 3a Beinyck C.I.Tlonor

PatGora nocrynuaa 30 ceuradpa 1987 r.
[MTognucado B nedats 13 okradbpa 1987 r. MH 08409
dopmar Gymard 6090 1/16 O6wvem 2,9 new.a., 2,4 yu.-usa.a.
Tupax 290 sk3. Becnaarno. 3akas Ne 137

Hafipano 8 asromarusuposannod cucreme na base oro-
nabopuozo asrosmara ®AI000 u 3BM «3IaexrporHukar u
oTReHaTano HA poranpunre HMucruryra adepuod guauku
CO AH CCCP,

Hosocubupck, 630090, np. akademuxa Jlaspentoesa, I1.




