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ABSTRACT

Using simple examples, a comparative analysis of the
two different mechanisms of intrinsic noise in a dyna-
mical system is presented. The first, traditional, one
with a discrete spectrum is related to a very big num-
ber of freedoms N—oo, and frequencies N,—oc, of a
completely integrable system, both classical as well as
quantum. The additional statistical hypothesis on the
statistical ensemble, and restrictions of the initial con-
ditions are required. The second, new mechanism of
noise with a continuous spectrum is based upon the
exponential local instability of motion in a noninteg-
rable classical or semiclassical system, and it does not
depend on N. This mechanism allows a purely dyna-
mical approach to the statistical laws, and opens a
new domain for their application to simple (N~1)
systems. However, in quantum mechanics only the
lirst mechanism is operative as N,— oo, independently
of N, but also under restrictions on the initial condi-
tions. Some developments of the random matrix theory
are discussed, which describe the global structure of
chaotic eigenstates of a quantum system.

") A talk given at the 4th International Symposium on Selected Topics in Statisti-
cal Mechanics, Dubna, 1987.
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A distinctive feature of a «statistical system», as the object of
the statistical mechanics, is the principal role of random fluctua-
tions, or the noise, of some nature. It is just noise that, on the one
hand, prevents the prediction of a system’s complete highly intricate
dynamical evolution, and, on the other hand, greatly simplifies the
statistical (incomplete) description of the most significant process of
a nonrecurrent (aperiodic) relaxation which leads to a statistical
steady-state, in the simplest case. Clearly, the study of noise mecha-
nisms is of a great interest for both the fundamental physics and
various applications. This is especially important for «intermediate
systems» like heavy and middle nuclei, and still more for the atoms
whose dynamical as well as statistical description are very compli-
cated. I mention, in passing, that the main difficulty of an «eternal»
problem, the hydrodynamic turbulence, is of the same nature.

Until recently, only one dynamical mechanism of noise had been
considered (let us term it the fraditional one), related to a huge
number N of freedoms in a dynamical (hamiltonian) system. Even
though at any finite N the motion ol such a system is quasiperiodic,
i. e. has a discrete spectrum, the trajectory becomes so intricate that
it imitates a «random» process fairly well. This mechanism has been
studied up to now in detail, and it can be substituted in practical
calculations by an external random noise with some prescribed sta-
tistical properties, the former driving the dynamical system in ques-
tion. In this approach the system may have any number of free-
doms, all the complexity ol statistical fluctuations being related to
the extrinsic noise, particularly, to some thermal bath of a given
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temperature. I mention that such an approach has led to the forma-
tion of a whole new branch of mathematics (of the probability
theory), the stochastic differential equations.

Recent intensive studies have revealed a completely diflerent
dynamical mechanism of noise which does not depend on the num-
ber of freedoms, and which is determined by a strong motion insta-
bility, completely unnecessary for the traditional mechanism. This
new phenomenon has been termed the dynamical chaos. Sometimes,
it is also called stochasticity, yet one should not miss the principal
difference of the latter from the phenomenon described by stochastic
equations.

The main topic of my talk is (he discussion of interdependence
among the two noise mechanisms in classical and quantum mecha-
nics.

i. THERMODYNAMIC LIMIT, OR RELAXATION
IN CONTINUOUS SPECTRUM

Below we restrict ourselves to the discussion of simplest models
only, in order to emphasize the principal questions of noise mecha-
nisms. Consider a classical many-dimensional linear oscillator with
Hamiltonian

N
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Here apn=0m, and e is a small perturbation parameter, so the mo-
del is a system of weakly coupled one-dimensional oscillators. As it
well known, this system is completely integrable, and for any given
coefficient matrix ol the potential energy

I:I_]?j

U = - i —F EXmn (1:2)

the solution is readily available via diagonalization of the matrix.
An instructive analysis of this apparently simple problem is given in
Rei. [1]. However, we may put a more complicated question on a
genteric (most probable) behaviour of a many-dimensional linear os-
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cillator. This question can be answered by means oi a statistical
theory in which matrix elements U,, are assumed to be random
numbers taken from a ceriain statistical ensemble. Notice that in-
terpretation of the random as the generic has received recently a
rigorous mathematical justilication in Kolmogorov's algorithmic
theory (see, e. g., Ref. [2]).

Even though for any particular realization of matrix (1.2) the
quantities @m, do not depend on time, their random dispersion is
just the origin of a permanently fluctuating noise as N— oo.

Notice that Unn=Hu. in Eq. (1.2) may be also considered as
matrix elements of the Hamiltonian operator for some quantum
system with discrete spectrum. Thus, a far-reaching analogy be-
tween classical and quantum problems arises which will be dicussed
in detail in Section 5 below. The most fascinating and surprising
point of this analogy is, perhaps, in that a very particular classical
system (linear oscillator!) proves to be related to a whole broad
class of quantum systems.

A generic description of such systems is provided by the statisti-
cal theory of random maltrices (RMT) (see Refs [3—35]). In case
of real H,, the so called Gaussian Orthogonal Ensemble (GOE) is
usually assumed, which is invariant in respect to any rotation of the
basic vectors. In other words, the generic statistical properties of
such a system are independent of the choice of basis and, hence, are
completely determined by matrix Hu.., and by the corresponding
classical model. This important property forms the ground of
Dyson’s version for RMT [3]. He criticizes the assumption on Hu,
randomness as physically unclear. However, Dyson’s approach per-
sues, actually, the same end, namely, to describe generic properties
of a quantum system.

Coming back to the classical problem, assume, first, a natural
(but noninvariant) normalization

Ghmp ~ -ﬁm?r ~ wa\ & [l.!'.?i [lSJ

to get rid of w3 average, insignificant to the problem. Here A is an
effective full interval of unperturbed frequencies w, related to their
density 1(w) by the expression
Podml e (1.4)
dw, A
Density v has dimensionality of time, and it is going to play an im-
portant role in what follows.



Let us separate the many-dimensional oscillator into two un-
equal parts, a «test» oscillator n=0 (we shall drop this subscript
below), and the «thermal baths n=1,..., N. Diagonalize the bath,
i. e. transform it to the normal modes

Qn=br‘imq.m; mrnzl!"'1 N. {15)

Here b, is an orthogonal matrix that is
bﬂ."]‘! E}ﬂm' '—_'ﬁmm’ - ( 16]

We arrive at Bogolyubov’s problem [6] (1945 year) on statistical
relaxation in a classical system with Hamillonian

N

H=E+ Y (Ea+ecnQug). (1.7)

n=1

It is easily verilied by using normalization (1.6) that new
{Cﬁrﬁ}:ﬁl{fl?mr)’-

In paper [6] Bogolyubov rigorously proved that under certain
conditions the test oscillator approaches statistical steady-state of
the thermal bath. IT initially E(0) =0, the relaxation takes especi-
ally simple form:

p(E, )= %e_f“; )= To(l —e™ ™) (1.8)

where p is phase density of the ensemble of test oscillators, and
~where Ty is bath temperature. The relaxation rate

v= — g% Nw) (1.9)

is determined by the perturbation spectrum density

J(m}szﬁfi‘ﬂ. (1.10)

Another particular case of relaxation is also interesting, namely,
E(0)=Eo> Ty, T(0)=0, that is the oscillator is initially in a dyna-

mical state. Then, regardless of the initial oscillator phase,
(Ey=FEoe ™™ 3 T; 'T=Tol—e~ ") (1.11)

where brackets (...) denote the ensemble (phase) average.
6

Curiously, the dissipation of the energy of coherent oscillations
into heat is controlled by a peculiar conservation law

Tol EY 4 BT s Poly==const . (1.12)

Consider now the conditions for relaxation [6]. The most impor-
tant one is the transition to the thermodynamic limit in thermal
bath

N—oo;, e—0 i—m&:gNz const < 1. (1.13)

In the last estimate the normalization (1.3) is used. In thermodyna-
mic limit the perturbation spectrum for the test oscillator becomes
continuous, hence the term «relaxation in continuous specirums»! The
importance of this condition is in that only continuous spectrum
provides permanent relaxation, i. e. an aperiodic process distinctive
ol statistical mechanics.. ;

Would the relaxation always be exponential? It depends on the
relative rate y/A, and on function f(w). It is required in Ref. [6]
that in thermodynamic limit the density J(w) should be a continuo-
us (nonsingular) function of w. Then, for the sufficiently small vy,
/{w) ~const within the interaction domain Aw~y. As rigorously
proved in Ref. [6] the relaxation is exponential under this condition.
Otherwise, a nonexponential relaxation may occur [1].

This can be demonstrated in the following simplified way (see
also Ref. [1]). Consider the motion -equation for the test oscillator
implied by Hamiltonian (1.7) with an additional Iriction force — ug
as the reaction of thermal bath. Then, the expansion g=#6,Q, in
bath normal modes is described by the expression

9 gt

(i — P4 plel’

i

If @i~ const, it is a Lorentzian spectrum due to the -resonant deno-
minator. Moreover, as the normal modes of the full system (ther-
mal bath+probe oscillator) are close to Qn as N— oo, the relation
bubn=1 holds (1.6), and p=y. The time average F=
= (En) (@on~ o) =T, The exponential relaxation is, thus. a direct
implication of Lorentzian spectrum

i L 5V e ] | (1.14)
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Here Aw=w —w,, An~7t-Aw the detuning from resonance in the
number of normal modes, and a new parameter

®=7FT (1.15)

characterizes the number of bath oscillators effectively interacting
with the test oscillator during relaxation.

Another important condition for relaxation is a restriction of the
system initial conditions excluding the excitation of a few normal
modes. In the limiting case of just a single mode the energy of the
test oscillator would remain constant. Clearly, as N—oo the proba-
bility of such initial conditions is rapidly vanishing.

Notice, that under the latter condition the relaxation proceeds
symmetrically in both directions of time ({—-oco) because Bogo-
lyubov's model (1.7) as well as (L.1) are time-reversible. In this
connection it is worthwile to mention that Loschmidt’s paradox on
ostensibly irreversible relaxation ol a dynamically reversible system
is, actually, the confusion of two different notions, the relaxation re-
versibility upon velocity reversal, and nonrecurrence of phase den-
sity p(f) in a closed system without any external interference.

In Ref. [6] the distribution of thermal-bath oscillators was assu-
med to be Gibbsian. However, this is not crucial in that the equilibri-
um temperature may depend of frequency: To—>To(®) = (£n), —0 gk

In conclusion of this Section 1 emphasize again that the traditio-
nal noise mechanism requires the actual interaction of a rei.xing
system with a large number N—oo of other freedoms, that is it
needs a very many-dimensional «thermal bath» in a «typical» state
specified by some statistical ensemble.

2. DYNAMICAL CHAOS IN CLASSICAL MECHANICS

Now, consider a totally different mechanism of noise, the dyna-
mical chaos, which can been discovered or, better to say, compre-
hended in recent extensive studies (see, e. g. Refs [8, 9]). The most
striking distinction of the new mechanism is its independence, in
principle, of the number of freedoms ol a closed system.

To begin with, consider a couple of «simple» examples. The first
one is the motion of comet Halley driven by Jupiter's perturbation
[10], the famous three-body problem. The second, related, example,
is the classical photoeffect in Hydrogen [11]. The simplest model
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for the both is described by the same two-dimensional canonical
map (see Refs [10, 12]):

Wy 41 wal+HF[xn)1

PR SO vy . (2'”_
which specifies the change in energy w (in appropriate units) in co-
met (electron), and of perturbation phase x of Jupiter (monochro-
matic electric field) per one revolution of comet (electron); p is
small perturbation parameter proportional to Jupiter’s mass (field
strength); F(x) the periodic function (F(x)=sin (2nx) in the se-
cond example).

Model (2.1) has 1.5 freedoms only as it is one-dimensional oscil-
lator driven by an external (given) periodic perturbation. Neverthe-
less; under certain conditions, the motion of this model becomes
highly irregular and unpredictable, described by some diffusion equ-
ation. Hence the term «diffusive photoeffects in the second example.

This mechanism of noise is explained by a strong local instabi-
lity of motion which, in turn, is described by map (2.1) linearized

about some (generally chaotic) trajectory xj, wi:

dF(x5)
dx,

6m‘n—|—1:6wu+u ﬁxrn

: (2.2)
E'xrt—l-l = Ox, — ?{w2+t}_5ﬂ O0W, 41 -

Here (8x,, Ow,) is the tangent vector of length [. The local instabi-
lity is characterized by Lyapunov’s exponent
G Tt Sl s 2l

R Iy

(2.3)

N

The inequality, that is «exponential» instability, is necessary and
sufficient condition for dynamical chaos (see Ref. [2]). It must hold
on a set of initial conditions (xg, wg) of dimensionality bigger than
one to exclude the case ol an isolated unstable periodic trajectory.
Moreover, the motion should be bounded, at least in some variables
(in x in Eq. (2.1), for example).

In model (2.1) the inequality A= 0 is always realized for a
sufficiently small w. It is easily wverified firom the relation
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(see Ref. [8])

A 3 . 0 \_g5modFxy
L =] — —(w, )M —,
5x. g \Entl T

According to the above mentioned algorithmic theory of Kolmo-
gorov the chaotic trajectory is unpredictable in that the related
information per unit time

—— A [ — 4 o0 (2.4)

does not decrease as [f|-+o0c [2]. It implies that for each new time
interval one needs a new information which cannet be extracted
from measurement, to arbitrarily high but finite accuracy e— 40, of
any preceeding section of trajeclory.

Obviously, over any finite time interval the pr(,dlctu::-n of chaotic
trajectory is quite p(}%s]ble, and is controlled by the randomness pa-
rameter [14] (see also Ref. [15])

Al

9= - :
Hne

(2.5)

Prediction corresponds to a finite domain of femporary determinism
(##<1) which turns, as % increases, to the infinite domain ol
asympliotic randomness (%> 1). For example, even though the tra-
jectory of comet Halley is predicted to a very high accuracy on a
iew month time interval and still salisiactorily on one revolution
(75 years), it is completely prohibitive to predict if the comet would
be ejected from the Solar system at the nearest intersection of its
orbit with that of Jupiter in about 100 revolutions.

A still simpler example ol dynamical chaos is described by

one-dimensional (!) map of the unit interval on itself (see Refs
9 23] )

$oy1=Fkp, mod Il (2.6)

with any integer 2> 1. A diiferent representation of the latter
model 1s complex map

B dnfyg
zr}—r—l =2y , Z=¢ . [2?}

the

solution of difference Eqs (2.6, 2.7) is available in explicit form
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2, =2""  @.=qk" modl. (2.8)
Yet, it doesn't help at all to get rid of chaos which is born upon
transition from regularly increasing but nonphysical angle (phase)
@ to the physical direction ol z vector determined by ¢ modulo 1.
Another example of same sort, the map (see Ref. [9])

Xy 1 =4%, (1 —x,) (2.9)

also admits the explicit solution
x,=sin’(2"pg) (2.9)

which shows its relation to maps (2.6, 2.7).

The reason why a very simple system may exhibit so complica-
ted behaviour is in that the system must «provide» strong (exponen-
tial) instability only. The true origin of dynamical chaos is in conti-
nuety of phase space in classical mechanics. Exactly Tfixed (for-
mally!) initial conditions contain already an infinite amount of in-
formation which is «pulling out» by the mechanism of local instabi-
lity. In any dynamical system the initial conditions completely deter-
mine the whole trajectory, ol course, yet in an unstable system
almost any ol those trajectories proves to be chaotic [2].

The spectrum of dynamical chaos is always continuous or, to be
more precise, it is bound to have a continuous component indepen-
dently of N. Also, there is no need in additional statistical hypothe-
ses, like the choice of an.,-matrix ensemble, which would provide ge-
neric behaviour of a system. Actually, a minimal hypothesis still re-
mains, namely, the motion initial conditions should not belong to a
certain set of zero measure, including, particularly, the everywhere
dense set of unstable periodic trajectories. This hypothesis is the li-
miting case of the restriction on initial conditions in the traditional
noise mechanism (Section 1).

The importance of dynamical chaos is, first of all, in the extensi-
on of statistical mechanics onto a completely new region of simple
(small N) dynamical systems. The statistical laws here are gene-
rally rather different, of course, from those in the thermodynamic li-
mit which simply does not exist here. For example, even the micro-
canonical distribution is not necessarily reached if the chaotic com-
ponent comprises a part of energy surface only. Another example: a
homogeneous diffusion in chaotic system may be both superslow
[16] as well as superfast [17] that is the dispersion of distribution
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function o”oc f’ grows not necessarily in proportion to time
(o<t p=2).

The dynamical chaos has many applications in various domains
of classical mechanics and other branches ol science. The time,
when this phenomenon looked exotic and made confusion, has
passed.

Nowadays, the dynamical chaos is come across literally every-
‘where. However, il one tries to consider it as a fundamental law in
physics a «little» difficulty arises, namely, there is no classical
mechanics in the Nature. It is only approximation, the limit of quan-
tum mechanics. An important question arises if the dynamical chaos
is possible in a quantum system?

3. QUANTUM CHAOS,
OR RELAXATION IN DISCRETE SPECTRUM

Chaos in quantum mechanics seems, at the first glance, to be
inevitable in view of the probabilistic interpretation of a basic quan-
tum quantity, the state vector y. However, this chaos appears only
in a very specific process, the measurement, which is, in a sence,
«foreign» to the quantum mechanics as it involves the «invasion» of
the classical device, observer and the like.

Is dynamical chaos possible in the proper quantum dynamics,
i. e. in the time evolution of  state vector? It turns out that it is
not because the energy (and frequency) spectrum of a bounded
quantum motion is always discrete. This was clear already to
Krylov [18] in late fourties and is related ultimately to a funda-
mental property of quantum phase space, namely, to its discreteness
(see Refs [19, 7]). On the other hand, the correspondence principle
(also Tundamental!) requires some transition to the classical chaos.
This apparent paradox was discussed, and has been resolved in
Rel. [19] by introducing characteristic time scales of the quantum
evolution. The most important one is the diffusion scale (/;) depen-
ding on the average density n of energy (or quasienergy) levels in
a quantum system:

ty ~ BN . (3.1)

Quantity n is determined by those eigenstates only which are actu-
ally present (excited) in a given initial state ol the system. This is
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especially essential for the quasienergy whose full level density is
infinite, as a rule, because its values are taken modulo 2a#/T where
T is the period of external perturbation.

Thorough numerical simulations [19—21] reveal that in quan-
tum system a process close to the classical diffusion does occur for
t<Ctq, and under additional condition

Vn =1 (3.2)

where V' is the perturbation matrix element. The latter inequality
implies a strong mixing of unperturbed states, or the breakdown of
the quantum perturbation theory. In the opposite limiting case
(Vn<l) the unperturbed states persist no matter what would be
the system behaviour in the classical limit. In the problem of quan-
tum chaos the condition (3.2) had been first formulated by Shuryak
[22], and was used than in many other papers (sometimes without
any reference to [22]).

I emphasize that inequality (3.2) alone does not imply the quan-
tum chaos (diffusion). For example, in case of one isolated non-
linear resonance the mixing of unperturbed states is of a regular
nature, and the eigenfunctions are restricted within the resonance
domain [22, 23]. The quantum chaos requires also the chaos in the
classical limit [19].

In any event, the numerical experiments show that for {>>{, the
quantum diffusion completely stops, and only some stationary oscil-
lations are left (not to be confused with a stationary quantum state,
described by the eigenfunction!). This peculiar quantum phenome-
non, first observed in Rel. [20], has been termed the guanium loca-
lization (of classical dynamical chaos). It may be considered as a
dynamical counterpart of Anderson’s statistical localization in solids
[30]. I emphasize that the quantum localization can occur in spite
ol a strong mixing of many unperturbed states with close energies,
that is under condition Vn>1 (3.2) due to coherence of a y wave.

This is why any time-dependent noise delocalizes quantum system
destroying its coherence [31, 32].

The limiting localization under Vn<1, i. e. the persistence of
the unperturbed states, is called sometimes perturbative localization.

In case of quantum localization the swing of almost-periodic os-
cillations decreases toward the classical limit. Notice that so called
«Poincare’s recurrence time» of almost-periodic function sharply
increases with the recurrence accuracy, and greatly exceeds /4.
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The physical meaning of diffusion scale #, is direcily connected
with the time-energy uncertainty relation because the spectrum dis-
creteness comes into play on time ¢>»h/AE=hn~t; only. If in the
classical limit the motion has a continuous spectrum (classical
chaos), n—o0, and ¢, indefinitely grows.

But a similar (time-frequency) uncertainty relation holds in the
classical mechanics. Hence, the mean frequency density © (1.4) does
also determine some characteristic time scale ol classical evolution
at finite M. Thus, a similarity is suggested [7] between the ther-
modynamic limit in the classical model (N, t—o0) and the classical
limit in a quantum system (n, {;—o0). The most important distine-
tion is in that the limiting continuous spectrum in a quantum
system depends not only on its number of freedoms (which may be
small as in classical dynamical chaos) but also on a big number of
frequencies N,ocn which determine the quantum dynamics at any
N. In the traditional {quantum) statistical mechanics the growth of
Nuo~N with N only is taken into account. However, with chaos in
the classical limit, the number N,— oo independently of N. This is
just the main significance of the classical dynamical chaos in the
problem of quantum chaos in quasiclassical region. I mention that
arising of chaos in a classical system may be interpreted as a limit
transition N,—oc at finite N, due to divergence of the perturbation
theory series.

At any finite N, i. e. arbitrarily far in quasiclassical region (but
not in the classical limit!), the quantum chaos is but a simulation of
the true dynamical chaos. Hence, the term «quantum pseudochaos»
[7]. In view ol a finite time scale f; for the quantum diffusion the
quantum chaos is called also «fransient, or temporary chaos»
1197}

Interestingly, the quantum diffusion and relaxation are rather
different in nature from those in classical dynamical chaos as there
is no strong instability of motion in the former case. This has been
inferred from the reversibility of quantum diffusion («echo» pheno-
menon) in numerical simulation in spite of computation errors [21,
24]. Even continuous component of the spectrum in the diffusive
photoeffect does not cause any strong instability, nor it prevents the
reversibility [24]. 1 mention that for an unbounded quantum motion
only one (rather exotic) model is so far known with the true dyna-
mical chaos in the configurational space of angle variables, due to
an exponential growth of the conjugated action variables [25].

However, the dynamical chaos is quite possible in a semiclassi-
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cal system where some freedoms (if only one!) are described classi-
cally. The simplest example is a two-level quantum system interac-
ting with a single mode of classical electromagnetic field [26]. A
more interesting case is the three-level system coupled to two mo-
des of the classical field. Here the dynamical chaos may occur at
arbitrarily small (!) coupling parameter [27]. In a simple classical
model this curious degeneracy phenomenon had been discovered by
Ford and Lunsford [38], and then studied by many others [39, 27]
(see also Fig. 2.11 in Ref. [9] and its explanation in Rel. [40]).

An important application of the theory of semiclassical dynami-
cal systems is the process of measurement in a quantum system by
the classical device. There exists a hypothesis [28] that irreversible
(or, more precisely, nonrecurrent, see Section | above) collapse of
p-function is caused just by the dynamical chaos arising in such a
system.

4. CLASSICAL RELAXATION IN DISCRETE SPECTRUM

Coming back to the classical model, let us try to aswer a funda-
mental question in traditional statistical mechanics: is there any re-
laxation at finite N, and, if so, in what does it differ from that in
the thermodynamic limit? To the best of my knowledge, this prob-
lem has not yet been studied in any detail, apart from a few brief
remarks in literature (see, i. g., the end ol paper [29]). In the con-
text of quantum chaos this question was discussed in Rel. [7] using
a simple example of linear oscillator (I.1).

Since for {<< N/A=1 the classical relaxation proceeds as if in a
continuous spectrum, that is as if in the limit N— oo (uncertainty
relation), the result crucially depends on the ratio of scale t to re-
laxation time f~y ' (1.9), i. e. on the quantity x=9yt (1.15) which
may be called the discreteness parameter (of the spectrum).

If this parameter is big (%x>>1) there is enough time for the re-
laxation to get accomplished. For example, the average energy of a
test oscillator £~ Ty will be close, independently of its initial value
E(0), to the temperature of the thermal bath. However, unlike the
relaxation in continuous spectrum (in the thermodynamic limit), the
phase average (E) ol the ensemble of test oscillators would suffer
residual almost-periodic oscillations because the test oscillator effec-
tively interacts with a finite number (~%) of thermal-bath oscilla-
tors. Residual relative fluctuations are apparently of the order
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x>0 as x—oo. Notice that similar fluctuations would persist in
the thermodynamic limit for a finife ensemble of = test oscillators.
In the opposite limit (x< 1) the test oscillator interacts essenti-
ally with one bath oscillator only, that of the nearest frequency. In
case E(0) =0, for example, the time-averaged energy E is given by
e’ o R

el S o | (4.1)
Ta 2wi (Aw,)” 7 TaAwy )

where Aw,= @ — .. Typically, T Aw~1, and E~xTs. This crude esti-
mate just corresponds to the picture of limiting relaxation T=vT,
(1.11) during time interval 1<y~ '. In this case the fluctuations of
E are very big owing to those of detuning v=t-Aw. Moreover, en-
semble average (E) may be even much bigger than xTy. Assuming,
for example, homogeneous distribution in v over interval (vm,1),

where vm«-u'\/}: (the full energy exchange with the bath oscillator,

see Eq. (4.1)), the estimate (E)~1\/x T; has been obtained in
Rei. [7]. However, the «repulsion» of the bath eigenfrequencies w,,
quite similar to that of quantum levels (see Section 5 below), re-
sults in a decrease ol probability for small v in proportion to v.
Then (EY/To~x|lnx| which is roughly of the order of the first esti-
mate.

Notice that under transition to thermodynamic limit (1.13) the
discreteness parameter x=yN/A—oco.

In conclusion of this Section | mention that in case of dissipa-
tion in model (1.1) with oscillation damping time 7T<t the con-
dition for relaxation takes the form x =vy7T=1, while average
(EY ~xTo Ty within the interval v '«y< T ' This simply
means that the time for relaxation is here restricted by the damping.

-

5. A GLOBAL RANDOM MATRIX THEORY
FOR CHAOTIC EIGENSTATES

In Section | above we saw that an ensemble ol matrices (1.2)
represents both a very simple classical model (1.1) and a class of
quantum systems. In order to employ this analogy still further we,
first, transform the classical matrix (1.2) as follows. Get rid of
unimportant but big mean frequency (w.), and redefine
wp— { 0, ) + w,. Putting (w,) =1 we obtain
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with the natural normalization @ma~w.~A<1 (ci. Eq. (1.3)).
Now, quantities w, are of both signs, and (w.)=0. Also, =1
below. : P
Consider some quantum system which in the classical limit is
fully chaotic, i. e. without any stable regions. Then, the Wi_gner_ fun-
ction of any initial state would be approaching, within a time inter-
val {~tq~t (3.1), the microcanonical distribution on an energy sur-
face. From the classical model the relaxation time is of the order

tp ~v ' =(2ne’a’t)”! (5.2)

where Eqs (1.9, 1.10), and a new form of matrix H,, are used.
As we already know (Section 4) the result of relaxation depends
on the discreteness parameter

E#TT=2n{sar]2~ii~aﬂhﬂ, (5.3)
R

In the latter estimate the natural normalization a~A is used. I
%> 1 (ta>1,) the relaxation process approaches microcanm_lical dig-
tribution. Hence, the eigenfunctions, or to be more precise, their
Wigner’s functions would be also close to microcanonical distribu-
tion, i. e. they will be ergodic on energy «surface». On the other
hand, if x< 1 the relaxation would stop at t~t;< f, with Wigner’s
eigenfunctions localized within small domains ol energy surface.

Literally, the energy surface exists in the classical limit only. In
the quantufm system it has the form of an energy layer of fi.nite
width. The structure of this layer is described by the eigenfunctions
(1.14). Particularly, the layer width

Aw=7v;  An==xn. (D.4)

In the classical limit An—o0; Aw/A—0, or
% ~ (N — oo ; %«*—*EEN—H}. (5.5)
Notice the difference from the thermodynamic limit (1.13) in classi-
cal model where y/A~e?N=const owing to A, y=const. In quan-

tum system y/A~hy/E where E is system’s energy. _
Conditions (5.5) shows that the perturbation parameter e is to
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satisly, in quasiclassical region, the double inequality

t
'

-{(EQ':{LM. (5.6)

The right-hand inequality implies that the eigenfunctions (1.14) are
always localized in the full N-dimensional basis of the model. 1 will
term this distinctive feature of the global eigenfunction structure the
transverse localization (in respect to energy surface).

Transverse localization is'not present in the current statistical
theory of complex quantum systems, the random matrix theory
(RMT). Indeed, the basic RMT principle after Dyson |3] is statisti-
cal invariance in respect to any rotation of the full N-dimensional
basis, or the ergodicity of eigenvectors in any such a basis. From
the above consideration we see that this principle holds within the
energy layer only, i. e. under condition N<x» which violates the
right-hand inequality (5.6). Thus, the existing RMT is a local statis-
tical theory of quantum systems as was already pointed out in
Ref. [35].

On the contrary, the theory under discussion in present talk may
be termed as a global one (GRMT) because it describes the struc-
ture of the whole energy layer provided that N> x (5.6). The prin-
cipal parameter of such a theory is just x which determines the
physical dimensionality of eigenvectors as contrasted to an arbitrary
dimensionality N of the RMT model. ;

In complex nuclei x~10° is really huge, and the global Lorentzi-
an structure of eigenfunctions (1.14) appears only in the so called
«strenght function» (see, e. g., Ref. [36]). However, in complex
atoms the global structure is much more important since x~10 as a
single, so far, example demonstrates [35].

Parameter » , which has been obtained above by using a classi-
cal model, can be derived also within the framework of quantum
mechanics, of course. However, this is not a simple task because for
»>1 the quantum perturbation theory is inapplicable. Nevertheless
a rough estimate can be obtained from the relation for an energy
level shift 8£~V?n in the second order of perturbation theory. In-
deed, u~8E-n~(Vn)?~(eN)? which agrees with Eq. (5.3). More
accurate quantum calculations [34] result exactly in relation (5.3),
with some additional assumptions though, particularly, on the

Lorentzian spectrum shape (for a simple model derivation see
Ref. [36]).
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An important question in GRMT: which statistical properties of
the local RMT do persist, and which ones change? and how? In
Rel. [33] is shown that RMT (Wigner — Dyson’s) distribution for
nearest level spacing (the level «repulsion») is reached already
under condition

x> 1. (5.7)

The same conclusion can be drawn from the results of the first nu-
merical simulation in Ref. [37] (Fig. 13). Notice different normali-
zation of matrices in Refs [33, 37] which was missed in Ref. [7].
However, the question if condition (5.7) is sufficient for the restora-
tion also of long-term correlations of many levels as described by
Dyson’s A-statistics (the spectrum «regidity») remains open to the
best of my knowledge.

Another interesting question is the nature of asymmetry between
the matrices wadmn and am. in Eq. (5.1). Why the perturbation ama.
is so powerful? Notice that instead of fixed matrix w,8., one may
use a random ensemble produced by random rotations of the basis
which would not affect the GOE statistics of ctma.

Interestingly, that the motivation in Ref. [34] for the study of a
combined matrix ensemble like Eq. (5.1) was taking account of a
regular component of nuclear dynamics (the «order») as represen-
ted by the fixed set of w, in addition to «chaos» of @m,. In my view,
the universal origin of such an order is simply the energy conserva-
tion resulting in the transverse localization of eigenfunctions, and in
the formation, in the classical limit, of energy surfaces.

Studying of combined ensembles, as a RMT natural intrinsic de-
velopment, certainly leads, under condition (5.6), to an essentially
new, global, theory of quantum chaotic eigenstates. Yet, it is just a
beginning! A peculiar property of model (5.1), used in such a the-
ory, is in that both the ergodicity border x~1 (5.3) and the mixing
border (3.2) (Vm~eat~1/x ~1) coincide in order of magnitude.
This is certainly not a generic case [19—21, 25, 41]. The above-
mentioned peculiarity of model (5.1) is due to homogeneity of per-
turbation matrix ams, so that the mixing of states is independent of
their relative position on energy surface. Hence the (longitudinal)
localization on energy surface turns out to be always perturbative,
or limiting (see Section 3 above). In other words, the eigenstates of
model (5.1) are either perturbatively localized or ergodic. The (lon-
gitudinally) localized eigenstates would correspond to a randomly
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«porous» function b, in Eq. (1.14) with many b,=0 (ci. Rel. [35]).
To represent such a structure some further modification of matrix
ensemble (5.1) is required. I conjecture that it can be achieved
either by using perturbation matrices with rapidly vanishing ofi-dia-
gonal elements om., or by choosing matrices an, also randomly
«porouss», or both.

In any event, the homogeneous perturbation @.. cannot persist
in quasiclassical region as quantity |m—n| is proportional to the
frequency of classical perturbation.

[ would like to express my sincere gratitude to J. Ford,
F.M. lzrailev, D.L. Shepelyansky, E.V. Shuryak, Ya.A. Smoro-
dinsky, V.V. Sokolov, O.P. Sushkov, V.G. Zelevinsky for their inte-
rest to the present work and stimulating discussions.
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