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ABSTRACT

The mathematical formalism for statistical description
of local structure of condensed matter, based on the
concepl of the feature space of structural invariants is
presented. The qualitative analysis of the fluctuations
in this space is given; the probabilistic characteristics
ol the type ol local structure are introduced and the
problem of the effectiveness of the recognition is
studied.
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i. INTRODUCTION

The qualitative concepts of local order in the spatial arrange-
ment of atoms not only in crystals bul also in other condensed
phases of matter (melt, glass, amorphous solids) is well-known, see
e. g. in [l, 2]. The quantitative theoretical study of local structure
of condensed matter both on microscopic and phenomenological le-
vels is possible provided that this concept has clear mathematical
formulation. In general, various types of local structures of liquids
can be discussed. In recent papers (Patashinskii and Shumilo [3],
Mitus and Patashinskii [4], Hess [5], Nelson and Toner [6] and
others) it was assumed that the local structure of the melt resemb-
les that of the crystal. Sachdev and Nelson [7] and Steinhardt,
Nelson and Ronchetti [8] use:the icosahedron as the main structu-
ral unit of local order in metallic glasses and melts. Among other
models, the most popular ones are Bernal’s model of chaotic
close-packing of atoms [9] and Zachariasen’s model of chaotic lat-
tice [9]. Different models may, in principle, correspond to different
types of the matter.

The mathematical formulation of the concepts of local stracture
given in the above papers made it possible to study many of the
phenomena related to the melting and the melts. In this way some
new effects were predicted —the anomalous temperature dependence
of the crystal’s heat capacity near its melting point [4, 11], the lo-
garithmic dependence of the width of the film of the fluid on the
surface of the semi-inlinite crystal near its melting point on the re-
duced temperature [12, 13], the structural phase transition in the
melt, accompanied by the change of the type of local structure [14]
and others.

No matter what the local order in melts is, it manifests itself in
the presence of thermal fluctuations of atoms’ positions. These fluc-
tuations are characterized by the parameter E=£"/a, where &' deno-
tes the mean-root-square thermal displacement of atoms from their
supposed ideal positions and a denotes the mean interatomic dis-
tance. At the melting point E=E»=0.07=+0.17 for most of the
elements [15].
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In such the case the intuitive concepts of the resemblance of
structures are insufficient for the quantitalive analysis. It is neces-
sary to work out the mathematical formalism destinated for the
comparison and recognition of the type of local structure. The aim
of this paper is to present such the formalism. As au example, in
the second part of this paper, we apply our method to study the
conditions of mutual distinction of some local structure patterns in
the presence of thermal fluctuations and some other related topics.
These patterns are the most popular candidates for the structural
units of simple liquids.

The general concepts used throughout this paper were formula-
ted earlier in [16] and are related to the ideas of the phenomenolo-
gical theory of local crystal-order of condensed matter [4].

2. THE PARAMETERS OF LOCAL ORDER
AND STRUCTURAL INVARIANTS

To study the space arrangement of atoms one has to know the
positions of their centers. In what follows we restrict ourselves to
the study of the discrete set G of points with coordinates 7 repre-
senting the centers of atoms. The atoms surround the central one
located in the origin of the coordinate frame of the 3-D Euclidean
space. Strugtural characteristics of a continuum were studied by
Kuz'min and Patashinskii [17].

By definition, the geometrical structure of a set G of points can
be determined by comparing G with each of the figures (sets of po-
ints) I, i=0,1,... The figures I' form the collection of ideal pat-
terns of structure. This collection is to be chosen on the basis of
physical concepts concerning local structure of condensed matter.
The mathematical construction that realizes the rather intuitive idea
of resemblance of figures is the one-to-one mapping of these figures.
For the case of lattice-like structures, the «best» mapping of atoms’
positions onto the lattice sites defines the type of the tangent
lattice [3].

Once the set of ideal figures I', i=0,1, ..., Is chosen the problem
of recognition of structures reduces to the problem of finding the
ideal figure T'y, a deformed state ol which is the «physical» struc-
ture. The concept of the geometrical structure of any of I'; coincides
with the concept of I'; as the geometrical figure, i. e. is independent
on the orientation of I'; in the space.
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In what follows, it is assumed that each fluctuating structure
can be thought of as a deformed («excited») state of one of the pat-
terns I'.. In order to recognize and classify the fluctuating struc-
tures one has to study numerical characteristics of these structures.
Subsequently, the phase space of these characteristics should be di-
vided into domains representing the deformed states of patterns I
This division has probabilistic character (see below). In general, the
domains can overlap with each other.

[n order to study the resemblance of the figures let’s introduce
the local order-parameters—the irreducible multipole moments of
the density [4, b, 18]

== ). W Y, » (1)
where
e e o (2)

denotes the irreducible part of the Cartesian tensor ry’ ..r, . The
summation in (1) extends over all the points 7%  Function w(7)
defines the weight of the contributions to T, . from different coor-
dination shells. For example, for an infinite system one can a priori
fix the size of the domain (cluster) in which the order is supposed
to be local and then treat each of the atoms as the center of one of
such the domains. The resulting description of the system in terms
of parameter (1) is equivalent to the one used in the local order-pa-
rameter formalism [4, 18], provided that the weight function w(r)
is properly chosen. For ditlerent values of [ the functions w(r) can
he different ones. For example, when w(F) ~|7| ! then the expressi-
ons in (1) are nonnormalized spherical harmonics. The quantities

T, . form the basis of the irreducible representation of rank !/ of

the 3-D rotation group Os. The characteristics of the structure of a
cluster have to be both rotationally and translationally invariant.
They can be obtained via the contractions of indices of products of
parameters T [=0.1,.. i e. they are all the scalars that can
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be constructed from the set (T, , ) (=01, ..

The equivalent set of local order-parameters can be constructed
with the help of another basis of the irreducible representation of
the O group, namely that of spherical harmonics Y., see e. g. in

Rel. [19]

Tim=) w(F¥)lin, (3)
i}



where
}::z] s }{fm. {E'-Ia ) 1 [4}

Q':“':{rp 0] denotes the pofar and azimutal angles that fix the di-
rection 7 /Ir‘m ,and w(r) is a new wmght function. T, , and f;ff‘ %
are the linear combinations of Ty, and £, re*apectnel} The invari-
ants of T,, can be constructed via the use of the standard forma-
lism of angular momentum in quantum mechanics, see e. g. in
Rei. [19].

Th(.‘ order-parameters (1), (3) have 2/{+4 1 independent compo-
nents from which 2(/—1) mdependent invariants can be construc-
ted. In what follows these invariants ‘F}k: (f=el) 1. ... R==],
Z{I—i}], mll be referred to as structural invariants and the phaaE
space (7" spanned by invariants W, will be referred to, as usually
in the problems of recngmtmn as the feature space. For the sake of
%Imp}lCIh the upper index in ;" ~will not be written out explicitely,

. W, will be use instead of W,”. The structural invariants charac-
terize the relative positions of all the atoms of the structure, inde-
pendently on its orientation in space.

In what follows we’ll study the structure of a cluster consisting
of a finite (and not too big) number of atoms. The structure of the
finite cluster is uniquely determined by the coordinates of its consti-
tuent atoms or by the finite set ol algebraically independent invari-
ants. For our main purpose, which is the description and the classi-
fication of local structures, it's sufficient to restrict onesel to the
investigation of the small number of low-rank invariants, i. e. the
ones constructed from the parameters (1), (3) with a few smallest
values of /. The reason for such the simplification is that the
high-rank invariants are sensitive to the small-scale fluctuations of
the atoms positions. The relative fluctuations of invariants W, resul-
ting from thermal movements ol atoms hemme stronger when /[ in-
creases because the higher powers of |7*| and the higher spherical
harmonics are accounted for. As the rcsult, the two distributions of
the probability of fluctuations (see the nexi section) of invariants
Y, with /> 1, corresponding to two clusters with the same number
ol atoms werlap one another much stronger than distributions cha-
racterizing the fluctuations of W, with [~1. [t implies that the
high-rank invariants ade less efiective for our purposes then the
low-rank ones. For each value of [/ there exists the characteristic
scale &, of atom’s displacement Lorresponcl{ng to the marked relative
change of the invariant W, The value of & decreases when [ in-
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creases. When the values of & and & become of the same order of
magnitude the invariant W, fluctuates strongly and is useless for
the classification purposes.

The semi-quantitative physical picture ol fluctuations of structu-
ral invariants presented here will be verilied on some speciiic
examples in the second part of this paper.

3. THE COMPARISON OF STRUCTURES:
PROBABILISTIC ANALYSIS
IN THE SPACE OF STRUCTURAL INVARIANTS

To each geometrical structure (i. e. finite or infinite set ol po-
ints) there Lurreapnnd&. 4 pumt F = (W, ...} in the feature space {¥.
A slightly deformed state ol the initial pattern is rtpre*-;ented by a
point ”r’" which is close to W. When the deformation is %ntfmw*lth
small, i. e. the dlaplmemenlu of atoms are small ¢nough, the struc-
ture of the deformed figure is similar to the initial one. The fluctua-
ting structure is represented in the feature space by the distribution
of pmbdbll ity of [luctuations of invariants W, and can be described
in terms of the prubahlim density p(W). Let’s study a linite collec-
tion {I'} of initial ideal patterns. The general concepts of conden-
sed-matter physics limit the possible arrangements of atoms in
space to these described by the space- gruupa or some noncrystallo-
graphic groups. Each distribution p{lp} has at some distance in the

feature space <«neighbours» p.(W) that represent the deformed
states of ideal patterns I',. By the definition, the quantity

is the probability of finding the values of invariants W, (I=0,1.
representing the fluctuations_ o[ the ideal pattern I', in the unumh
A U d¥\" of the point ¥. The solutions of the set of inequali-

ties pa.(¥) <const (n=1,...) are the domains in the feature space
that I‘(’.[}I‘E—:Sl:‘.‘ﬂt deformed states of ideal patterns I'.. Consider first
the case when the fluctuations of the positions of atoms have an up-
per bound. For small values of § the distributions don’t overlap one
another; cach point ¥ rcpleaentmg the deformed state of some pat-
tern I, can’t simultaneously correspond to some other pattern
[';(is=j), see Fig. l,a. In this sense, the division of the feature space
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Fig. 1. The overlapping of the distributions of the Huctuations of invariants .

into domains has deterministic character. When § increases the widths
of distributions increase, too: for £=£&" the two neighbouring distri-
butions overlap one another, see Fig. 1,6. In such the case the divisi-
on of the feature space has probabilistic character —some point L
can correspond to deformed states ol two difierent patterns. This is
the case of real physical systems, where at any £<£0 thermal displa-
cements of atoms have no upper bounds. The plots of functions o ()
shown in Fig. 1 correspond to thermal fluctuations of atoms provided
that one neglects the fluctuations of invariants with the probability
density smaller than some fixed value. In order to study the resemb-
lance of the [luctuating structures it’s necessary to introduce the
quantitative characteristics of the degree of the overlap of the distri-
butions. In what follows we’ll deal with this problem. :

It's natural to study the problem of the classification of local
structure types on the grounds of the theory of verification of statisti-
cal hypotheses, see e. g. in Rel. [20]. Let W denote a point in the
feature space and let the densities pf{@"], i=1,2, characterize the
fluctuations of patterns I'y;, I'y, see Fig. 2. The correspondence of the
structure represented by W to I'y or I's is settled on using the criti-
cal domain S in space {¥). Namely, when I belongs to S then the
hypothesis of the similarity of the fluctuating structure to I'y is re-
jected. The effectiveness of the test depends on two paramelers: the
probability E;=a (a is the significance level of the test) of erro-
neous rejection of the hypothesis (error of first kind) and probabi-
lity Ea=p (1 —B is the strength of the test) of the erroneous accep-
tance of the hypothesis (error of second kind). The choice of the
test. i. e. of the critical domain S is, a priori, arbitrary. We study
the two following cases.

In the first case the minimization of the total error E=E,+ E»
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is required. To this end one determines the type of the fluctuating
structure represented by point ¥ via the maximal-probability deci-
sion tule. It states that the fluctuating structure is the deformed
state of this of two patterns I'y, ['s for which the value ol p(F) is
the bigger one. The total error E of recognition is

E={ min{pi(F); po V) d¥ . (6)

The integration in (6) is carried over all the phase space of invari-
ants. The boundary @S of the critical domain § coincides with the
determinant surface that divides 4

the feature space into two parts 8(¥) 3

and consists of points W, such
that p;(¥y) =p2(¥4). In general,
.E|?EEQ.

In the alternative approach
one restores the «symmetry» bet-
ween the fluctuating structures
by imposing the condition
E,=E, In general, the total er-
ror E isn’t minimal. Consider, Fig. 2. The stalistical recognition of the
for example, the important case
of 1-D Gaussian distributions
0.(¥). The boundary @S reduces 1o a single point W, where
Y. = (¥),+1to,, and the value of ! is the solution of the equation
<lp>|—|—fﬁ|:<qr>g—fﬂ'2 {{"‘”}2:}<L[P>|}. Here <...>f, !'::1,2,
stands for «mean with the weight p:(W)» and o; denotes the me-
an-root-square deviation of fluctuations of invariant Y. In general,
the boundary @S doesn’t coincide with the determinant surface.

The two criterions of the recognition of the structures may lead
to considerable discrepancies only when the shapes of the probabi-
lity densities p: (W) are remarkably different ones. These shapes can

—

be characterized, e. g. by the central moments of p;('¥). When the
differences are small both the criterions give practically the same
results.

The functions E(&), E\(§) and E2(E) are the simplest probabilis-
tic characteristics of the type of the local structure of condensed
matter and play the important role in the analysis of this structure.
[n particular they characterize the concentration of clusters with the
structure of the I';-type which will be identified as deformed states
of the competitive pattern I's due to thermal fluctuations ol atoms.

i
-

fluctuating structure (see text).
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At small values of & this concentration is small and the fluctuating
structure represents with the overwhelming probability a deformed
state of pattern I';.

When the overlapping of distributions is large, i. e. for values of
E~05, the concept of the type of local structure is useless. This is
so because the necessary condition on which the classification sche-
me can be introduced, namely the existence of the one-to-one corres-
pondence (e. g. the mapping described in Ref. [3]), between the de-
formed structure and the parental pattern I', is no more satisfied.
The noticeable overlap can, in principle, take place only in a sub-
space of the feature space (W, il the analysis is restricted to this
subspace only. Then the fluctuating structures become undistin-
guishable ones even though in fact they continue to «remembers»
their parental patterns. In the second part of this paper we evaluate
the function E (&) for some close packed-structures.

The existence of the noticeable fluctuational overlapping of dis-
tributions in the space of invariants implies that the fluctuating
cluster can be identified on equal terms as the deformed state of
any of the patterns. Suppose that the statistics of fluctuations of the
invariants reflects the laws of motion of atoms. Then there is the
high probability of «return» to nonparental pattern at, e. g., instan-
taneous cooling of the system by lowering the kinetic energy ol
atoms. In particular, these factors may be responsible for the for-
mation of icosahedral clusters reported in Refs [7, 8]. We don’t
study here the kinetics of such the «transition». In fact, the «time of
life» of a given structure may turn out to be macroscopic even if
thermal fluctuations are sufficient for the «merging» of this and
some other structures. In particular, the phase volume of the part of
the feature space where the «structural diffusion» takes place may
be small. The analogous phenomena are well-known in the theory ol
nucleation (see, e. g. in Ref. [21]).

In general, all the distributions er{‘i}), n=2,..., give contribu-
tions to the total probability & (&) of erroneous recognition ol a gi-
ven fluctuating structure represented by the density p1 (V). For
n= 2 the probability # (&) can be evaluated with the help of the
formula for the probability of the sum ol the events: P(AUB) =
—P(A)+ P(B) —P(ANB). Here A, B, AUB and A B denote, res-
pectively, the events of the recognition of the structure of interest as
A-structure, B-structure, «4 or B»-structure and «4 and B»-structu-
re. The probabilities P are evaluated by integrating p1(F) over the

domains of the space {Wj} corresponding to the events A, B'and
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AN B (see Fig. 2 where ¥ ={¥,, W,}). For this reason we limit our-
selves to the study of the case n=2 when & (§) =£. ().

The functions E(E), Ei(§) and E»(§) can be evaluated numeri-
cally. On the other hand, the following concepts make it possible to
obtain the closed analytical expressions.

Any 3-D structure consisting of
a finite number N> 1 of atoms is
fully characterized by the set of
3N—6 algebraically independent in-
variants. At the same time there
may exist some specific inequalities
between the values of invariants.
Such the effect is well-known in the
theory of nematic liquid-crystals
[22]. Hovever, the algebraic inde-
pendence of invariants W, doesn’t
imply the statistical independence of

Fig. 3. The domains of the feature
_ ; . space that give contributions into
their fluctuations. The statistics ol P(AlB).

fluctuations of invariants is gover-
ned by the effective hamiltonian. Namely, let’s write the probability
density of fluctuations in the form

o(F)=Cexp{— F(¥)}. (7)

Following the standard concepts of the theory of thermodynamic
fluctuations, see e. g. in Ref. [23], we expand the function F(¥) in-
to the Taylor series up to the quadratic terms in the vicinity of po-
int ¥ corresponding to the most probable value of fluctuations:

F(F)=F(#")+ % Zl: Brr Wi Wi, (8)

where ¥ =W¥ —W©® The substitution of (8) into (7) yields the
many-dimensional Gaussian distribution of fluctuations, for which
PO — (¥). Here (..) stands for «mean with the weight o (F)»,
formula (7). The matrix [ Bwll corresponding to the experimental
data is positively defined. The standard procedure of diagonalization
of matrix ||Bell yields the statistically independent linear combina-
tions of invariants. The quantities Pw are related to the elements of
the covariance matrix |pell: pu= (VY2 ¥i) =P ', where B, denotes
the element of the matrix ||B, | inverse to matrix ||Pull, see [23].

Thus, for the fluctuations of statistically independent invariants
corresponding to two chosen structures one has

13



Pr{@)—-_ U me(utjt]f i=1,2, (9a)
where
() 1 (¥ — (¥
Vogr )= et _
s \2n o Exp{ 20 )? } 0

Here ¢...); stands for «mean with the weight p;(¥)». In the second
part of this paper we present the numerical analysis of conditions
on which ansatz (9) can be applied to the description of the fluctu-
ations of some close-packed structures. Let’s discuss briefly the fac-
torization of the densities p;(¥), formula (9a). In Fig. 4 we present
the physical picture of fluctuations of invariants when the amplitu-
des of displacements of atoms have an upper bound. The shaded
area represents the values of invariants accessible to the fluctuati-
ons. Ansatz (9) together with the requirement W, Q; where Q, de-
notes a compact subset on the axis W, holds within any rectangle
lying inside the shaded area.

23F
hr\{E 05
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Fig. 4. The quantitative picture of
the fluctuations in the feature space
F=[¥, ¥, (see text). formula {10a).

Fig. 5. The dependence of %E on A,

The study of the fluctuations of the close-packed structures pre-
sented in the second part of this paper leads to the conclusion that
the mean-root-square deviations o depend weakly on i. In what
follows we neglect the differences between the values of o for dif-
ferent structures and take ¢ =o, where o, is structure-indepen-
dent. To evaluate the integral (6) we translate and rotate the coor-
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dinate system in the phase space of invariants so that the centers
(¥ yi={(W¥s),..] of the distributions lie on one of the new axes. It
is also convenient to use the quantities o; as the units of the length
on axes W, Such the choice is the natural one for the problem of
classification of structures. Namely, the values of dimensionless in-
variants ¢,=W¥,/o; don’t depend on the choice of the unit of length
in real space. In the space (¢} we define the (Euclidean) length |g|
of vector g={go,...} as Iq_ilﬂziqf. These simplifications yield the

following identities Eﬂ‘;‘)zEﬁ)zé—E(E); the surface @S coincides

with the determinant surface which, in turn, is a (&—l)-dimensio-
nal hyperplane in the k-dimensional feature space. One finds

A(E)
ElEy=1—@— ] ; 10
© (zx/z) L
where
D(x)= Ji: xg e " di (10b)
Vg

is the error function [24] and A(E) denotes the distance between
the centers of the Gaussian distributions: A(E) =I[(@)1(§) —
—({§>2(E)|. The dependence of A on § is the consequence of the de-
pendence of the parameters of p:(¥), formula (9), on & The plot of

the function %E(a) is shown in Fig. 5.

4. CONCLUSIONS

We have presented the mathematical formalism intended for the
description (recognition and classification) of the local structure of
condensed matter in the presence ol thermal displacements of con-
stituent atoms. This description turns out to be probabilistic in
nature. Thus, the appropriate language for the study of the struc-
ture of matter is this of mathematical statistics. In particular, the
treatment of the computer modelling results along the lines pre-
sented above would contribute to understanding of local structure
ol matter.

In the second part of this paper we apply the above formalism
to the description of local structures of some close-packed ciusters.
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The Statistical Description of Local Structure
of Condensed Maller.
Il. Close-Packed Structures

A.C Mitus" and A.7Z. Patashinskii

Instituie of Nuclear Physics
630090, Novosibirsk, USSR

ABSTRACT
Conditions of the recognition of structures of the
13-atom clusters (fce, hep, icosahedron) in the pre-
sence of thermal fluctuations of their constituent
atoms are studied in the framework ol the mathemati-
cal formalism of structural invariants presented in the
first part of this paper. The problem ol the choice of
small number ol relevant invariants at various tempe-
ratures is investigaled. The upper bound on the tempe-
rature of the existence of the close-packed «structurals
liquid —the close-packed mell—is estimated. The or-
der-parameter for the description of the structural
phase transition melt-melt accompanied by the change
of the local structure is discussed. The hierarchic
picture of local structure ol condensed matter is
proposed.

@

"'On absence of leave from Technical University, Wroclaw, Wybrzeze Wyspianskie-

go 27, Poland.

1. INTRODUCTION

In the first part of this paper [1] henceforth referred to as I, we
have presented the mathematical formalism for the statistical des-
cription of local structure of condensed matter in the presence of
thermal fluctuations of its constituent atoms. The aim of this paper
is to study, at various temperatures, the mutual distinction of the
structures that are the candidates for the structural units of simple
liquids and to discuss some other topics related to local structure of
condensed matter.

2. COMPUTER SIMULATION OF FLUCTUATIONS
OF STRUCTURES OF 13-ATOM CLOSE-PACKED CLUSTERS

Let's discuss briefly the concept of local structure of liquid near
its freezing line. As a rule, it's assumed that the small volumes of
dense liquids containing 10— 10° atoms, see e. g. Rel. [2], display
some type of structure. In what follows we assume that strong cor-
relations of atoms’ positions exist at least in the volumes equivalent
to the first coordination shells of the 3-D close-packed structures.
The results presented below maintain valid when the domain of
local order is larger.

The crystal structure of most of the elements near their melting
lines is close-packed one. The X-ray, electron and neutron structural
experiments show that, as a rule, the local structure of liquids near
the freezing line resembles that of the parental crystal, see e. g. in
hand-book [3]. The relative change of the density of simple liquids
at freezing temperature constitutes a few percent. For that reason
we have studied three 13-atom clusters, namely the «crystallogra-
phic» ones corresponding to nuclei of fcc and hep crystals and the
icosahedron, see also [4], as the candidates for the structural units
of dense liquids. Each cluster has N=12 «outer» atoms, equidistant
irom the central one located in the origin of the coordinate frame of
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the 3-D space. The distance from any of the atoms to the center is
taken as umnit of length. The computer simulation of fluctuations of
the structures was performed as follows. Each of 12 atoms of the
cluster was randomly displaced onto the surface of the sphere with
radius £ and with the center located in the atom’s position in the
ideal (i. e. nonfluctuating) cluster. No correlations of displacements
of atoms were accounted for. Two weight functions w(7) were used
to evaluate the values of the order-parameter (1.3). Here (lL.m)
stands for formula (m) in [. In the first case one obtains the

bond-order parameter [5]

(x?:m rE s TR Z }rarrr'lt [2 o {l ]

N (1}

The summation in (1) extends over all the points F* —the centers
of the atoms around the central one; Y,, are spherical harmonics
and Q% ={¢“;0”) denotes the polar and azimuthal angles that fix
the direction 7 /17|, Parameter Q;» characterizes angular correla-
tions and is independent on radial fluctuations of the atoms. Such
the fluctuations can be accounted for by the space order-parameter,
defined as the sum of harmonic polynomials

Rfm—_zyirrr{s}[ﬂk |—'|‘f-|1' ; {2]

[u.

We have studied the invariants

2
= 2£+| ,,”Z_{ Qi . L
R= T Rl (3b)
E_EE—’rlm);; ik o

for 1< 10.
]n addition to invariants ¥; (¥,=Q,; R/ the dimensionless in-
variants ¢;=W,;/a,(E) are used, where

: =
a(E)= 3 ; UF'EE}

denotes the averaged over the close-packed structures value of the
standard deviation o of the fluctuations of the invariants, see

Sect. 3.1. The length |§| of the vector ¢§={qgo, ...} was delined in L.
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The statistics of independent fluctuations of atoms used here to
lind the density of probability of fluctuations of the invariants is
lifferent from the statistics of thermal fluctuations of the cluster’s
atoms in a large system where correlations are present due to the
interaction. We assume that such the characteristics as the
hali-width of the distribution of fluctuations of invariants don’t de-
pend atmngh on details of the statistics of fluctuations of atoms
when the value E of the standard deviation of atoms’ fluctuations is
fixed.

The values of the invariants Q; (Ry=Q)) for the non-iluctuating
clusters are given in Table, see also Fig. 2 in Rei. [4]. Unlike the
cubic and icosahedral clusters the hexagonal cluster isn’t central-
symmetric one which results in the non-zero values of odd-rank
tensors.

Q @ Qs Q Qs & | & | & Q| Qu
fec | 0 0 0 |.1909| 0 |.5745| 0 [.4039 | O |.0129
hep | O 0 |.0761 | 0972 | .2516 | .4848 |3108| .3170 | .1379 | .0102
bes: 110 0 0 0 0 |.6633] 0 0 0 |.3629 |

The results presented below were obtained on the basis of
no=400 coniigurations (for each value of &) in the phase spaces
(Q/, [Ry, for each of the clusters. The case of ny=2000 configura-
lions was also studied; the results are, with good accuracy, the
same ones. Each new configuration was obtained by the change of
the locations of all the 12 outer atoms.

Preliminary results were published in paper [6].

3. RESULTS

3.1. 1-Dimensional Case

Lel’ verify the conjecture about the Gaussian distribution of
I“Iuctuatmna of the invarian. . see formula (1.9b). To this end the
non-normalized densities of the probability of fluctuations of two in-
variants, namely Qs and Ry were found on the basis of the corres-
ponding histograms, see Fig. 1. Qs and Rg are the members of the
set of most informative invariants, see below. The data presented in
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Fig. 1,a were obtained on the basis of ne=2000 configurations at
£=0.21. The plots of the «experimental» densities ol probability co-
incide, with an accuracy of a few percent, with the plots of the Ga-
ussian distributions. We have verified the hypothesis of the Gaussi-
an distribution of the fluctuations of invariant Qs for the hexagonal
cluster. The y2-test holds at the level of significance a=0.1.

p ¢(Qg)
(A)
2 4 3
\ %
) 035 ;\ »
350 0.525
3(Ry)
(B) _
3 Fig. 1. Nonnormalized probability
- S
densities of fluctuations of invari-
ants: p(Qs), E=0.21 (a) and p(Rs).
/ R £=0.135 (b) (f—fcc, 2—hep,
03 0.6 = 3 —icosahedron).

The data presented in Fig. 1,b were obtained on the basis ol
no=400 configurations at £=0.135. The hypothesis of the Gaussian
distribution of the fluctuations of invariant Rz for the icosahedron is
also accepted at aa=0.1. ,

These results show that the fluctuations of invariants Qs and Rs
can be treated, with good accuracy, as Gaussian ones. We assume
that this conclusion holds also for all the other invariants. In Fig. 2
the mean values of invariants (Q:)i, (Rg),-/n,ﬁe and the standard de-
viations o, and oy (/=3,..,10) are shown for a few values ol
parameter £. Index i=1,2,3 denotes the cubic and hexagonal clus-
ters and the icosahedron, respectively; the indices Q, R refer to the
spaces [Q) and [R). These quantities are the parameters ol the Ga-
ussian distributions, see (1.9). The values of these parameters cor-
responding to /=1,2 are, within the range of the «experimental» er-
ror, equal for the structures studied here.

The data presented in Fig. 2 make it possible to estimate the
number N,(§) of relevant invariants. By definition, relevant invari-
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ants «distinguish» the fluctuating structures at the given value of &.
The concept of relevant and irrelevant invariants has the probabilis-
tic meaning in the same sense as has the characteristic E(§) of the
local structure introduced in I. The upper bound on N.(§) can be
easily obtained since the plots of the functions {(Q:)i (E),
(R (E)/ 6 R(E) and r_rf'ﬂ,(%) display the existence of the horizontal
asymptotes. The asymptotical behaviour sets in the sooner the big-
ger value of rank / is. We assume that this is also the case of inva-
riants with /= 10. Il so, then the data presented in Fig. 2,a lead to
the conclusion that the invariants @, with {= 10 are the irrelevant

degrees of freedom for = § o ~0.20. The value §, ,=0.20 corres-
ponds to the total «merging» of the two fluctuating structures, i. e.
E(§ o) =1, see (I.10). In fact the fluctuating structure loses its
identity at smaller values of parameter E and, as the result the in-
variants Q; (/> 10) become irrelevant ones at some value §<C§, ;.
Hence, N,(0.2) <<8 in the space {Q,. The analogous analysis can be
made in the space {R). Though the values of (R;): (E) /0 r(E) don’t
tend to their asymptotical values in such the remarkable way as in
the case of invariants Q; see Fig. 2,b, one can estimate that for
> E p,~0.15 the invariants R; with {= 10 are irrelevant ones. On
the whole, the data shown in Fig. 2 confirm the qualitative physical
picture of fluctuations of the invariants presented in I, in particular
the existence of relevant and irrelevant invariants.

The invariants of rank [= 10 are relevant variables at smaller
values of & and, in particular, play an important role in the descrip-
tion of the crystal’s structure.

The analytic expression (1.10) for the probabilistic characteristic
E(%) was found on the assumption that the standard deviations e’]
don’'t depend on the type of the structure: 0" =a, The data presen-
ted in Fig. 2,c show that in the case of invariants Q, this equality
holds approximately for £~ 0.30 and is strongly viclated for sn-ill
values £a0.10 corresponding to the crystal phase. In particular, it
holds for £2=0.30 and {= 5.

Once the parameters of the Gaussian distribution (1.9) are
known, see Fig. 2, the problem of the recognition of fluctuating
structures can be treated quantitatively. An example of such the re-
cognition is pleeented in Fig. 3 where the dependence of some of Y
on displacement § is shown. For each value ol § thL bande corres
pond to the xelues ¥, such that |W,— (W) (§ ]I{e Y(E). Let’s sup-
pose for a while that the two fluctuating structures become indistin-
guishable ones when the corresponding bands intersect. Thus, in the
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Gaussian approximation (1.10) the probability ;—E'” of the erro-

neous recognition of any of them is —;-E‘” =0.16. In what follows

the functions E(E) evaluated in the n-dimensional spaces {Q4, [Ri
will be denoted by Ey(€) and Ey’(§), respectively.

The most informative of the calculated invariants are Qs for
which the intersection of the bands occurs at £=0.21 and Qs which
distinguishes the fluctuating icosahedron for £<C0.23. In the space
(R} it’s sufficient to restrict oneself to the study of invariants R4, Rs
and Rg: the other ones give no new information about the similarity
of the structures. The fluctuating fcc cluster remains distinct one
until £<C0.14, the hcp one—when E<C0.17 and the icosahed-
ron—when £<C0.13, see also in Ref. [6].

The recognition scheme presented in Fig. 3 can be repeated for
various widths of the bands. The probabilistic characteristic £(§)
corresponding to invariant Qs was evaluated in the Gaussian appro-
ximation (I.10) and is shown in Fig. 4. Note that this case is an
exceptional one since the standard deviations 6" don’t depend on
the type of the structure, see Fig. 2,c. The functions E(§) describing
the close-packed clusters coincide with one another.

The quantity E"(E) is an important characteristic of a fluctuating
structure and determines the degree of its fluctuational «merging»
with the other ones. Consider, for example, the problem of interpre-
tation of the results of the computer modeling of liquid’s structure
with fee local structure in the presence of thermal fluctuations cor-
responding to E=0.2. One finds, see Fig. 4, that approximately 109
of the 13-atom clusters will be identified as icosahdral ones.

3.2. 2-Dimensional Case

When the n-dimensional space (W, ({=1,...,n) is used to de-
scribe the fluctuations of the structure then the distinction of the
clusters is, as a rule, better than in the 1-D case studied in Sect.
3.1, i. e. E”(E)<<E"(E). This is so for the following reasons.

Let's discuss the projections of the many-dimensional plot of the
probability density of fluctuations onto the planes Q:—Q; and
Ri— R;. In most of the cases these projections can be obtained on
the basis of 1-D projections and thus are of no interest. Neverthe-
less, in a few cases, e. g. these of the sections Qs— Qi0, Rs— Rs and
Rs— Ry the domains of the «structural stability» of the icosahedron
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increase as compared to that found in the 1-D case. The distributi-
ons of probability corresponding to these «anomalouss projections
merge in a different way than the «normal ones» do. The two types
of the merging are shown in Fig. 5 for the projections Qe — Qs and

R¢— Rg. The shaded areas repre-

A Qg ARg sent the volumes of the phase
space of invariants accesible to

; P the fluctuations with the density
@ “ &P of probability exceeding some fi-
A s xed value. In this sense they are
: ks analogous to the 1-D sections
A (E=const) of the bands in

By Fig. 3. In the first case, corres-

(A) Qs (B) P ’Rﬁb ponding to the «normal» projec-

tions, see Fig. 5,a, the intersec-
2-D projections of probability densities t!uns S QA.D E”]Fl T BRI
of fluctuations of invariants: «normal» tions representing different struc-
(a) and «anomalous» (b) projections. tures take place at approximately
the same value oif & On the con-
trary, in the moment of the intersection of the 2-D «anomalous»
projections the 1-D projections display the noticeable overlap, see
Fig. 5,b. The distance A® (%) between the centers of the «normal»
projections is approximately the same as the distance AU(E) betwe-
en the centers of one of 1-D projections. Hence, E®(E) = EV(E), see
(1.10). In the case of «anomalous» projections A®(§)> AN (E) and
E®(g) < EV(E). In general, the distinction of two [luctuating struc-
tures is the better the more «essentially» non-zero components has
the vector joining the centers of the distributions of probability cor-
responding to the fluctuating structures.

Fig. 5. The two types of «merging» of

3.3. Analysis in Many-Dimensional Space of Invariants

Let’s study the mutual distinction of fluctuating structures in
10-dimensional space [¢i, {=1,...,10. To this end we have.evaluated
& i O LT — ey - i :
the distances A (&)= {(§F(E)— (¢);(§)] between the centers
(B (E), (§)(E), see I, on the basis of the data presented in Fig. 2,
and then. in the Gaussian approximation (1.10), the structural
- | L y | B i i
characteristics —E,, (), Fig. 6,a and —E; "(t), Fig. 6,b. For each
2 5 ’ 3 2 -
o r . (RO ey (10 e .
fluctuating structure the functions E, () and E, "(E) characterize the
error of recognition with respect to that one of other
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structures for which this error is the biggest. The role of invariants
with /= 10 was discussed in Sect. 3.1. For £= § o(§ ) they are ir-
relevant degrees of freedom and, consequently, function E"%E) is
identical to the structural characteristic E'™'(E) evaluated in the
space of all independent invariants. One finds

ESVE) =EYYE), 020, (4a)
EFS=EL R saU15. (4b)

One may expect, on the basis of arguments analogous to those pre-
sented in Sect. 3.1 that the identities (4) hold with good accuracy
"at much smaller values of E. |

The use of E'™)(E) instead of E"(E) diminishes noticeably the pro-
bability of erroneous recognition of the structure at 0.20<<E<C30. At
higher values of & the difference between the values of these func-
tions isn't so marked. The total «structural chaos» occurs at £~0.5,
i. e. when the concept of nearest neighbour loses its meaning.

The formulae (4) and Fig. 6 constitute an approximate solution
to the problem of the recognition of the fluctuating close-packed
structures with the help of quadratic structural invariants Q; and R

The structural characteristics E(&) studied above were obtained
in Gaussian approximation, see (1.9) and (1.10). Let's discuss
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briefly the factorization of the probability density of [luctuations,
formula (1.9), for invariants Q; and R,. In general,the problem was
discussed in I. To study the correlations between the flun;:tuations:_ﬁof
invariants we have evaluated the correlation matrix |lry |,
= (crjf] ™)~ where u,, denotes the element of the covariance
matrix: wp = (W% — (W )i{ W) In the case of invariants Q the
computed value of ] is small: r; <0.02 (§<<0.4). Correspondingly,
invariants Q; can be treated with good accuracy as statistically in-
dependent ones and the expression (I.10a) gives a good approxima-
tion for E(E). In the space |[Rj} the correlations are relatively small
for £<0.2. The values of ry (0.2) (/&) constitute a few percent,
with the exception of correlations i and ry_,,, corresponding to
the «anomalous» projections discussed in Sect. 3.2, for which
i (0.2)~r ,(0.2)~0.1. At higher values of §, e. g. for £=0.4 the
correlations corresponding to high-rank invariants are noticeable:
A" ,(0.4)~0.4. It means that the fluctuations of these invariants are
no more statistically independent; instead, the appropriate linear
combinations of R; should be introduced. Consequently, at these va-
lues of & formula (I.10) isn’t valid. Nevertheless, this fact doesn’t
influence the main results since for values of & bigger than
£—=0.2+-0.3 the error of recognition is so big that the fluctuating
structures are no more distinct ones, independently on the actual
value of £. Another restriction on the use of formula (1.10) follows
from the fact that our method of the simulation, see Sect. 2, results
in the existence of an upper bound on the values of fluctuations of
invariants. It was found that |g:— (@) (8)| <consta3. Thus, the
Gaussian approximation (1.10) for E(E) isn't valid when the main
contribution into E(§), formula (1.6), give the values ¢ such that
lr— (@eyi(E) [ ~3, i. e. for E(%}{E*ml—m(—ﬁ—.) ~1072%. The er-

V2

ror function ®(x) was defined in I.

4. COMPARISON OF RESULTS: {Q) vs (R4

The qualitative physical pictures of the fluctuational indistinct-
ness of the close-packed types of local structure characterized by
functions E, (§) and ER(£), coincide. On the contrary, in the physi-
cally interesting interval 0.10<<£<C0.30 the numerical results are
different. This important methodological difficulty is solved as
follows.
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As stated in Sect. 2 invariant Q; is sensitive to the specific 2-D
fluctuations of the atoms’ positions only. Namely, it's sufficient to
study not the actual 3-D configurations of the atoms but only the
projections of the atoms’ positions onto the surface of a sphere with
the center coinciding with the central atom. The mean-root-square

deviation of the atom’s displacement constitutes n=-+/2/3 of that
for 3-D fluctuations. Thus, it's reasonable to use the function
Et;m(a/'u) instead of Eﬁm(‘g'} as a structural characteristic that ref-
lects the 3-D nature of the fluctuations. One finds, on the basis of
data presented in Fig. 6 that the identity

EQ*(&/n) = ER°®) (5)

holds with good accuracy. Thus, the equivalence of the two descrip-
tions is restored.

So far, we have applied the formalism of structural invariants
to find the probabilistic characteristic E(E). Once this function is
known, the quantitative treatment of some topics related to the local

structure of matter is possible. In the next two sections we study
some of these problems.

5. THE QUANTITATIVE FORMULATION OF THE CONCEPT
OF THE CONDENSED MATTER

The formalism of structural invariants is intended for the analy-
sis of the results of computer simulation of structure of crystals, li-
quids and amorphous solids. On the other hand, the results presen-
ted above make it possible to study the local structure of condensed
matter from a new point of view. In particular, the qualitative con-
cept of the local structure of dense liquids, see Ref. [2], can be for-
mulated in a quantitative way. _ '

The concept oi «rndensed matter is, as a rule, used intuitively.
In this paper the term «condensed matter» refers to matter with
distinct type of local structure and, thus, has the statistical mean-
ing. In other words, the total probability # (£) of the erroneous re-
cognition of the local structure of condensed matter, see I, should
not exceed some small value #,. Thus, the condensed state of mat-
ter exists for E<C& ... where

ﬁigmﬂx} =% . (6)
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In this sense matter at £~0.5 is structureless and corresponds to
dense gas. The distinguished role of scale t=0.5 was displayed in
computer simulation of the structure of liquid argon by LaViolette
and Stillinger [7].

Let’s apply these ideas to the case of close-packed structures.
On the melting line the mean-root-square deviation &E. for the clo-
se-packed matter is, as a rule. small. For example, for the rare-gas
crystals (Ar, Kr, Xe, Ne), which display the fcc structure near the
melting line, at the melting temperature E»=0.09-+0.11, see
Ref. [8]. For these elements the local structure at melting tempera-
ture is well-defined since Eg”(Em)< 1. In the liquid phase the «me-
mory» about the parental local structure gradually vanishes as the
temperature (or equivalently £?) increases. The noticeable concent-
ration of clusters with some other type of local structure appears at
bigger values of § than S, see Fig. 6. For example, at =2, it
constitutes approximately 20%.

Formally, &.. depends on &,& (0,1). Physical arguments pre-
sented above imply that &,< 1. From our point of view it's reaso-
nable fo choose £, as this value of & at which plot of Ep"(E),
' Fig. 6, changes irom nearly horizontal to steep line, since at further
small increase of & the error of recognition increases rapidly. In our

case
Eoie & 0D s (7)

lLet's estimate value @»=& (0.15). For some fixed type of structure,
denoted by 1, one has % (£) =E3(E) + Es(E) —E2s(E), where E,, E;
and Es,; denote the probability of identification of structure 1 as
structures 2.3, and «2 and 3», respectively. At E=0.15 the distance
ﬂ';.fl.“’" {is=j=1, 2 3} in 10-dimensional space [Ri/o:(§)] is ﬁ&;mﬁfl.
Therefore, the overlapping of distributions is insignificant and
E.~ E3>> Eq;. Consequently, Z,=2E,(0.15) =0.05.

in order to estimate the width 7., of the temperature interval
where exists condensed state of matter one has to study the depen-

dence EXT) of the value of the mean-square displacement of an atom

averaged over the sample, on temperature T. Here ... stands for
«mean over the atoms». Let’s discuss this problem.

In the presence of distinct type of local structure the short-
wavelength oscillations of atoms with the wavelength of order of
mean interatomic distance a resemble high-frequency phonons with
wave-vector |E| ~n/a. Such the oscillations can be treated approxi-
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mately in the standard formalism of the theory of elasticity. In our
simulation the atoms fluctuate independently and one can expect
that the fluctuations of the structure resemble the ones that occur in
the presence of high-frequency phonons. The situation changes dras-
tically when low-frequency shear deformations are accounted for
since liquid starts to flow. Such the type of atomic motion doesn't
affect, in_the first approximation, the local structure. Consequently,

function EXT) can be split into two terms

BT = Es(M+EUD), (8y

where £2(T) denotes the contribution from short-wavelength oscilla-
tions of atoms that take place in domains of distinct local order
(«good matter») and & (T) —the contribution from other types of
atomic movements that occur mainly in domains of defective struc-

ture («bad matter»). Mathematical formulation of concepts of
«good» and «bad» matter in liquid

state can be found, e. g. in paper AP
(9] of Patashinskii and Shumilo.
The arguments presented above
show that in the crude approxima-
tion the harmonic-approximation
formula E2(T)~T is valid for

I

«goods» matter. Thus, using (7) and
accounting that §»=~0.1 one finds /
lotex ™ Llm (9)
where T, denotes the melting tem- “rl‘m 1; Tt’

perature. The critical temperature T. :
Fig. 7. The qualitative phase-diag-

of rare-gas liquids constitutes . 5 of the close-packe
c=1.8Tn, see [10}. The qua]itﬂti\fﬁ matter, The shage.-l:i i_lrei :ggfeeﬁllsrﬁi
phase-diagram of close-packed con- the supposed «condensed» state of
densed matwr is shown in Fig. 7. liquid, i. e. the melt, see text.
The shaded area represents the

«condensed» state of liquid, i. e. the melt. Problem of the recogni-
tion in the vicinity of critical point remains open.

Numerical results (7) and (9) lead to the following physical
picture of local structure of condensed matter. Big values of &,
(E.../Em=~1.5) and T,,, (T../Tn=2) imply that the domain (in
p-T plane) where condensed state of matter exists spreads notice-
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ably into the part of p-T plane corresponding to liquid phase. This
qualitative result is of considerable importance for theoretical des-
cription of phenomena that occur near the melting line. In particu-
lar, it gives firm ground to microscopic [9] and phenomenological
[11] theories of melting, in which the concept of local structure is
used a priori to justify the introduction of the effective-hamiltonian
formalism. Consequently, the foundations of more and more popular
[12] concept of structural phase transition liquid-liquid accompa-
nied by the change of the type of local structure [13] can be better
understood.

On the basis of computer simulation results of liquid argon’s
structure LaViolette and Stillinger have pointed out in Ref. [7] that

the value of standard deviation E(T)=(E%T))'* changes nearly
discontinuously in liquid from §.=~0.1 to £=0.5. Let’s discuss bri-

efly this problem. To this end we evaluate ET), £3(T)) and E/(T)) at
Ty~ T, in melt starting from concepts of local structure presented
in Ref. [9]. Namely, most of the atoms belong to connected doma-
ins of «good» matter with characteristic size R>a. These domains
have the same type of local structure (tangent lattice). The structu-
reless domains of «bad» matter contain small fraction n; of atoms.
Such the physical picture is self-consistent when n;<1. We assume
that the dispersion &% of atom’s displacement is E2(T)) =E%=0.01
for «good» matter and E§(T\) =1 for «bad» matter. If n,=0.1 then
E(T)= EX(T)) +E}(T)=0.0140.10 and §(71) ~0.33 ~3Em. As ex-
pected, Ef (T1) >E(T)).

At T= T, the three close-packed structures merge into a new
type of close-packed «structureless» pattern. It can be expected that
analogous phenomena exist for other, non-close-packed types ol lo-
cal structure. Consequently, the following hierarchic physical picture
of structure of liquid emerges. In the close vicinity of the melting li-
ne each liquid is the melt with the defined pattern of local struc-
ture — the structure of this liquid. Different melts can display vari-
ety of patterns of local structures. At higher temperatures some of
them become fluctuationally indistinguishable. The classification ol
structures is still possible in terms ol new classes of structures,
containing the merged «old» ones. The «fluctuational crystallogra-
phy» of melts will be studied elsewhere.
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6. SLOW VARIABLES

In phase spaces of invariants ¢; and W, the m P
and (W) are represented by curves parametrized beya%. vﬁé?ﬁ: §<E?JI
corresponds to ideal structure for which some of ¢ tend to infin;
Fu::r §= 0.50 the§e curves terminate in fixed points ¢, ¥* whei
Qi~0.28 and Ri/o’,(0.5)~03 (I=3, .., 10), see Fig. 2.0.b. The
pmcess_mf overlapping of two distributions is determined b}: T:fEi{}Cit
of relative approach of their centers {¢). Let’s translate and rot&tz
the courdin_a_te irame so that new axis 1 coincide with direction of
the vector @, @;;= (§)i— (§);. The linear combination

P = Zalk (&) @ (10)

where a,(5) denotes elements of the rotation i '
: : matrix, defines th
slow variable of our problem. In terms of ¥,'s formula (10) reads :

HEE
%=Z——“ ® g, (107)
E

auE)

Dlsfrlburtmns of probability of fluctuations of slow variables (10)
(107) give the maximal information about the distinction uf strucj
tures, see bfallﬂw, Quantity ¢y is the order-parameter for structural
phase transition melt-melt. Concept of «structural hydrodynamical
mode» agrees with results of computer simulation of relaxation of
«structured» liquid presented by Hess [14]. In 1-D and 2-D cases
r.:urresp_unding to invariants Q;, see Sect. 3.1 and 3.2 Psi~Qs. In ge-
neral, in m_any-clirnensinnal space variable g dﬂES]‘i’t -coin{:f;tie w%th
any {)f_ variables ¢, The difference between ¢sr and any of dis-
plays itsell in the difference between E,"3(E) and Ej4(E), see Egs 4

: : R
and 6. Slow variable is effectively 1-D characteristic. It follows

from its definition that Ey™(5)=E" ().

. Cod.fficients a,, in (10) depend, in general, on value of & It's a
consequeiice of the_fact that the high-rank invariants become irrele-
\:rani ones when £ increases, i. e. when the values of corresponding
components of vgctor wi; become small quantities. The way in which
a nfwd Sl{)hw vatnat;ile appears in the system when £ changes is pre-
sented schematically in Fig. 8. At E<min(g, & = ¢ i

&> max (&, §2) @s1=q@a. s oL

37



Fig. 8 The qualitative physical pic-

ture of the functional dependence oi

slow mode ¢u on value of E, see

text. The solid curves [, 2 describe

the trajectories (§) parametrized

2 by &, corresponding to the fluctua-
?ﬁ- tions of two structures 1 and 2.

7. CONCLUSIONS

In this and previous (I) papers we have presented the forma-
lism of structural invariants intended for recognition of structures
in the presence of thermal fluctuations of constituent atoms. Struc-
tural characteristics of fluctuating clusters have probabilistic mean-
ing. This formalism was applied to describe fluctuating 13-atom
close-packed clusters (fce, hep, icosahedron) and, in particular, to
estimate the domain (in p-T plane) of existence of «structureds
liquid, i. e. the melt.

We have studied here quadratic invariants only, see (3). The
more sound understanding of the fluctuations of structure of con-
densed matter will arise when cubic, quartic etc. invariants of para-
meters (1) and (2) and, in particular, the invariants constructed
from Q. and Ri» with different values of / are taken into account
in a systematic way. Recall that tl]ke irreducible tensor of rank [ has
9(1—1) independent invariants ¥,”, k=1, ..., 2(/—1), see 1. One
can expect that among all those invariants there are new T't?lfi"u’ﬂﬂt
ones leading to further increase of degree of structural stability of
fluctuating clusters. The discussion of these problems is beyond the
scope of this paper.

Our formalism is intended mainly for the analysis of results of
computer simulation. The configurations of atoms of model liquids
and amorphous solids can be generated via molecular dynamics and
Monte Carlo methods. The study of the statistics of clusters in the
manner proposed in this paper, though even it constitutes the notice-
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able computational task, would contribute strongly to understand-

ing of structure of condensed matter.

Let's review briefly some of the topics related to local structure
of condenscd matter that can be studied via the formalism of struc-
tural invariants.

1. Investigation of hierarchic picture of local structure of liquids at
various temperatures («fluctuational crystallography» of con-
densed matter).

2. Study of new hydrodynamic modes in melts, related to invari-
ants with various ranks /.

3. Study of efifects that might occur in the critical point of structu-
ral phase transitions melt-melt.

4. Investigation of restrictions on computer simulation of local
structure. Some of these problems are at progress now.

One of us (A.Z.P.) thanks the participants of conference
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and acknowledges the hospitality of the Institute of Low Temperatu-
res and Structural Investigations of Polish Academy of Sciences in
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