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ABSTRACT

The interaction of the pscudoparticles due to the light
quark exchange strongly aifect the structure of the
ginstantonic liquid». At large enough N; these modiii-
cations are so strong that the density of the small-size
¢«instantonic molecules» is ultraviolet divergent. Using
some simplified models we sludy how the (chirally
asymmetric) «polymer» phase is changed to the
(symmetric) «molecular» phase as the pseudoparticle
density is lowered. We have made the full-scale simu-
lations for the SU(2) theory with quarks and have fo-
und that instantons do generate the quark condensate
in its vacuum. :

© Hucruryr adepnoil ¢uauku CO AH CCCP

1. INTRODUCTION

The general role of the fermionic degrees of ireedom in the.gau-
ge theories remains a matter of dispute in literature. The simplest
suggestion is the so called «quenched approximation», an assump-
tion that the fermionic determinant can be omitlied in the partition
function of the gauge lields. The well-known theoretical arguments
in its favour are based on the consideration of the large number of
colors N.—oo limit. Applications of this idea in lattice numerical
experiments are widespread. :

In this work we consider the role of light fermions in the theory
of the «instantonic liquid», considered in the papers I [I] and II
[2] of this series. Probably the main lesson drawn from these stu-
dies is a conclusion that the «quenched approximation» is funda-
merttally wrong in this case. More precizely, we have found that the
{ermionic determinant is an extremely important ingredient oi the
theory because it selects quite specific configurations out ol the set
Saturating the’ statistical sum of the pure gauge theory. This is pro-
bably not so surprising because the number of light flavors N; and
the number of colors N, are comparable, so the above mentioned
« Nz > N;» arguments do not actually apply.

The central role in what follows is plaved by the following fun-
damental fact (being essentially ignored by the «quenched»-based
considerations): any topologically nontrivial gauge field configura-
tions is associated with the so called «zero fermionic mode», a nor-
malizable solution of the Dirac equation in this field. For instantons
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this fact was discovered by G. t'Hooft [3], but it is a consequence
of the general theorem [4]. Therefore, in this case the fermionic de-
terminant is exactly zero which means that such configurations in
fact give no contribution to the statistical sum.

The nontrivial effects related to these zero modes have been cor-
related with some long-standing puzzles of the hadronic spectros-
copy. In particular, in the same paper [3] G. t'Hooft has noticed
that these effects lead to explicite violation of the U(1) chiral
symmetry, driving the Adler —Bell —Jackiw anomaly. In principle it
solves the famous Weinberg «U(1) problem», explaining why the
mass of the n’ meson is so different from all other masses in the
pseudoscalar nonet of mesons. Even more interesting are other
physical phenomena related to the «zero modes», which are mainly
discussed in this work, namely the physics of spontaneous breaking
of the SU(N;) chiral symmetry (bclow for brevity— SBCS).

Roughly speaking, one may imagine pseudoparticles to be some
effective sources (see Fig. 1,a) emitting (or absorbing) one
quark-antiquark pair of each massless flavor. Any «cluster» of the
pseudoparticles may exist in vacuum only due to a kind of «qu-
ark-exchange interaction» between them: all quarks and antiquarks
emmitted should be absorbed by some another pseudoparticles. This
picture suggest the following physical analogue, to be much discus-
sed below. Our PPs are similar to some «atoms» (living in
4-dimensional space, ol course), while the N;-2 light fermions ex-
changed are analogous to a set of «valence electrons».

This analogy immediately suggests a lot of interesting questions.
One may ask how the «matter» made of such «atoms» looks like, is
it a chaotic «polymer» (examplified in Fig. 1,c), or is it made out of
separate «molecules» (as in Fig. 1,d)? More precizely, is there the
«infinite cluster» ranging all over the space, or all such clusters are
but finite? As we will see below, the former «conducting» case im-
plies SBCS, while the latter «insulating» phase means that this
symmetry remains unbroken.

It is natural to start with the simplest «cluster» possible, the so
called «instantonic moleculess, (Sections 2, 3). Their investigation
provides one more argument in favour of the, importance of light
fermions. Indeed, if one gradually increases their number N; he can
reach the point where the quark-induced interaction among instan-
torrs and anti-instantons is so strong that the density of the «mole-
cules» becomes ultraviolet divergent. (This part of the work was al-
ready published in short form in Ref. [5]). As far as we know,
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Fig. 1. The instanton-generated effective interaction of the light quarks (a). A set ol

ladder-type diagrams contributing to the correlation function of two WY operators at

different points (b) Schematic picture of a «polymers»-type vacuum (c), to be compa-
red lo the «molecular» one (d).
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such phenomenon leading to power ultraviolet divergences ol the
nonperturbative nature is new for gauge theories, although it is so-
~ mewhat similar to the well known (logarithmic) divergence of the
one-instanton density in the two-dimensional O(3) sigma model .

Returning to the structure of the «instantonic liquid with
quarks» we may say that the only way to obtain the answers to
these questions is by performing statistical analysis of this rather
complicated system. Our studies of these phenomena are therefore
split into .wo- subsequent steps. In Sect.”7 we consider the «instan-
tonic liquid. with quarks» in the simplified model, ignoring the ordi-
nary (non-fermionic)’interactions.between the PPs. In addition, we
force ‘al]l PPs to-havé the same radius p. Using this simplified mo-
del we study dependence on the PP density-of all quantities. We ha-
ve found that for Ni> | both-alternative phases mentioned above
may- take place, suggesting chiral symmetry restoration at suffici-
~ently small value of the PP density. ‘At this step we have also stu-
died the- accuracy of the approximations used previously. The
mean-field-type formulae: derived in Refs [6—8] ~and the more
developed. theory due to Dyakonov and- Petrov [9] is shown to be
adequate orily for .the case of one massless flavor, Nj=1.

Our second step- (see Sect. 8} deals with the complete «instanto-
nic liquid».. We "have found thatvfor the SU(2) theory with fermions
‘the instantons do indeed lead-to the chirglly asymmetric vacuum
and have estimated the,value of the 'vacuum quark Condensate. Al-
though similar statements can_also ‘be found in ‘the previous works
considering this question, we emphdsme that our analysis is the first

quantltatne one, relying on the qtratgh{mrwarcl studies of an en-
“semble of PPs and being frge of gny uncontrolled approximations.
We end with a comparison of our results with lattice numerical data.
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2. FERMIONIC ZERO MODES
AND THE INSTANTONIC DENSITY

In this section we turn to the systemalic discussion of the topo-
logical effects in the presence of fermions, reminding the reader the
main formulae and the terminology used .-

The first step made .is usually the formal integration over the
fermionic fields. Then one proceeds to the partition function of the
gauge [ields containing the so called fermionic (or Mattew —
Salam) determinant

Z=\ DA, (x) det [iD(Ag)+im] exp(— Spuuge [A)] (1)

where m is the fermion mass and S, (A) is the gauge field ac-
tion. D is the so called Dirac nperatnr depending on the «backgro-

und» gauge field
Z(’id!’_‘_"{lujl r‘-‘ffg} Yu (2}

and *, y, are color Gell—Mann and Dirac matrixes, respectively.

Generally speaking, this fermionic determinant is extremely non-
trivial functional of the gauge field A, (x). However in this paper we
deal only with the configurations, being a superposition of reaso-
nably well separated pscudoparticles. In this case the problem be-
comes more tractable.

[t was mentioned above that a single instanton cannot exist in
the <<perturbdliu» vacuum of the gauge theory with massless
quarks because of the existence of the «zero mode» yo(x). It is a
solution of the Dirac equation Dwn[ ') =0 in the instanton field and
it looks as follows

(Nron g i P
Yo tx, =/ - =
il j i f :n(?x"!}]”l::x"ﬂ—p‘!]ﬁ"z

if ¥ =% |
(Ve m{ 0 (3)
Fip

where o, { are the (SU(2)) color and spinor indices, respectively.
For anti-instantons the zero-mode solution has the opposite chirality.

[f the fermionic mass m-is nonzero (but small!), the instantonic
density dn(p, N;) is nonzero. It differs with that for the pure gauge
theory dn(p, Ny=0) (see I) by the following factor:

dn (p, N;)/dn(p, Ny=0)=|1.34mp (1 +m?p* In(mpP* + ..,|N‘, : (4)

(OI course, one should not also forget aboul modification of the co-
efficients b, b’ of the Gell — Mann-Low function.)

Another important case in which instantons do contribute is that
in which there are external quark source Jf(x). Then the factor
given in (4) is changed to

dn (p, Ny)/dn (p, Ny=0)={1.34 [mp (1 +...)+ { dx 7 Tpo+c.c]". (5)

In particular, in the vacuum possessing a nonzero average of
the operator WW, the so called «quark condensates, the individual
small-size instantons can well be present (see discussion and
detailed formulae in [10])
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Two comments important for what follows can be made here.
First of all, for N;=1 this instanton-generated vertex is bilinear, so
it is tempting to assume that instanton generate a kind ol an eflec-
tive quark mass [7]. For N;=1 there appear more complicated
multi-fermion operators, and their effect on the quark fields is more
difficult to understand. Second observation is as follows: increasing
N; one finds stronger suppression of small-size instantons. In
Sect. 4 we show, that it is not the case for the small-size instanto-
nic «molecules».

3. INSTANTONIC MOLECULES

We start their discussion with a remark that similar objects are
well known in physics. For example, the well-known planar Heisen-
berg magnetic (or the so called XY model) is known to have the
«vortex molecules» in its low temperature phase. These molecules
are melling into some «vortex plasma» at the Beresinsky — Koster-
litz— Thouless transition. Thus, the physics of this transition is
somewhat similar to that studicd in this work. First discussion of
the role of the instanton — anti-instanton molecules for d=4 gauge
theories with light fermions was made in Rel. [7], where it was al-
so noted that such «molecules» should dominate if the PP density is
small.

The instanton— anti-instanton pair has trivial global topology
and, respectively, the nonzero determinant. Its estimate can rather
simply be made in the case when the PPs are well separated by
sufficiently large distance R exceeding their dimensions p. The prob-
lem is identical to that of the energy levels of two separated identi-

cal atoms. for which the wave functions are just (W, £"%3)/ \;"2 and
energies are split symmetrically with the gap value equal to twice
the nondiagonal matrix element of the Hamiltonian. Quite similarly,
in the subspace composed by two «zero modes» W, 4 of the in-
stanton and the anti-instanton the Dirac operator can be written in
the following matrix form

e 0. T
iD :11" . (6)

where T is the so called «zero mode overlap integral», depending on
the positions and the orientations oi both pseudoparticles. The
asymptotics of T at large R is known [11, 9]
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where ©7 =(%, Fi). (The asymptotics R™" can be understood as jus!
coming from the propagator of a massless quark.)

Behaviour of T at finite R depends on the particular «ansalz»
field configuration used. In Il we have considered two ol them, the
simplest sum ansatz («S») and the «ratio ansatz» («R»). As the
former is just a sum over PPs it leads to many specilic simplilica-
tions in what follows, so in this work we have taken this form for
T. Indeed, ii

Agy (1) =UP* Ay (x—2)+ U3’ Apy (x—2a). (8)

one may use the Dirac equations for W, W very effectively and
eliminate either derivatives, or the fields. The latter trick leads to
simple dependence on the orientation matrices U describing orienta-
tions of pseudoparticles: '

T(U;, Us, Ry=i Tr[Ua (Ruw ) Ui | (RY). (9)

Note that the trace here is nothing else but the cosine of the «re-
lative orientation angle» @ introduced in II, therefore

T(®D, R)=cos @ - Rf(R?). (10)

Dependence of T on the distance was evaluated numerically with
the following result

f(R)~2/(2.58+ R*)". (11)

Note that the overlap integral T enters the determinant in rather
large power 2N;. Therefore, two values ol the relative orientation
angle ®=0, n are the most probable ones. It is interesting that it
is also the values favoured by the classical dipole interaction
(see II).

Note also that in this case T at small distances has some «Kkine-
maticals zero, suppressing the contribution of the «compact molecu-
les». Anyway, at small R the very separation of zero modes from
all others is meaningless, so we cannot in fact properly deseribe
these objects. Fortunately, our «instanton liquid» turns out to be
rather dilute, so we have at least «a posteriori» argument that such
«compact molecules» are not very important for the ensemble to be
studied. |
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4. SMALL MOLECULES AT LARGE ¥V

The title of this section needs some explanations. By «large Np»
we do not mean Nj—oc, of course, but rather its values ap-
proaching the point where the asymptotic freedom becomes broken.
In 1his connection we remind the two-loop expression ior the renor-
malized charge

2 0}
B

(k)

b k |
sl LR
s T LS R (lnkf.-'\)1

e 2
Gt R G
i

pras % NE— 2 Ne Nyt Ni/ Ne. (12)

[t is seen that if b—0 than the role of the second term becomes lar-
ger. Note also, that b” changes sign in this region. Both facts shows
that the theories at which & is small are very specific: the perturba-
tive momentum scale at which (12) holds is shifted to extremely
high momenta! All other scales are therefore a subject for some
«nonperturbative physics».

As a specific example of the kind we are going to discuss «small
moleculess. The word « small» means that both the pseudoparticle
radii p,, ps, and their separation R are small compared to A™'. The-
refore, the relevant action is much larger than unity and the semi-
classical formulae are applicable. As mentioned in the preceeding
section, we also exclude «compact molecules» with R<Zp;,p, and
consider only those with R= p,, p4.

Let us start with very «asymmetric» molecules with, say, p, = p,.
[t is quite clear that for the anti-instanton one may apply the opera-
tor product expansion formalism as in [10] and obtain the small
factor (py /o))" _Thus, suppression ol «dasymmetric»  molecules at
large N; is evident. '

Now we turn to the case of very «dilute» molecules, with R>p.
[n this case the small [actor due to zero modes in the quark deter-
minant is as follows

L

det (iD)~TY(R)~(p/R) " (13)

and very «dilute» molecules are unimportant too.
We have shown that the integrals over the ratio p,/p, and R/p
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are well convergent, and that most importanl molecules are those
with p, ~p, ~R. 1i so. their total density in vacuum can be obtained
just by the simple dimensional arguments, because the power of the
lambda parameler is known from the semiclassical expression

it 1 Ib( | — 8).
—molecsiar o — (pA (14)
dpd*z i (pA)

Here & corrects for the deviations from twice the instanion action-
(we remind that, at least for the trial functions considered in II, for
R— p this & is small, about 0.1).

I[i b(1 —38) <2 the density (14) is divergent at small radii: this
is the «nonperturbafive divergence» mentioned above. The critical
value (8 for two and 13 for three colors) is still below the point-
where the asymptotic freedom is broken. Note also, that because in
«compact» molecules the action is reduced stronger, their density
may be divergent even earlier. Near this critical point the molecule
density (and the nonperturbative vacuum energy density) becomes -
iniinite. Does it really spoil the theory completely, or this infinity
may be removed by a sort of «renormalization»?

Note that although being infinitely numerous, the small-size mo-~
lecules still occupy negligible fraclion of space-time: the integral
(dn(p)p* is convergent. Similar situation holds with the physical ob-
servables. Small molecules affect particle propagation in vacuum,
but their contribution to the quark mass is of the order of Sa’m’;.jpﬁ,
also convergert at the critical point mentioned above. However, at
another critical points b(1 —96) crosses |, and ifrom this pcint one
has to introduce additive nénperturbative correction to the bare fer-
mionic mass!

Of course, this phenomenon takes place at the unphysical num-
ber of light quarks, but they may be used as a test for lattice nu-
merical experiments. (Althogh it is not easy to see small-size mole-
cules on the lattice directly, their influence may be detected indi-
rectly, for example by enhanced deviations from the perturbative
scaling.) But the most important consequence of this observation is
the statement, that Termions can be the dominant ingredient of the
vacuum, leading to extremely complicated field distributien. This
probably may help us to understand why in the real world the
vacuum is rather inhomogeneous.
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5. SPONTANEOUS BREAKDOWN OF THE CHIRAL SYMMETRY

First of all, it is necessary to say what is the SBCS phenomenon
under consideration. Let us discuss some gauge theory with the fer-
mions, and let us study the limit in which their mass tends to zero.
As the interaction of these fermions is transiered by the vector
fields which do not change chirality, the left and the right-handed
components of these iields become quite independent in this limit. In
particular, one may independenily rotate them in the flavor space,
which is the chiral symmetlry under consideration.

However, the limit m—0 may in fact be not so simple: the gro-
und state of the theory muayv turns to be asymmetric. More precizely,
if fermions move in some external gauge field A(x) which is not
weak, the Dirac operator iD(A) may have eigenvalues A very close
to zero. If so, the (Euclidean) propagator (being an inverse to
(iD+im) and therefore looking simple in terms of its eigenvalues A
and eigenfunctions W;(x))

W) W
Stesie=yrir it —i—jmw} (15)

f

is singular in the limit m—0. Taking y=x and performing the
trace, one may proceed to the so called quark condensate:

(16)

= 1 R e sd
<qqu>_?'rrgdxsgx,xj__ : g

=0

(We have used the fact that in average the condensate is the same
at all points and have integrated over x, using the normalization
condition of the modes. We also have used the fact that, due to the
chiral symmetry, all eigenvalues goes in pairs, £ [4]).

In the limit m—0 one may rewrite (16) in terms of the eigenva-
lue spectrum density dn/dk and specify the order of both limits con-
sidered

| (PWY | =lim -lim i‘-d—”| ) (17)
}_

[ i—01) II.f—r--'-H V' di 0

where V is the 4-dimesional volume considered. Expression (17) is
currently used in lattice numerical experiments as a practical signal
for SBCS For any gauge field configuration the spectrum of the

12

Dirac operator is found numerically and the level density dn/drl,
is determined from some extrapolation to be discussed below.

Using these formulae it is easy to explain why instantons may
be more important for SBCS than any other gauge field iluctuati-
ons. Consider some field configuration made of N,= N, PPs. As the
total topological charge is zero, there is no reason to have exactly
zero modes, but if the PPs overlap weakly then there should be ei-
genvalues A very close to zero. Thus, being interested in dn/drl;
at zero we naturally study the fermionic states related to them. It is
analogous to evaluation of a conductivity of a condensed matter
considering only electrons in energy zones near the Fermi level.

The first attempt to point out whether PPs really lead to sponta-
neous breaking of the chiral symmetry or not was made by Caldi
[12], who has considered the ladder-type diagrams (see Fig. 1,0)
summed by the Bethe — Solpeter equation. On this way one may at
least formulate some sufficient instability condition for the chiral Iy
symmelric vacuum,

Later this problem was studied in the mean-field approximation
(for the quark condensate) by Carlitz and Creamer [6], Callan,
Dashen and Gross [7] and myself [8]. This approach lead to some
estimate of the quark condensate etc. Generally speaking equations
of Rel. [6] are a complicated set of integral equations for the dis-
tribution over the PP parameters, but if one [orces all instantons to
have the same radius p thev become just simple algebraic equations,
leading to the following results [8]:

Mﬂi[-.‘f :J[:ﬁa'f EE:

| {PWY | =1/(npR?). (18)

(Here we have used N.=2 and, for clarity of the presentation, have
used the mean interparticle spacing R—rlpp " instead of the PP
density.)

The former quantity in (18) is the so called «determinantal
mass», to be much discussed below. It characterizes the mean value
of the fermionic determinant, which is specially put in such a form
that in the expression (4) for the instanton density one should sub-
stitute the «bare» mass m by (m+M,,). In other terms, M o 1s the
«geometuc mean» of the eigenvalues because M,, = det( aﬁ‘: ' whe-
re N is the number of PPs. One should not mix this quantity with
the so called «quark effective mass» introduced in many works
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Two parameters p, R were phenomenologically ¢stivwoed i [8]
for the QCD vacuum (we have brieily considered it i Iy, and the
mean field estimates (of course, for N-=3) were shown o produce
the values of the quark condensate and the «determinantal mass» of
quite reasonable magnitude. Also the condition derived by Caldi
was satisfied, thus it was concluded in [8] that the chiral symmuolry
seems Lo be broken by instantons.

Recently discussion of the subject was revived by Dyakonov and
Petrov [9]. First, they have qualitatively discussed what happens ii
the positions and orientations of the PPs are random (we will refer
to such an ensemble of PPs as the «random model»). In this case
one may expect the nonzero quark condensate at any linite PP den-
sity. Indeed, it is e2sy to show that for such «random model» the
eigenvalue spectrum has the semi-circular shape with the peak at
zero and with the width of the order of mean overlap integral of
the zero modes. As this integral at large PP separation R behaves
a€ | /R this model predicts at small PP densities that

rirr{Np l,-"Rl
|<1{“~lf:}|~1fﬁR. (19)

Second, in Refs [9] a more quantilative theory is developed.
considering fermions in the «N, > Nj» approximation (as mentioned
by its authors). However, we prefer to look at their theory at anol-
her angle, as the theory of the case N;j=1. This is most clearly seen
irom the second paper [9] in which Dyakonov and Petrov have not
started with formal integration over the quark fields W, leading to
the fermionic determinant, but instead have introduced the Tollewing
statistical sum

Zﬁ_ —_“-E DY+ DY 6’5 L Tl j—i IJ'I"}; d” { |fﬁ1— 11 dx W i Ijj ,q-_“h' o

. |£m—5 dx Li'ﬂ_'“l:'{fr:.-"} W |im— S dx Wt(id) q;}{!'| im— 5 dx ' i0 W' i} M. (20)

where dQ,(dQ,) is the element of the collective coordinates for the
instanton (anti-instanton) and N is the number ol instantons, equal
to that for the anti-instantons. Introduction of such statistical sum
means that the quark propagator is approximated by two terms
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where S is the iree quark propagator, which is a kind of interpo-
lation, valid both at small and large distances.

For one quark Ilavor it is possible to integrate over the instan-
ton parameters and then proceed lo the effective quark theory ol the

type
Z=S DY DW exp | —5 Wi+ My;) W dx|. (22)

[t is possible because in the N;=1 case the t'Hooft vertices have
the structure W~YW_ but we do not think this trick is useful for
N> 1, when this effective interaction leads to multi-fermion opera-
tors and cannot be taken into account just by the «eifective mass».
Dyakonov and Petrov have obtained the following results:

My ~0.9p/R",
| (WW) | ~0.55/pR?. (23)

(Again we have put N,=2 and consider all p equal to p. Note that
(23) differs with the mean field estimates (18) just in some nume-
rical factors.) In Sect. 7 we are going to confront these results with
our numerical data.

6. GENERAL DISCUSSION OF THE INSTANTON LIQUID WITH QUARKS

We have mentioned in the introduction that in order to formu-
late some questions about the structure of this complicated statisti-
cal system it is helpful to use a physical analogue, looking at the
pseudoparticles as alt some «atoms» and at the light quarks as so-
me «valence electrons». Further, the eigenvalue spectrum of the Di-
rac operator is somewhat analogous to that of the atomic Hamilto-
nian. The nonzero eigenvalue density at A=0 is analogous to the
nonzero state density at the Fermi level. i so, the presence or ab-
sence of SBCS is reduced to the question whether our «instantonic
liquid with quarks» is a conductor or an insulator.

Generally speaking, there are a number of possibilities. The sim-
plest one, bemg the «random model»> mentioned above, implies that
the matter is «amorphous», with the «atoms» making some chaotic
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«polymer» all over the space. If so, the spectrum is continuous and
SBCS takes place. This is similar to the conductivity of semiconduc-
tors with impurities: whatever small is the impurity density, the so
called «jump conductivity» is always nonzero.

However, in contrast to the impurity atoms in semiconductors
the PPs in vacuum are strongly correlated. Moreover, one of the
most important source of such correlations is the light fermion ex-
changes, the interaction we study in this work.

For example, il these correlations lead to some ordered phase (a
«crystal»), the eigenvalue spectrum has zones, leading either to
well conducting or to perfectly insulating phases. Another possibility
is that the PPs are united in small clusters, say the «molecules»
considered above. As it was argued by Callan, Dashen and Gross
[7], such phase may be the case if the PP density is suificiently
small.

It is easy to show that in the dilute «molecular» vacuum there is
no SBCS. Indeed, in this case the eigenvalues are just the overlap
integrals, and therefore their distribution at small A is directly rela-
ted to the distribution over the sizes R of the molecules

dn . 2N;j—4/3
ELDW (24)
where we have used T~1/R’. Therefore, in this case the eigenvalue
density at A—0 is vanishing, together with the quark condensate.

Note, that one should still prove that the «dilute molecular»
phase is stable. Consider for example the chain-type cluster contai-
ning 4 PPs. If one integration over the space-time is taken apart,
the remaining integration looks as follows:

Zigy~V | d*zad'z3d*z[T(z1— 22) T(za— 25) T(zs—24) T(za—2,)]"  (25)

and one can see thal indeed there is one special case N;=1, for
which this integral diverges at large z. The same is true for other
«chains», which means that in the case Ny=1 the «dilute molecu-
lary vacuum cannot take place even at arbitrarily small PP density.
(This conclusion nicely matches with the absence of any symmetry
to be broken in this case, but of course it is not a convincing argu-
menl: one may well have some first-order transitions without any
symmetries to be broken!)

For Ny=>1 all finite clusters lead to convergent expressions,
which means that at arbitrarily small densities it is statistically fa-
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vourable to split them into the smallest unites, the molecules, which
lead to larger statistical sum. Thus, in this case the «molecular va-
cuum» should indeed take place.

Considering the problem at finite densities we face very nontri-
vial combinatorical problem. As for any statistical problem, one
should compromise the opposite trends governed by the «energy»
and the «entropys. The «lowest energy» (namely the maximal fermi-
onic determinant) configuration is some rather complicated crystall
(first discovered in Ref. [13] in another context). It has 16 PPs
with nontrivial orientations as the elementary unite, and the overlap
integrals for all neighbours are maximal. The entropy is of course
maximal for the «random model» (RM) mentioned above.

7. SBCS IN A SIMPLIFIED MODELS

Because of the complexity of the problem we start our analysis
with the discussion of some simplified models for the ensemble of
pseudoparticles. The first one is «random model» (RM) mentioned
above, an ensemble of PPs with random positions and orientations.
We confront this model to the «correlated model» (CM), in which
the distribution over positions and orientations of PPs is governed
by the quark-exchange interaction. For simplicity in this section we
(1) take all radii p of the PPs equal and (ii) ignore the non-fermio-
nic interactions (considered in II). The only free parameter of the
model is the dimensionless parameter nu.p'=(p/R)".

More precizely, the properties of the «correlated model» are defi-
ned by the following partition function Z, modelling the zero-mode
part of the fermionic determinant

e

N

z=| (;.JL dU;dU, d ; dzs) (—1)" [ det |;;1
For N instantons and N anti-instantons the NN matrix T, con-
sists of the «overlap integrals» of all instantonic and all anti-ins-
tantonic zero modes. Expressions for T, are considered in Sect. 3.
The 2N-2N matrix in (26) is Hermitean and its eigernivalues are re-
al, also due to the block-structure of this matrix thev are doubled,

=+ ||, and the sign factor stands to make the weight positive.
We have made numerical simulation for the ensemble of PPs
governed by this weight function. Straightforward averaging of the
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ves marked «RM» mean the random model (see text), while the curve marked «DP» shows

the results ol Dyakonov and Petrov [9].

The «star» marked CR near the star in the upper lefit

corner stands for the instanton —anti-instanton «crystals. The points correspond to our data

for the «correlated models defined in the text.

determinant over random configurations was found completely im-
possible, because it fluctuates by orders of magnitude. Therefore we
have simulated conligurations by the Metropolis algorithm, explici-
tely evaluating the determinant at each updating. (Here the formula
Z~1|det T|* is useful.) For small Langevin-tvpe updating there exist
simple approximate expressions for the variations of the determi-
nant, but we have found this method to be more slow. We have
considered up to 34 pseudoparticles in a box with periodic boundary
conditions. For each pair of pseudoparticles our program have se-
lected the shortest way out ol all topologically distinct ones on this
4-lorus.

In Fig. 2 we have plotted some results for the «geometric mean»
value of eigenvalues M,, =(det iD)""", the «determinantal mass»
mentioned above. First ol all, one should look at the curve marked
«RM», corresponding to the random model. It gives much smaller
determinants than it wes actually observed for the «correlated mo-
del», even at densities O(1). It means that the correlations induced
by the fermion exchange are quite significant at any density.

Our second observation follows ifrom the compurison of N;=1
and N;=3 cases, shown on this picture. One can see that the line
«DP», corresponding to the Dyakonov—Petrov theory, is indeed
reproduced in the former case while at the N;=3 case the depen-
dence is quite different: the determinant tends to some constant at
small densities, which means dominance of some finite-size clusters.

In Fig. 3 we show behaviour of the quark condensate with den-
sity in both cases. (This quantity is determined from the eigenvalues
found. Note by the way, that in contrast to determinant, one cannot
just calculate the spectrum ol the smaller matrix T: this is clear al-
ready from the fact that it is not generally symmetric and therefore
have complex eigenvalues.) For N;=1 again there is reasonable ag-
reement with the DP theory, the condensale decreases with density,
but remains nonzero. In the N;=23 case the behaviour found is
much more complicated. We delinitely observe that at small PP
densities the condensate drops, which is correlated with the transi-
tion into a «molecular» phase. In the density region roughly indica-
ted in this figure we have strong evidences for the «mixed phase»
behaviour. If one drow a picture of spatial PP distribution he finds
that in this density region it is sometimes very inhomogeneous, con-
taining both relatively dense «drops» with few molecules occupying
all the remaining space.

In Fig. 4 we display the eigenvalue distributions at few densi-
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ties. One can see that for Ny=1 one has a Gaussian-type spectrum
for all densities, with more narrow peak at smaller densities. How-
ever, for N;j=3 the behaviour is completely diiferent. The two-peak
structure of the spectrum was found in the transition region, with one
peak at zero (being due to a «polimer») and another at larger A, cor-
responding to the «molecules». The magnitudes of both peaks are
changed with density, till the former one disappears at some n.p.

Such behaviour is typical for any first order transitions. (This
conclusion is in agreement with arguments [8] based on the «self-
consistency condition» of the mean field approximation). However,
we have to warn the reader, that it is but a simplified model, with
the PP density and radii fixed «by hand». What happens say in the
heated QCD vacuum at nonzero temperature still remains to be
studied.

We have not made long enough runs in order to find the critical
density of the pure «molecular» phase, but it definitely is essentially
smaller than that for the «polymer» one. One can easily understand
why it is so. The mixed phase implies coexistence of both phases.
We have already mentioned that for molecules determinant depends
on the relative orientation angle very strongly, as (cos ®)", and
therefore only small fraction of the available phase space is in fact
populated. It is obvious that in a dense «polymer» this fraction is
increased by the factor proportional to the number of close neighbo-
urs. But coexistence means that statistical sum per particle is the
same. That is why in the molecular larger space-time volume is
needed in order to compensate the smaller angular integral.

8. FULL-SCALE SIMULATION
OF THE INSTANTONIC LIQUID WITH QUARKS

Now we turn to results of the calculations, invoiving PPs with a
variable radii and the complete interaction between them. For the /7
and A «nonfermionic» interactions we have used formulae derived
in Il for the «R» ansatz. Again we have used Metropolis algorithm
rather straightforwardly, considering about 32 PPs in a box.

[t is instructive to start with some simple estimates and then re-

port numerical results. For pure gauge theory we have found in II

that the typical radius p is small in the A,, unites: p~ %;1;}:‘.
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Another nontrivial small numerical parameter is the «determinan-
tal» mass: from the results given above we see that M, p is about
0.2. However, these two small parameters enter the instanton den-
sity in the combination

dn (p, Np)/dn (p, Ny=0)=[1.34 (Mg p)/(pAA, )" (27)

and they nearly compensate each other. Thus, il N; is not too large
one should not find drastic deviations of the global parameters like
the PP density or gluonic condensate from those found for N;=0.

The seliconsistency condition fixing the PP density in the vacu-
um used in Il can be used in this calculation as well. We have to
add an instanton— anti-instanton pair to the sSystem and demand
that the probablity of a configuration remains in average be un-
changed (the vacuum has zero chemical potential). However, as
now such calculations involve evaluation of the ratio of the
(n+1)-{(n+1) determinant to the nn one, our statistics was much
smaller and these measurements are not in fact very accurate. We
fix this condition up to the factor two, which is sufficient conside-
ring other uncertainties involved.

We have found that now the PP density for Ny=2 is

fipp =~ 0.2 0.3 Asy (28)
while the gluonic condensate is closer to the «ideal gas» expression
( G?) /32n2npp=1.1. (29)

The role of the non-fermionic interaction is changed: we remind
that the fermionic determinant is maximal at the relative orientation
which corresponds to the maximal attraction. Therefore, the mean
action modification per particle is shifted to much smaller value.
This does not mean that it becomes less important — dispersion of
its distribution still is of the order of 2—3 unites, showing that this
factor does play a role in the partilion function. The shape of the ro
distribution is nevertheless about the same, see e. g. Fig. 5.

The main physical result ol these numerical experiments is our
conclusion that the resul'ing vacuum does possess the nonzero qu-
ark condensate. In order to make it one should consider the eigen-
value distribution shown in Fig. 5. Another (and the more stan-
dard) plot is the dependence of the condensate on the small quark
mass, see Fig. 6. Both our system and that studied on the lattice
have finite volume, therefore this spectrum at small eigenvalues is
distorted and some extrapolation to the zero mass is necessary.
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Before making this extrapolation it is instructive fo discuss the
general information concerning dependence of the (VW) on the qu-
ark mass. For large mass it is trivially decreasing as 1/m, as it is
seen already from its definition considered above. There are several
empirical observations from the QCD sum rules ( see e.g. review
[19] and references therein) that (ss)/{uu) is smaller than unity
and close to 0.8, which agrees with this trend. For very small m the
well known prediction of the chiral perturbation theory shows (hat
there should exist some «dip» due to the two-pion intermediate state
contribution

M

|<_quqr}| :1+___3|(‘11;‘%:}| mIn (Mﬂ)
| (PW Dl 4x'f,

where [, is the pion decay constant and M, is some constant with
the demension ol the mass. One can see that this expression leads
to the infinite derivative at m=0. However, this «dip»is very small
(in QCD for the u, d quarks it gives only about few persent correc-
tion). unless the mass m is so small that its logarithm is indeed a
large parameter. Obviously, in practice this «dip» can be disregar-
ded.

Anyway, it would be difficult to separate such «dip» from the fi-
nite-size efiects, leading to zero condesate at m—0 in any case. (We
remind the reader that no finite system can spontaneously break a
continuous symmetry.)

Turning to our data shown in Figs 6, 7 we see the tendency be-
ing quile in agreement with these considerations: we do observe a
«dip» at small m due to the Tinite-size effects, but for A= 0.1 Apy
the spectrum is monotonously decreasing with A. An example of li-
near extrapolation is shown in Fig. 6. We emphasize that it is based
on m of the order of «few tens of MeV» (if one take
Apy = 150—200 MeV), which is probably small enough to garantee

smooth extrapolation to zero. Devoting much larger compuler time

it is possible to make larger system and to evaluate the finite size
eifects from the data, but we were unable to do it.

Ii is instructive to compare all this with the lattice data. First,
they make an extrapolation from somewhat larger masses. Second,
their extrapolation to m—0 has the positive slope, that is, their con-
densate is increasing with (small) quark mass (see e.g.[14]). Thus,
their eigenvalue spectrum is qualitatively different from ours. There
i« no direct contradiction here: theyv have all modes of (huge) lermi-
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onic matrix while we have considered only the «quasizero» ones, be-
longing to instantons. It may well be that our effect is just not the
dominant one. However, it remains to be explained how to reconcile
these lattice data with the phenomenology, suggesting the opposite
trend at all mass scales.

One may look at these lattice data al some different angle too.
Their box size is such that they actually work at «temperature» (lhe
inverse of the box length in the Euclidean time) which varies betwe-
en about 0.5 and 1.5 of the critical temperature for chiral symmetry
restoration. Near the phase transition our eigenvalue spectra discus-
sed in the preceeding section also have a minimum at zero. (It was
due to the smaller role of the «infinite cluster» in this region.) Can
this nonzero temperature be the explanation of the difference betwe-
en our and lattice data?

Our final number for the quark condensate can bhe expressed in
terms ol the gluonic condensate scale

B 13
KWW 026028,

G (Nj=2). (30)

Such number is very stable, independing on the details such as
our poor accurasy of the selfconsistency condition (Fyy ) =1) measu-
rements ete. The absolute value is as follows

| (PWH | ~(0.8—1.2)Apy . (31)

The best available lattice data [14] (for the SU(2) group and
the explicite account for the dynamical fermions) lead lo

i <l_.|j‘l:|:.r> | Ili____ {3.3«1‘1”,;:9

| 512>

If: Ni= E‘r?l (32)
|._."‘|I|'r,' =4' Z

where N;=0 means «quenched approximation». (Nole that «A\jo»
calculated from A, is practically equal to our Apy,, see their relation
with the lattice unites in [18].)

These results suggest (PW) much larger than was found in
our calculations. However, il one try to fix the «physical scale» so-
mehow (e. g. irom the critical temperature of the chiral symmetry
restoration, pulting it between 200 and 300 MeV) he also finds that
the scale (32) is about twice larger than the phenomenological

QCD value for the quark condensate.
The same can be said in another way. Including measurements
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of the gluonic condensate (by Iwasaki et al., see Il for reference)
one finds the dimensionless ratios of scales are as follows

| WYy | 3 {{].4{} (N;=0, lattice) 33)
(G2 0.27 (QCD) )

Note, that the phenomenological value is smaller (and very close {o
our one (30)).

Completing this section we may say that we have found that
«instantonic liquid» does provide a nonzero contribulion to the
quark condensate. Ils remains to be clarified whether it is the main
effect or not. We have made some critical remarks concerning the
lattice data for (WW). As a positive suggestion for lattice studies
we suggest to check whether small eigenvalues are correlated with
the presence of well separated instantons (seen by the
«cooling»method) in their ensemble of gauge lield configurations or
not.

9. CONCLUSIONS AND DISCUSSION

The main conclusion which can be drawn from this work was
already mentioned in the introduction: it is the slatement that the
presence of light fermions makes the structure of the «instantonic li-
qiud» much more complicated compared to pure gauge theory. Ro-
ughly speaking, if the latter system is analogous to a nonideal gas
made of «atoms», in the former one these «atoms» are also connec-
ted by some «chemical bonds» into a complicated «polymer». Apart
from the case N;=1, all simple approximations suggested previo-
usly turns to be quite inadequate for its description.

Our numerical experiments are also but [irst exploratory studies
of the problem. Their main result is the model itself, which is shown
to be practical for even modest computers. This statement is rather
nontrivial, because the system studied in this work is much more
complicated than those usually studied in statistical mechanics ap-
plications. Indeed, it looks as a solution of the Dirac equation for
quarks moving in many complicated and randomly placed potential
wells at each updating!

And nevertheless it is demonstrated that a fermionic determinant
in the «zero mode approximation» is quite tractable. We typically
worked with about 30 PPs in a box, which is not so large number
in 4 dimensions. However, it is already essentially larger than the
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number of instantions seen in current lattice experiments, which ha-
ve obscrved few PPs (if any). Straightiorward lattice approach has
to face a problem of computing determinant of a huge matrices. In
most cases these determinants are too small, and it often is so he-
cause apart ol thousends of «normal» modes, there are several
«quasi-zero modes» due to wrongly placed pseudoparticles!

Using once more an analogy with atomic physics, we may say
that it seems hopeless to understand a condenced matter by solving
the Schreodinger equation for all electrons. It is reasonable to se-
lect a small subset of the «valence» ones, which determine the sta-
tes near the «Fermi levels. If the picture of the «instantonic liquid»
is reasonable, we have such a possibility, and it would be a.mistake
not to beneiit irom such tremendous simplification of-a complicated
problem. _ )

There are no many specific applications in this work, but using
our data for the «instantonic liquid with quarks» it is possible to
studv all instanton-induced effects, in particular, their contribution
to various correlation functions. Previous experience shows that
most of the properties of the pseudoscalar mesons [8, 9] and bary-
ons [15] may be explained on this way. We hope to report these
calculations in latter works of this series.

Another potential applications deal with a superdense matter. In
Sect. 7 we have considered the phase transition with the chiral
symmetry restoration as the PP density is lowered. It was conside-
red above as a purely methodical example. However it is known
[16, 17] that in the excited matler (heated to some nonzero _iempe-
rature, compressed to high baryonic charge density etc.) iht1|nstan-
tons are suppressed. Therefore, these studies may have quite real
applications, for example for high energy heavy ion experimental
program aiming to observe the so called «quark-gl.uun plasmax.
Sharp transition from the «polymer»-type phase to dilute «molecu-
lar» phase found in this work may lead to observable consequences
in this case. We are going to turn to this in separate publications.
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