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ABSTRACT

In this paper we construct the trial function for field
configurations and study resulting interaction ol pseu-
doparticles. Then we perform numerical simulations of
the effective theory formulated in terms of collective
coordinates. The main qualitative [eatures of the «in-
stanton liquids model are confirmed: the instanions
possess large enough action to be treated semiclassi-
cally and are separated well enough. We have evalua-
ted their density in vacuum, as well as the instantonic
contribution to the gluonic condensale, the static
potential between quarks and to some correlation
functions.
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1. INTRODUCTION

The main results of the general semiclassical theory of the topo-

logical phenomena in gauge theories, some phenomenological facts
(including those coming from recent studies in lattice numerical ex-
periments) and the collective coordinate method used was already
discussed in the paper I of this series [1]. In the present work we
carry out the main part of the programm outlined in I. Naturally,
we start with the simplest SU(2) gauge theory without fermions.
The main questions addressed in this work are as follows:

.,

How to take the trial function, approximating the «streamline»
set of the instanton— anti-instanton configurations well enough?
(Sect. 2)
How the interaction of the pseudoparticles depends on the collec-
tive coordinates? (Sect. 3 and 5.)
Are the current-induced corrections to «classicals interaction
large or small for various trial functions? (Sect. 4.)
Can one describe the pseudoparticle interaction by some binary
forces (as it is common in the statistical mechanics of atoms
and molecules), or one needs also to take into account the mul-
tibody forces? (Sec. 3.)
What are the properties of the resulting statistical ensemble of
the pseudoparticles, what is their mean size and the total den-
sity? Is the mean separation large or small compared to their
dimensions? Is it in the ordered (crystall) or the disordered
phase? (Sect. 7 and 8.)
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6. Do the small-size (strong field) or the large-size (weak field)
pseudoparticles play the most important role? Can the theory
really be formulated in the semiclassical language? (Sect. 8.)
What may be the observable effects of the instanton-induced
phenomena? What is the relation between our results and those
iound on the lattice, say for the static quark potential and for
the correlation functions? {Sect. 9.)

The summary of the answers available and their discussion 1s
made in Section 10 atl the end of this paper.

- __'|

2. THE TRIAL FUNCTIONS

Unlike the BPST instanton (and the multi-instanton configura-
tions found later) the superpositions of instantons and anti-instan-
{ons we are going to study do not correspond to the action minima
and. thereiore, do not obey the classical (Yang-Mills) equations.

However, it does not mean that all of them are equally suitable

for i~ construction of the collective coordinates. On the contrary, -

45 it was already discussed in I, there exist a set of configurations
which is optimal for this purpose. So to say, there are no global mi-
nima. but there exist the conditional ones.

More precizely, the «map» ol the action distribution for such
configurations discussed in [ displays some «valleys», on the bot-
oms of which the so called «streamline» set of configurations is
placed. Unfortunately, it is not easy to find it in practice because
decomposition into the «longitudinal» and the «transverse» parts of
ihe vectors in the configuration space can only be made via some
complicated integral operators. The situation is even more complica-
ted for the gauge theories, for one should make the additional pro-
jection, to the subspace orthogonal to pure gauge transformations.
Thereiore, it is reasonable to approach this problem first in the ex-
plaratory manner, taking various trial functions and then testing
whether it is close to the «valley bottom» or not.

The first step into this direction was made by D.l. Dyakonov
and V.Yu. Petrov [2], who have used the simplest «sum anzatz»
(marked as «S»-ansatz below), being just the sum of potentials for
pseudoparticles:

AS (=Y U ditu+ Y, UR' aiy (a) =
T A

where aﬂ(x} {a;i’[x)} is the standard instanton (anti-instanton) solu-
tion in the singular gauge
A (Y) = 2Many Y» 0* /10707 + 7))

a2 (y) =2y Y 0° N0+ 9], (2)

rotated by the matrices U,(U,) and shifted by the vectors 2z, (2), the
positions of the PP centers: yy=x—2;, Yy=%X—2 For the SU(2)
group there are three Euler angles of the matrix U, four z and the
radius p: in sum there are 8 parameters per PP. (We remind the re-
ader, that due to some particular properties of instantons one sho-
uld not rotate them also in space-time:- it is in fact identical to the
color rotations.)

Unfortunately, expression (1) has two main delects. The most
essential one was pointed out in my letter [3]. Consider the struc-
ture of the single instanton solution (2) near its center:

aly (1) —> 2 %s/6D)-(1 = 2/0" 4 ). (3)

The former singular term is pure gauge and, by itself, it leads
to zero field strength. However, in combination with the second (va-
nishing at y—0) term it produces finite field strength. Such inter-
play does not happen for the «S» ansatz (1), for which the poten-
tials near one of the centers look as follcvs

AG) () = 2Tiayy (£ — 21/ (x— )" + const (4)
and, due to the commutator term, the field strength (and the action
density (GZ,)? is in fact infinite at the center. This singularity is not
physically justified, and it also is very inconvenient in practice.

Another problem is related with the instanton —instanton (/1)
interaction. It is the well known theorem, that exact n-instanton so-
lutions have the action just n times that for the single instanton.
Thus, in principle, it is possible to have the trial function which
automatically possesses zero ]/ classical interaction. Unfortunately,
the known general solution is not sufficiently simple to be used in
practice, but nevertheless it is desirable to take an ansatz for which
the J/ classical interaction is at least weaker than that for the in-
stanton — anti-instanton (/A) case. Looking at the ansatz (1) at
this angle one finds (see below) that for both /I and /A channels it
leads to equally strong repulsion at small distances, which looks
very suspicious.



Trying to improve this ansatz [ have looked for other trial fun-
ctions. It is obvious that any sum of contributions of separate pseu-
doparticles cannot solve the «singularity» problem. One way out
(indicated by the t'Hooft multi-instanton solution) may be a poten-
tial in the form of the ratio of the two sums. This idea has lead me
to the following trial function (the so called «ratio ansatzs, below

«R»):
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One may check that (5) indeed leads to finite action density at
the centers, although its value is not exactly the same as that for
the separate PP. We remind that for one instanton with the radius
o it is

(G (002 =192/p". (6)

For reasons to be discussed in Section 6 we prefer to keep to
the relation (6) and define the so called «elfective» (or «renorma-

lized») radius
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In terms of p (7) one has the same expression (6) for the action
maxima in any configuration. Note however, that p depends on the
positions and the sizes ol neighbouring instantons. Therefore, one
may indeed speak about the «renormalization» of the instanton size
in matter.

We have not yet specified the «shape variation function» [(x)
present in (5). First of all, in order not to spoil the field topology
at the instanton centers it should obey the condition f(0)=1. Se-
cond, it should provide sufficient cut off at large distances for the
sum convergence, both in the nominator and the denominator of
(9).

One physical motivation for a modification of the instanton pro-
file was suggested in Ref. [4], where it was [ound that the nonga-
ussian quantum f[luctuations ol the fields around the classical in-
stanton solution modify its large distance «tail» so that the mean
A, (x) in fact decays at large x as exp (—x”-const). Another physi-
cal motivation came from the DP work [2], where such cut off was
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Fig. 1. Modification oi the action per instanton as a function ol the value of the

parameter € of the shape Tunction f(R). Open points stand for a single instanton,
the closed points correspond to the ensemble to be derived below.
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used in order to minimize the repulsion of instantons in matter.
(Such modified objects were called «fremons», from «iree energy
minimizations). For simplicity, we take it to be a function of the
distance to ro ratio and of the Gaussian shape

f(x)=exp (—Cx/p%). (8)

For a pseudoparticle well separated irom all others the action
gradually increases with C (see open points in Fig. 1). However, it
was found that this modification of the action is in fact rather
<mall. This is clear at least for small C, for which such change of
the PP shape is approximately just a change in p. But even for C of
the order of unity (when there is 100% modification of the field dis-
tribution) the total action is modified by 10—20%.

Dependence of the average field strength on the value of C in
the finite-density ensemble is quite different. In Fig. 1 (closed po-
ints) we show an example of such dependence for the statistical en-
semble generated as explained below in Section 7. The action per
particle is larger than unity, which means repulsion in average (see
- below), and it has some minimum at the value of C about 0.6. We
“use this value of C in what follows.

% | have also considered much more complicated trial functions.
For example, taking the instanton — anti-instanton pair one may
take anisotropic functions [ (with different slopes in transverse and
longitudinal direction relative 1o their positions). Moreover, one may
take these parameters to be different for each 12 components of A,,.
However, these complicated trial function have produced neither es-
sentially different interaction law, nor much smaller currents, and
therefore most of this work is based on the «R» ansatz (5).

3. CLASSICAL BINARY INTERACTIONS

By definition, the «classical interaction» is the difference betvlb.feen
the classical action for the given field configuration. and 81° Npp
where N,, is the number of pseudoparticles under consideration. It
is natural to start with the binary interactions (Npp =2), for which
the number of parameters is not yet very large. As the experience of
the atomic and molecular physics shows, in many cases one may
understand the properties of a condensed matter accounting only to
binary interactions of the constituents.

Let us first comment on some qualitative aspects of the problem.

8

The simplest toy model usually kept in mind while discussing the
instanton physics is the well-known double-well potential, in which,
the pseudoparticles are just the tunneling events from one well 1o
another. Obviously, putting forward and backward tunneling events
closer in time, one finds smaller action, which means attractive in-
stanton — anti-instanton interaction.

However, there exists an important qualitative difference betwe-
en this simplest model and the quantum field theories. In the latter
case PPs are some «hedgehogs-lype conligurations with a complica-
ted internal structure. Depending on the relative orientation, the
lield in between can either be compensated or added. Therciore, the
long-range interaction is always of sign-varying (or the dipole)
type, vanishing ii the relative orientations are random. Skvrme was
the first [5] to discover such dipole interaction at large distances
lor the topological solitons (now known as «skyrmions») ol the nio-
del chiral Lagrangian. (In fact, it is the one-pion exchange (ransla-
ted to this language). First studies of the instanton—anti-instanton
configurations were made by D. Forster [6] in the lramework of
the planar (14+1) O(3) sigma model, and again, the long-range di-
pole-type interaction was found. Similar dipole interaction exists for
the gauge theories as well [7]. However, the quest 1 aboutl the
short-range forces was open, even the sign of the efiect at Tixed col-
lective coordinates is nontrivial, to say nothing on the result of sta-
tistical averaging in the interacting ensemble.

Let me start with the kinematics of this interaction. The common
shiit of positions is irrelevant, so the interactions depends on the re-
lative distance R°=(z,—z:¥. Similarly, common rotation in color
and Lorentz spaces are irrelevant for the action, so we may take
the PP placed along the 4-th axis and put onc of them to the stan-
dard orientation (U,=1). The &, matrix left describes relative ori-
entation of the pseudoparticles.

Although orientation matrices U,, U, are defined in vector reproc
sentation, we prefer to use the spinor one and define the loliowing
«qualernion» uy:

Ut = 7 Tr v (s’ drlnae 3R

T, —=IT, 47 :t“

defined on the unite sphere. We did it because in terms of u the
SU(2) invariant measure looks very simple.

Y



Returning to the /A pair rotated to the specific position defined
above, we define the «relative orientation angle» @ by -#r==t0s (D).
Its invariant definition is as [ollows

msm:% Tr[U;™ Ua(z— 20Dt ]. (10)

Dependence on this angle @ can be expressed in standard angu-
lar functions, for example the dipole interaction mentioned above
can be written as

S=dp; ps d/R', d=1—4cos’D, R =(z—z,) (11)

Note that for random orientation (cos®®) =1/4, which indeed leads
to (d)=0.

Dyakonov and Petrov [2] have evaluated the large-distance tail
of the binary interaction for the «S» ansatz (1): (p=8xn2/g?)

f
g 2.3 . § 3.8 ; 4
aS“,’ﬁ= 4 d{;ﬁ o % (—15 d+92}£; 05 (0 +pa) +Q{R_a},
90? (2 (o2 4 o) 3 :
As"/p= BTN 1 R~y (12)

Thus, in this case ‘here are the known O(1/R*) dipole forces and al-
so some O(1/R°) scalar (® independent) repulsive term. The ques-
tion whether similar results (especially at non-asymptotic distances)
can be obtained with other trial functions was later studied by
myselt [3] (see below). Recently Young [8] has found the ansatz
which is parametrically close to the «streamline» at large distances
(see Section 6), so that the O(1/R°) term in the interaction was
fixed uniquely. It is of purely dipole type

AS"/B=4-d-p; o} J(R*+p} +p3)%)2 (13)

Uniortunately, the asymptotics mentioned takes place only at large
enough R, where the interaction is too small and unimportant.

: We have found the binary interaction law at all distances by the -
numerical integration of the field strength squared over the space-ti-
me. But before we present our results, let me explain how this in-
tegral was actually calculated. We need accuracy of the order of
lew per cent and, because (G, (x))* at any point is calculated rather
slowly and because its distribution in four dimensions is rather in-
homogeneous, the ordinary Monte Carlo routines turns to be very

10

R

0.3

04
0t
- 04

n pair versus the distance

attractive (most repulsive)

The particular values of the PP radii are

viation irom 28 for the instanton — anti-instanto
s. The open (closed) points stand for the most

hey correspond to «R» ansatz.

-

Fig. 2. The action de

|

R bhetween the cenle

4=

relative orientation,

as follows:

parison stand

0.5. The dashed lines are

pr=2., py

LB

0.7, p,

Vi p

1;

own just for guiding the eye. The «stars» * shown for com

» Pa =

_—

O py

not a fit, they are sl

1 and the «S» ansatz.

for the case p; =p,



|
P -
» i
> 4
s |
g
) l
# |
.-D-f I+ =l
s
i I
o |
0, |
T
< [
= S © 3

1.5

For «most attractive» re-

instanton pair.
lative oricntation the «®» ansatz coincides in fact with the two-instanton exact solution due to

the instanton

Fig. 3. The same as in Fig. 2, but for

t ' Hoolt.

ineffective. Thus we have generated enseimble of points with the
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(corresponding to the unperturbed action distribution for indepen-
dent instantons) by the Metropolis algorithm, and then have avera-
ged the ratio (G, (x))*/W(x) over them. Then statistics of about 10
was sufficient for the accuracy we need. Our results for /A and //
pairs are shown in Fig. 2 and 3, respectively.

Considering first the /A case we note, that the points connected
by the dashed lines correspond to «R» ansatz for different p,/p; ra-
tio (we have plotted just few values in order not to make this figu-
re too complicated). It is seen that the forces between the pseudo-
particles become weaker as this ratio deviates from unity. The open
and closed points correspond to extreme values of the relative orien-
tation angle ®=0 and =n/2, the most attractive and the most repul-
sive ones. Note that in the former case the action slowly decreases
up to R=1, and for R<<0.5 it start to rize. From what follows it
can be concluded that one should not trust this ansatz at so small
R and it is presumably the artifact related to it. The true «stream-
line» should not have any action minima on the way to R—0 (see
discussion of this point in Ref. [8]).

In order to compare these results with the analytic asymptotic
relations discussed above we have plotted in Fig. 2 the solid curve
corresponding to Young potential (13). We have not plotted the re-
sults (12) for «S» ansatz but only note, that it obviously works
only at large R. In particular, we remind the reader that the mini-
mum of the ®=0 curve is in this case at R=2.5, to be compared
to R=1 for the «R» ansatz. We have measured by our routines the
action for the «S» ansatz too (it is the stars in Fig. 2), but they are
in some way «regularized» integrals: all the points where the field
was greater than that in the center of single instanton were rejec-
ted. Anyway, essential reduction in the interaction magnitude is se-
en as one proceed from «S» to «R» ansatz: it can be traced to the
fact, that for the case R the field near the PP centers behaviour is
much more smooth.

Now we turn to Fig. 3 for the instanton—instanton interaction,
The solid curve corresponds to (12) and to the «S» ansatz, while
the points are for the «R» case. Note, that for one oi the orienta-
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tions the [/ interaction is absent: it is because in this case the an-
satz R coincides with the exact t’Hooft solution. (By the way, this is
a good test of the algorithm accuracy.) We emphasize, that altho-
ugh /I interaction is not exactly zero, it is very short-range, and
(as it is shown below), it does not play the crucial role in what fol-
lows. :

For an integration over the collective variables we need some
simple parametrization of these «binary potentialss. We have used
the following one for the ansats «R»

AS™ /B =144 /(44 R?/p, pa)'+ 16/(3+ R /o, ps .

AS" /8= (232) 16/(1+ R*/pipa. (15)

4. THE CURRENT-INDUCED CORRECTIONS

As it was already explained in paper I of this series, in addition
to the classical interaction considered in the previous section there
exist also the current-induced corrections, which are formally of the
same magnitude (in terms of the semiclassical parameter B). The
physical nature of them is easy to understand: any ansatz used fol-
lows the bottom of the «valley» only approximately , and the resul-
ting current (more precizely, its part transverse to the ansatz
plane) produce the «linear terms» in our gaussian integral which
shifts the maximum to the true bottom of the «valley». The sum of
the «classical» term and the current-induced correction is the
ansatz-independent eifective interaction.

The general expression for this current-induced term is as fol-
lows -

CRFFER I. s | 3
AS™ T w= i S dx dy jou (x) Daiu.m- (%, ) fov (1) (16)

where 017 (x,y) is the part of the gluonic propagator in the ansatz
background field, related to the modes transverse to the ansatz
plane (and to the gauge transiormations), and fﬂi(x} is the trans-
verse part of the current.

It is clear that at large enough distances R between the PPs
this term is negligible. Indeed, for the separated instanton fou =0,
and for both our trial functions '

J(R)~1/R® (R—oo) (17)
14

and therefore
ﬁStunwr{ -""h-"l:\l I/JR:JE‘ {R—)" DG-] : { 18}

As the «classical» interaction starts with the O(1/R") term, we
may conclude that it is indeed ansatz-independent. Young's impro-
ved ansatz leads to the current which decays more rapidly, as 1 /R",
so he is able to fix the O(1/R°) term in the interaction (13) in the
ansatz-independent way. Unfortunately, these asymptotic formulae
take place at rather large R, while in practice it is necessary to
evaluate these current-induced correction at R=1—2. I have tried
various methods, but straightiorward calculation turns to be a very
difficult business, especially projections in the functional space, In
order to do it accurately one has to develop special algorithms and,
presumably, to use significantly greater computer resources. There-
fore, all we can do now is to present some rough estimates of these
corrections, providing at least qualitative understanding of their
magnitude and dependence on the distance R. |

It is not a problem to evaluate numerically the current at any
point for a given ansatz: one just needs to perform double difieren-
ciation

fav ()= D" Gy (x). (19)

The next step | made was the «approximate» projection on the
mode related to collective coordinate R, the interparticle distance.
(The word «approximate» stands in parentheses because no projecti-
on to non-gauge modes was in fact incerted, and the tangent vector
V(x) was evaluated just as a derivative of the ansatz.) It was
found that the following «cos #» combination

cos B="{ dx j,, (x) Vil (x)/] S d:rjzc;x_}.i dx (VR(x)? |12 {20)

is even for «R» ansatz only 10—209%. Thus the current is mainly
«transverse» and evaluating the current-induced correction it is pos-
sible. to use the total current instead of ils transverse part. (This
qualitative conclusion can hardly be altered ii the gauge projector
be included.)

As for the propagator, it is a difficult problem which may be a
subject of separate investigation. In order to get some qualitative
insight into the problem, we have considered two simplified versions
ol this propagator. The simplest one is an attempt to substitute i
by some local expression

3]



E]E;Lb,, (x, y 8" o L2 6(x —y) (21)

where L stands for some constant with the dimension of the length.

Then AS™"™ becomes propotional to the current norm:
LE

;.35:.'&!”:-;:? ALY _5 E j? dx .

(22)

Our results for both «S», «R» trial [unctions are plotted in
Fig. 4,a. (This figure corresponds to an instanton — anti-instanton
pair with o, =p,=1 in the most attractive relative position.) This
quantity indeed rapidly decays with distance, but the ansatz «R» le-
ads to (j') systematically about one order ol magnitude smaller.
This fact (discovered at the early stage of this work [3]) can be
consider as one more argument that this ansatz is better: the cur-
rent-induced corrections are presumably smaller by a similar factor.
I have tried to minimize (;°) with much more complicated trial
functions possessing up to 14 parameters (it is described in [3]),
but, as seen from this figure, they are unable to improve the situa-
tion significantly.

[i one makes another guess conserning the propagator, using
the free one

Doy (%, )-8 8y /4 (x—y ), (23)
he obtains another estimate of AS™". Our results are shown in
Fig. 4,b. This integral seems to drop somewhat less rapidly, but the
picture is qualitatively similar to the behaviour considered above.
The dashed line in Fig. 4 at the 0.1 level is drown because the
typical B (to be found below) is of the order of 10, so at this level
the current-induced corrections become of the order of unity and
can affect particle distributions. Although our discussion in this sec-
tion is qualitative at best, due to strong decrease of these quantities
with distance R one may conclude from these data that the cur-
rent-induced corrections may become significant for the «S» and
«R» trial functions at R<C2 and at R<CI, respectively. It may ap-
pear not so great a diiference, but it will be shown below that in
the «instanton liquid» the typical interparticle distances are 2—3
radii, which makes this point crucial. For exampe, taking roughly
p=1/3A,, as the typical PP radius and 0.5A,, as the typical PP
density one [inds that (for the homogeneous space-time distribution)
the mean number of particles inside the sphere of R/p=1, 2, 3 is
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Fig. 5. Modifications of the action per instanton versus the <«gas parameters
fe==(n®/2inppp® where npp is the PP density. As the PP ensemble used corresponds to
the so called «random model» (see Seci. 6), all of them have the same radius. The
dashed lines marked /A and /4 /A correspond to binary forces only, while the po-
ints represent explicite measurements of the field strength squared using the «R» an-
satz. Various points correspond lo various values of the parameter C of the shape
function f, as indicated in the [ligure. The dotted line corresponds to estimates in
Ref. [2] for the binary forces for «S» ansatz.

0.03, 0.5 and 2.4, respectively. That is why one may well live with
the inaccurate potential at R/p<<1, but we definitely have lo care
about its accuracy at twice larger distances!

5. IS THE INTERACTION AT FINITE DENSITIES
WELL DESCRIBED BY THE BINARY FORCES?

Before we turn to the statistical mechanics of the «instanton li-
quid», it is desirable to answer this important question. In general,
this question arises because the Tlield @G, is nonlinear in terms of
the potentials A, which, in turn, for the «R» ansalz is not just the
sum of the terms belonging to various particles (as we are used to
in electrodynamics). Thus, the smallness ol the «multibody» forces
in dense matter is by no means a priori obvious,

In order to answer this question it is natural to take the sim-
plest PP ensemble possible. Therefore we define the so called «ran-
dom model» (RM, for brevity), containing a set of PPs with fixed
radii and random distribution over positions and orientations. Thus,
the only variable parameter of the model is the PP density n,, it
self, or rather the «gas faclor»

-rl'r'£ | .'-'ll_-I I.4 SV L
| = s Z 5 PLA- (24)

In Fig. 5 we show dependence ol the average interaction per
particle in this ensemble on n,, measured by two different methods.
One is the sum ol the binary forces, another represent direct measu-
rements ol the integral | { G}, >*dx using R-ansatz for each coniigu-
ration. (Again, we have used the trick, generating the points with
the weight W(x) in order to make the method more effective.) Al
though agreement of boih methods is not ideal, we have taken these
results as a sufficient basis for the conclusion, thal the «multibody
forces» are sufficiently ~mall.

6. ACCOUNT FOR «QUANTUM» INTERACTION

So far we have discussed only the clz-.ical acuon lor dilierent
configurations. Recollecting our pictinie ot evallevsy in conliguration
9



space, one may say that so far we have dealed only with the «map-
ping» of the valley bottoms. Now we proceed to quantum effects,
connected with the «widths» oi the valleys. Naturally, a quantum
system has less chances to penetrate into some narrow valley than
into a wide one, even if their bottom are at the same level. [n other
terms, one should include the energy ol the zero-point transverse
oscillations in the eifective action.

The «width» in Gaussian approximation is represented by the
quadratic form ol the action expansion in the «transverses directi-
ons. For a single instanton explicite account for all modes of its
shape varialion (preserving its position, oricntation and the radius,
being orthogonal to pure gauge transiormations and ultraviolet
regularized) is an extremely complicated problem, solved by
G. t'Hooft. It is clearly impossible to do the same analytically for
our complicated configurations, while application of suitable numeri-
cal method we hope to report in later papers ol this series.

However, at a semi-quantitative level quantum effects may be
taken into account quite easily. Indeed, the «quantum action» con-
tains the renormalized charge, depending on the field:

5= 7l (~ + Siirar)
where G in the coupling constant means some «typical field». The
stronger is the color field, the smaller is the charge. The factor
1/g*(G) in this limit better suppress quantum fluctuations. The to-
pic of our discussion now is how to normalize this coupling con-
stant most accurately.

Let me remind the reader that the statistical sum in the di-
lute-gas approximation (see I) contains the following «beta parame-
ter» as a «one-loop» quantum action of a pseudoparticle '

1 29
=.'_EJ . _—
B=b log (M) L b= (26)

(Of course, that statistical sum is not just the order-of-magnitude
logarithmic estimate. In particular, one cannot take 2p instead of p;
this would alter the normalization constant in the instanton density
by the huge factor 2"! Similarly, as that formula is written with the
two-loop accuracy, the value of the lambda parameter is fixed by
the regularization prescription used, the Pauli— Villarse method).
Relying on the fact that «a posteriori» our liquid turns to be
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rather dilute, it is reasonable to assume that (apart of the integral
over collective variables) the quantum determinants for n PPs is
just the product of the single-instanton determinants.

[t is lempting to substitute just the parameters 0,4 of our trial
functions into «betas» in the statistical sum. However, our parame-
ters p (which we still call the «instanton radii») do not play exactly
the same role as that for the separated instantons. It is possible to
make better approximation at this point, holding to somewhat more
physical characteristics.

It was noted in Section 2 that as two PPs approach each other
the Tield strength distribution is qualitatively changed in such a
way, that its peak values increases and at the perifery decreases.
(Note, that the action ((Gj,)*dx is nearly conserved, and its varia-
tions are taken into account as the «classical interactions considered
above.) Such field distribution can be approximated by the single-
-instanton ones, but with some effective radii P;r- Thus the natural
and quite practical way to do this is to use in such fit the peak va-
lue of the field strength. In other terms, we argue that it is more
reasonable to substitute g (7) into the coupling constant, rather
than just p. (Of course, in principle explicite evaluation of the deter-
minants for the ansatz configurations are needed in order to test
real accuracy of this guess.) As g, depends on the proximity of the
surrounding instantons, one may speak about the «quantum interac-
tion» between the pseudoparticles created by this effect. For our
«R» ansalz, for which the fields grow as the PPs appfoach each
other, this interaction turns to be repulsive.

(I was often asked at this point why we do not take § as our
collective coordinate from the start: this will make this discussion
much simpler. The answer is that, fixing positions of all PPs and
their p one can find g, but not vice versal. Also there are no for-
mulae expressing potentials in terms of 0.)

In order to demonstrate the magnitude of this interaction we use
the «random model», introduced in the previous section. Classical
action is unchanged if the PP radii and mean separations are chan-
ged by the same factor, but the quantum one is changed: it has its
own absolute scale, A,,. Therefore, in Fig. 6 there are series of cur-
ves, corresponding to various PP radii versus the gas factor. The
dashed curve corresponds to classical interaction found above. Com-
paring them one may see, that both effects are of the same sign and
of similar magnitude. Below we present results both with and
without «quantum interaction» considered in this section.
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Fig. 6 The same as in Fig. 5. but with the account of the «gquantum interaction» as

explained in Sect. 6. The dashed curve marked «Cls corresonds lo the contiribution

of ithe «classical» binary foices from Fig. 5 The solid lines correspond to the «ran-

dom models with the value of the PP radii indicated in ihe figure. It is seen thal
with the increase in the radii the interaction becomes more repulsive.

7. STATISTICAL MECHANICS OF THE INSTANTON LIQUID

The partition function of our effective theory looks as follows

= Z l SII iﬂ.zm EK?E-&;,;];
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where B, is defined in (26) and the nontrivial element is §,,, depen-
ding on all collective variables. We take it to be the sum of binary
interparticle interactions deifined above. We have only to add, that
our «binary potentials» have been fixed for the classical (and there-
fore scale-independent) actions. As it was explained in the pre-
ceeding section, betas in (27) are defined by p rather than p. In the
binary interaction term the beta factor is for definiteness determined
for the geometric mean value pim:[_npg.

Evidently, we have to face a very nontrivial computational prob-
lem, similar {o evaluation of a thermodinamical quantities of some
«liquid». Moreover, this system lives in four dimensional space, and
its elementary objects have nontrivial interaction, depending on re-
lative distances and orientations. Naturally, the first attempt to
solve it [2] was based on some additional approximations. Their
method was a kind of the mean field method: the multibody distri-
butions were assumed to be the product of the single-particle ones,
and the interaction was then simplified by the orientation and posi-
tion averaging. The resulting (repulsive) average interaction leads
to the following cut-off factor in the p distribution

dn{p)=dn(p, dilute gas)-exp ( —p” const), (28)

However, trying to develop a quantitative theory we are not in-
clined to make any additional approximations. Thereiore, we have
straightiorwardly simulated this statistical system numerically,
using the standard Metropolis algorithm. We have typically worked
with 32 PPs in a box with periodic boundary conditions, making
few thousands of iterations.

First of all, we have obtained data for boxes of difierent volume
but the same number of PPs, measuring the density dependence of
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various quantities. However, one value of the density is most inie-
resting, the one corresponding to the maximum of the grand partiti-
on function and to the real vacuum of the gauge theory . A number
of the methods to lix its value was tried, and iinally we have used
the following simple idea. One extra particle is added to the en-
semble and the following extra factor :

Fypi=\dQy, exp(—S5T N (29)

appears . = to it in the statistical sum (here §'!'' is the interaction
of this ex.ra particle with all others). Its physical meaning is the
change in the configuration probability if a particle is added. At the
maximum of the partition function F should be equal to unity:

il (30)

(In other terms, it is the condition that our ensemble corresponds to
zero chemical potential.) This factor was numerically evaluated and
averaged over configurations, the volume was ajusted so that this
condition was fullfilled.

8. THE MAIN PROPERTIES OF THE «INSTANTO NIC LIQUID»

First of all, we have to discuss the features of this system which
are most crucial for the justification of the approximations made
ahove.

[n particular, we have used the semiclassical expressions, contai-
ning perturbative meaningful only at sufficiently large B values (we
remind that it is just the action in unites of the Plank constant.) In
Fig. 7 we show the distribution over f in our ensemble. It is peaked
at betas ol the order ten with the «tail» toward much larger values,
while small betas of the order of unity are not very important in-
gredient of our ensemble. Therefore, although the formulae used
fails at this end, it is probably not very important for the conclu-
sions to be drawn below.

Going further we display the distribution over shifts in betas ca-
used by the interaction of one particle with ail others. see Fig. &.
First of all, its width is of the order of 2, which is reasonably small
compared to mean betas. Thus, our PPs are not «melteds by the in-
teraction! Second, repulsion definitely wins over atiraction. And
third, as the distribution over this quantity is wide enough, exp(|Ap|)
may well change by one order of magnitude. This shows, that the
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probability for a particle to be in certain positions strongly depend
on its environment. Thus, we do not deal with a dilute gas, but
with a strongly interacting liquid (as anticipated above).

The role of the mutial interaction is well seen in the distribution
over p, shown in Fig. 9. The peak at p about 1/3A;, is due to at-
traction, while damping at large p is due to repulsion. Two curves
are the calculations with and without quantum interaction consi-
dered in Section 6. Their normalization is different by a factor of
two, but they have rather similar shapes and other parameters.

The global PP density in the vacuum is found to be

0.7 Apy (with quantum interaction)
Npp = & . ; (31)
1.2 Apy (without quantum interaction)

This is several times larger than that obtained by Dyakonov and
Petrov [2]:

fipp ~ (.24 ;1;1'.-],.-' ? {-52}

Thus, although our results are qualitatively in the agreement
with Rei. [2], the quantitative deviations are significant.

As the final remark in this section we comment on one of the
question raised at the start of this work, on whether our ensemble
of PPs is ordered or not. We may make two statements in connec-
tion with this issue: (i) no general ordering is seen, although local
order cannot be excluded (in fact, it is present for most of real
liquids!); (ii) we have made simulations which started from the
Dyakonov — Petrov crystall (the rather nontrivial configuration,
being the action minima of the system), and have observed its
«melting». Summarising, there is no evidences that the ordered
phase does take place.

9. PHYSICAL RESULTS AND COMPARISON WITH LATTICE DATA

Now we are in the position to evaluate the instanton-induced
contributions to various physical phenomena: all question of prin-
ciple are more or less settled and the parameters of the PP en-
semble are fixed. '

But before we turn to particular physical observables let us first
comment on the method .of comparison of our results with the lat-
tice data. We have already considered phenomenology of the topolo-
gical fluctuations on the lattice in I and have mentioned there, that
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in the perturbative domain the -c.ation between the unites used in
this work {(namely. A\, ) and the lattice unites (A,) can be found
irom comparison of the perturbative two-loop calculations of the ei-
fective potential for some smooth backround field. For the SU({2)
case without quarks under consideration the result is

.j\H,'J.f'I.I‘I.Jr_:Ql.E {;M;:ZQ. .!""o'rll':[}} {33}

However, it is not quite clear whether available lattice data do
indeed correspond to so deep perturbative domain where this ex-
pressinn is exact. Therefore, in order to get rid of the systematics ol
this . pe, it is reasonable to fix the unites assuming equality of
some observables. Such treatment of the lattice data is quite stan-
dard, for example usually the «physical unites» on the lattice are
defined by ascribing to the string tension K its phenomenological
value (420 MeV)® In our case the string tension is definitely not
the suitable quantity: as it will be shown shortly, instantons play
rather modest role in the generation of static quark potential. Gene-
rally speaking, the gluonic condensate can well fix the scale of the
nonperturbative vacuum fields, but unfortunately its derivation on
the lattice is rather tricky because of subtraction of large perturba-
tive effects. We have chosen the topological succeptibility

tiop = Jim [C(Ny— N2 1V (34)
as the most suitable quantity for such a comparison. (We remind
that here N,, N, are the number of instantons and anti-instantons in
some sufficiently large volume V.) It has no perturbative contribu-
tion on the lattice (with modern @ definitions) and is measured in
quite similar way in both cases. (For our «instanton liquid» its
measurements is straightiorward. The typical volume taken, usually
just hali of the «box», has the volume ol the order of 40A;,.)

Thus, we have postulated that ¥,  should be equal for our vacu-
um and the lattice one, from which we make the «lambda measure-
ments» '

cAdpy A, =226 (35)
Note, that deviations from the asymptotic formula (33) are notice-
able, but not verv large. They are of reasonable magnitude, simi r
to that Tound from «scaling violation» measurements.

As the first example of the comparison we consider a values ol
the gluonic condensate. Our data for the ¢ G*) (normalized to the
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«dilute gas value» 32n’n,,) were in fact shown in Fig. | as a funec-
tion of the parameter C. Its minimum is at about 1.3, and multip-
ling the PP density by this factor one obtains the value of this con-
densate. Comparing it to the lattice data mentioned in I with the
scale (35) we have

{ GE) f32112 |£nsmnmn = & 1.5 ﬂip’ 4

(G*) /320* | japtice =~ 1 + 3<Anpy . (36)

Taking into account all uncertainties, the agreement is very good.
We may therefore conclude that instantons probably dominate in ge-
neration of the gluonic condensate (or at least contribute quite sig-
nificant fraction of it).

Next we discuss the static potential between heavy charges. This
quantity V(R) can be defined as a correlation of two «Polyakov
lines» separated by the distance R 2

(LT(R) LO)) =exp[—T V(R)],

Lzexp[:ifg dx A rafﬁ] (37)
0

where T is the box length in temporal direction. My measurements
were rather straightiorward, the path-ordered exponent was calcula-
ted by multiplication of color rotation matrix in 10— 20 steps along
the line. We have tested that «nonunitarity» of the resulting matrix
was never larger than few percent, demonstrating that our step was
sufficiently small.

Our results are shown in Fig. 10, in the form of the force
f=—dV/dR between the charges H. Being compared to the lattice
data (we have used the high-statistics data due to Berg and Billoir
[9]) the instanton-induced forces turns to be relatively small, con-
stituting only about 15% at R=0.5A;,' and being smaller else-
where. Note that very large force at small distances is just
perturbative Coulomb force, while the approximately constant lattice
effect is presumably the eifect of a «string». Therefore, contrary to
some claims in the literature, we conclude that instantons do not
contribute much to interquark static potential. Roughly speaking, in-
stantons provide the strongest nonperturbative fields, while in the
confinement problem one has to deal rather with the most long-ran-
ge field fluctuations of the unknown nature.

This problem may also be approached from the other side. In the
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first paper on the «instanton liquid» [10] it was emphasized that
such vacuum is very inhomogeneous, the «twinkling vacuumy» it was
called. Now we may test whether it is indeed the case. One stan-
dard measure of field distribution in vacuum the «gas factor» | de-
fined in [7], it was found to be

F=0:1-03 (38)

which means that most space is indeed free from the nonpertiurbati-
ve field. Moreover, it most places this field is very weak, related to
the largest-ro instantons. The measurements of the gluon conden-
sate reported above have shown that it fluctuates from point to po-
int strongly, by orders of magnitude. '

Another measure oi the <homogeneity» of the gauge field distri-
bution discussed in literature is the ratio (G*)/(G*)® It is sensiti-
ve to the strongest field and therefore to the smallest intantons.
However, in the SU(2) theory under consideration (but not in the
physical SU(3) case) it should not be measured: it can easily be
seen that it diverges due to small-ro instantons. Thus, looking at
this angle one may say that the SU(2) instantonic vacuum is «infi-
nitely inhomogeneous».

The most reasonable measures of the field distribution in space-
time is provided by the behaviour of the correlation functions . In
Fig. 11 we show our results for the scalar and the pseudoscalar
gauge invariant operators made of the field strength:

| K +(R)= ( GXR) G(0)),
K_(R)= (GG (R GG ). Gu=Fuwor Gon (39)

For clarity they are normalized to (G*)? so for the homogeneous
fields such correlators should be of the order of unity everywhere.
The data shows quite the opposite trend: the correlator is very large
at small R and decays rapidly.

Note that crossing with the perturbative contribution (free gluon
propagation) takes place at very small R of the order of { 7oA
Only in the vicinity of this point the standard sum rules based on
the operator product expansion may have chances to be valid. In I
we have already mentioned that due to Novikov et al in these chan-
nels there should be violation of the asymptotic freedom at very
small distances, at the momentum transfer Q*= 20 GeV?. Now we
cee that our data for the instantonic liquid do indeed reproduce

these observation.
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: The logarithmic derivative of the correlator may be identified
with some correlation length, which turns to be very small:

t={ 1% B KPR GO —(ayY ) =045, (40)

Clnse values for this length were found on the lattice (see insertion
In Fig. 11), the agreement is so good that we may conclude that in-
stantons do explain the data on the correlation function.

In the unites (40) even the small boxes used in lattice studies
look large, while the boxes used in this work is even «huge», about
(30-5)*" However, these arguments are but misleading. Large and
strongly decaying correlation function just signalizes that there are
very small «spots» of the strong field, the small-size instantons.
This observation is very important by itself, but obviously it is not

really the true correlation length. At large distances the correlation .

function should be related with the long-range correlations. In fact
we have only few instantons (32'/*) along each axis of our box
(and on the lattice only few instantons at all), and we do know
that they are correlated at distances of the order at least AL

And nevertheless, the «instantonic liquid» does reproduce the
correlation function at some intermediate region, say between
1{"= 1/20 and 1 A,,', in which it drops by about two orders of mag-
nitude. We were thus able to evaluate both the «asymptotic freedom
threshold» and the masses of the glueballs. )

10. CONCLUSION AND DISCUSSION

The main result of this work is that the qualitative features of
IIF‘FEI‘ «instantonic liquid» suggested in [10] are confirmed. Many spe-
cific approximations and assumptions made in the first variational
approach to this problem [2] were improved, but this has not affec-
ted the qualitative picture.

The global parameters found (such as the gluonic condensate
and the topological succeptibility) are fixed up to the factor of two.
A,l this accuracy level we have found agreement with measurements
of these quantities made on the lattice. This fact is highly nontrivial
considering that transition from lattice to our unites have cnntained
huge numerical factor like (21.5)* etc. '

This work also provides much more detailed information on the
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properties of instantons than one can draw from lattice numerical
experiments. We are not restricted by the discrete nature of the lat-
tice and have all the differential distributions (such as the distribu-
tion over the radii etc. shown above). -

Looking at the problem ifrom more practical angle we emphasize
the fact that in our case commitment ol the computer power is
smaller than in the lattice works mentioned by the enormous factor
of the order of 10°. Indeed, most of the variables used on the lattice
describe the short-wavelength gluons which are not interesting for
us. Their main role is the generation of the renormalized charge in
the effective action. We did evaluated it in some crude approxima-
tion, but this point may be improved. Anyway it is doubtiul that on
the lattice one may have better accuracy, keeping in mind severe
technical limitations of this approach.

However, the cost for our successiul performance was commit-
ment to only topological fluctuations of quite specific type, while on
the lattice one integrate over all configurations. Of course, «instan-
tonic liquid» is not the final picture of the gauge field vacuum: e. g.
we have observed that it does not generate sufficiently strong force
between static charges even at small distances, to say nothing on
the confinement at large distances.

We do not think that such cost is too high because it becomes
more and more obvious that instantons dominate in generating the
strongest vacuum fields. For example, they were shown to repro-
duce well lattice data on the correlation functions. We are quite
sure that new quantitative theory of instantons will shed light on
many phenomena in hadronic physics, and in the subsequent paper
(devoted to incorporation of light quarks) we will turn to this.

Completing our comparison with the latlice data, we would like
to emphasize one more point. In contrast to that works we are able
to understand the nature ol all the distributions, for they follow
from the features of the binary interactions of the pseudoparticles.

Now, let us turn to the most difficult physical question. It was
demonstrated that all nontrivial small parameters of the problem
(such as «diluteness», large betas etc.) suggested in [10] are rep-
roduced. Why it happens so, do they have some deeper roots?

The gauge theory under consideration have no [ree parameters,
so all our «small parameters» appear as the interplay of some num-
bers. Trying to «get statistics» one may trv to do the same say for
the O(3) sigma model in 141 dimensions: it looks like this trick
does not repeat itsell in this case. As one of the numerical «large
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numbers» D.I. Dyakonov have suggested to consider 11/3 in the
Gell-Mann — Low function, another one is d=4, the dimension of
the space-time. Their interplay does indeed lead to inhomogeneous
fields, peaked at some ro value. Unfortunately we have nothing to
add to these interesting but not quite clear arguments at the mo-
ment.
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