MHCTUTYT AJEPHON ®U3UKH CO AH CCCP

B.G. Konopelchenko

RECURSION AND GROUP STRUCTURES
OF THE INTEGRABLE EQUATIONS
IN 141 AND 1+2 DIMENSIONS

PREPRINT 87-86

=l

HOBOCHBHWPCK




Recursion and Group Structures of the Integrable
Equations in 141 and 14-2 Dimensions

B.G. Koenopelchenko

Institute of Nuclear Physics
630090, Novosibirsk, USSR

ABSTRACT

A bilocal approach to the construction of the integr-
able equations and their generai Backlund transfor-
mations connected with one- and two-dimensional
spectral problems is discussed. Three different, but
equivalent, ways of calculations are considered. The
principal role of the bilocal adjoint representation of
the spectral problem in such constructions, in particu-
lar, in the calculalion of the bilocal «recursion» opera-
tor is emphasized. Multidimensional spectral problems
are briefly discussed.
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1. INTRODUCTION

Nonlinear evolution equations integrable by the inverse scatter-
ing transform (IST) method [l —4] posses a number of remarkable
recursion and group-theoretical properties. The most convenient and
beautiful method of describing these structures is to use the so
called recursion operator [56—7, 2—4]. This recursion operator
method has been effectively applied to a number ol one-dimensional
spectral problems (see e. g. [2—8]). Starting with the given spec-
tral problem

a. ¥ (x, M) =U(x, A} ¥(x, L) (i)
" a s ot . A wirEh
where d,=—, U(x,}) is the matrix parametrized by the certain in-
aox

dependent fields, & is a spectral parameter and uses the generalized
adjoint representation of (1.1) which is of the form

3. D(x, k)= U’(x, 1) D(x, h)— D(x, 1) U(x, 1) (1.2)
where @D (x,A) is the so called squared eigenfunction or tensor pro-

duct, one gets the recursion operator A which has a principal pro-
perty

Alx) @, (A=~ Dy (x, A) (1.3)

where @ is the irreducible independent dynamical part of @. Using
(1.2) and (1.3) one finds (see e. g. [8]) the general Backlund



transformations (BTs) P—P’ for the problem (1.1). They are of the
form

Y Bo(AT, ) Ko(P’, P)=0 (1.4)

where A" is the operator adjoint to the operator A, B, are arbit-
rary functions entire on A", K, are certain quantities and P(x, ) is
a set of independent fields from U(x, ). General form ol the nonli-
near evolution equations integrable by (1.1) is the following :

aP(x, t)
ai

= ) Qu(LT,1)ZP) (1.5)

where LT £ A+ |,;.:_._P, &‘Z’ud—iif(uip;}, and €, are arbitrary functions
entire on L*. Symmetry transformations for equations (1.5) in the
infinitesimal form are

8P(x, 1)= Zmu{L+ (1.6)

where w, are arbitrary entire functions.

All the quantities K,, #. and operators A*, L™ are different for
different spectral problems but the general forms (1.4) — (1.6) of
BTs, integrable equations and their symmetries are common for all
of them [8]. Emphasize that the recursion operator A* and the
quantities K., Z. in (1.4) — (1.6) are defined and act on the same
space as the initial potential P(x, {), i. e. they are local ones. This is
the characteristic feature of the one-dimensional spectral problems
of the form (1.1).

The generaltzation of the results (1.4) — (1.6) to the two-dimen-
sional spectral problems, in particular, to the NXX N matrix problem

0, W+Ad, ¥+ Px,y H¥=0 (1.7)

has been given in [9, 10]. Within the approach used in [9, 10] the
general BTs are of the form

X Z barlt) A Kon (P, P)=0 (1.8)

where b,.(f) are arbitrary functions and A are the operators cal-
culated by certain recurrent relations. The general form of the in-
tegrable equations is the following

4

dPx,y, 1) S 4
rhEk Z @onll) Li Zna(P) 5. g (1.9)

g A==

where w..(f) are arbitrary functions. All the operators and quanti-
ties which are contained in (1.8), (1.9) are local ones, i. e. they are
defined and act on the same space as the P(x,y,f). The results
(1.8), (1.9) [9, 10] have demonstrated that the usual (standard)
recursion operator does notl exist for the two-dimensional spectral
problems. A general theorem of a nonexistence of the usual local
recursion operator for the nonlinear evolution equations in |- d
(d =2) dimensions has been proved in [11].

The importance and relevance of the bilocal objects, i ¢. the
quantities which are defined on the wider space than the initial field
P(x,y,t), for the two-dimensional spectral problems have been poin-
ted out in [12]. The true and correct analog of (1.2) for the two-di-
mensional spectiral problems is a so called bilocal adjoinl represen-
tation. For example for the problem (1.7) it is of the form

3, Dx, y', y)+ Ad, Dx,y', y)+ 8, Dx, y', A +
+ P{x, y" )D(x, i, y)— Dx, ', y)Plx, y)=0 (1.10)

where ®@(x,y,y) is bilocal tensor product  ®Ox, gy, y) <
=F'(x,y }@f{x.y] ol the solution F’(x,y’) of the pproblem (1.7)
with the potential P'(x,y") and the solution }Y”{x,y) of the problem
adjoint to (1.7). The bilocal adjoint representation (1.10) is the
starting point of the bilocal approach which has been proposed in
[13]. This approach essentially simplifies the calculations of the ge-
neral integrable equations and their BTs for the two-dimensional
spectral problems [13]. But the advantage of the bilocal approach
has not been realized in [13] in a full measure since the principal
bilocal adjoint representation has been used in [13] mainly for the
calculation of the corresponding local operators and quantities (de-
fined on the diagonal y' =y) whlch are contained in formulas (1.8),
(1.9).

- A very important development of the thenry of recursion structu-
res of the 142 dimensional integrable equations has been initiated
recently by Fokas and Santini [14—16]. In the paper [14] they
have observed that the Kadomisev— Petviashvili (KP) hierarchy
can be represented in a more compact form (compare with [10,
13]) il one uses a bilocal «recursion»-operator A;2 and proceed to
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the diagonal y,=y, at the very end. Then they have considered
[15] the 2X2 matrix two-dimensional spectral problem (1.7) with
the corresponding Devay— Stewartson hierarchy and have studied
the properties and structures of the corresponding bilocal (ex-
tended) quantities [15, 16]. The reasons which have lead of the
authors of the papers [14—16] to their constructions are distingui-
shed from those which have lead to (1.10) [12, 13]. Nevertheless
the observation which have been done in [14, 15] is a very impor-
tant [17] for the whole bilocal approach proposed in [13].

In the present paper we demonstrate that the introduction of the
projection onto the diagonal y’ =y really at the very end, but not at
the half step before as in [13], enables one to give a logically com-
plete formulation of the bilocal approach to the 142 dimensional
mtegrabte equations. The recursion operator method in a form
which is adequate to the 142 dimensional equations is considered.
It is shown that the recursion operator method in the bilocal formu-
lation allows one to construct the infinite-dimensional groups of ge-
neral BTs, the hierarchies of integrable equations and their
symmetry groups in the form which manifest their bilocal recursion
structure for a wide class of the two- and one-dimensional spectral
problems. The bilocal adjoint representation of the type (1.10) plays
a principal role in all these constructions.

We will discuss the three different ways of calculations. The
first way is the logically completed formulation of the initial bilocal
approach. of [13]. Within this approach the general BTs P—P’ asso-
ciated with the given two-dimensional spectral problem is of the
form [17, 18]

3 :jh beslt) Aif Kua(P’, P)=0 (1.11)

where the operator ﬁ,f(x, y’,y) and quantities K.. are bilocal ones,
i. e.they depend on P’(x,y’,t) and P(x,y,t) and A denotes the ope-
ration of the projection onto the diagonal y =y:
AQx, v ) 2L Q(x,¢',y) |,—,. The general form of the integrable
equations is

5”:"’ .- ) =AY 3,: 0adOF Z ne (1.12)

where Lt Z A" [ompsyn and ‘P 1e = Knalpmpy,y.o- The bilocal ope-
6

rators A (x,y’,y) are calculated by the recurrent relation [17, 18]

ﬁ:(x,y:y}=(ﬁ+ .Y+ y) At y.y) (1.13)
n=223,..

where ;—; in (1.13) acts only on ﬁ["(x,y’,y) and the operator
Y

ﬁf(x, y',y) is calculated directly from (1.10). The operators
Af(x,y’,y) are bilocal ones, i. e. they depend on P’(x,y’,f) and
P(x,y,t) but all of them contain only the operator 4, +d, and not
d, and 8, separately. Hence these operators permit the direct pro-
jection onto the diagonal y’=y and the action of the projection ope-
rator A on the whole «products» in (1.11) is equivalent to the
action of A on the each factor in (1.11) and (1.12). As the result
the formulas (1.11), (1.12) can be rewritten in the terms of local
operators and quantities and we arrive exactly to (1.8) and (1.9).

The second way consists in the introduction of a formal spectral
parameter into the two-dimensional spectral problem. For example,
instead of (1.7) one should consider the problem

0:¥(x, 4, W)+ A8, P(x, y, M)+ P(x, y, O (x, y, ) =AAW(x, 4. 1)  (1.14)
The Qarameter A is a formal one since under the redefinition

¥ =¢YW¥ the problem (1.14) is converted to (1.7). The corres-
ponding bilocal adjoint representation is

0:®(x, y', y, \)+Ad, D(x, ¥, y, M)+ 8,D(x, ¥, y, WA +
P, )0, o, g, V) — Dx, i, g, WP(x, ))=MA, Ox, ", 9, )] (1.15)
where ®(x, y’, y, A) & ﬁ’(x, y, l)@f(x—, y,A). The relation (1.15) gives
Alx, i, )0, (M) =2AD(x, ¥, y, 1) (1.16)

where @, is the irreducible (independent) part of ®. The operator
Alx,y’,y) is just the bilocal recursion operator. With the use of
such operator the general BTs can be representated in the form
[17, 18],

A Y BAT, 1) K(P, P)=0 (1.17)

where B,(A™,?) are arbitrary functions entire on the operator A™
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adjoint to A. The general form of the integrable equations is
[17, 18]

aPx, 4.t __ +
SRR _auzgﬂ(.{, S5 (1.18)

where L"""z't-A*"f,;,;m e .S?uﬂﬁ(ulp,,ﬂxigr.,}. Q.(L*,t) are arbitrary
functions entire on L™ and their symmetry transformation are

3P,y ty= A Y oo L) Z. (1.19)

where o, are arbitrary entire-funetions.
The BTs, integrable equations and symmetry transformations
(1.17) — (1.19) are the most close in their form to the correspond-

ing results (1.4) — (L.6) for the one-dimensional problems. The .

principal difference is that all the quantities in (1.17). — (1.19) are

bilocal ones. Emphasize that the bilocal recursion operators -

At (x,¢',y) and 21 (x,y", y) are really bilocal (extended) operators
and they do not. permit the direct projection onto the diagonal

y'=y.
There exists the other way of deriving the formulas (1.17) —
(1.19). This third way consists in the using the nonlocal gauge

transformations
W(x, y)— ¥(x,4)= | dy Gix, v/, y) ¥(x,9) (1.20)

for the two-dimensional spectral problems where G(x,y",y) is the

matrix valued.operator. This approach is the nonlocal two-dimensio-

nal generalization of the one-dimensional approach [19—21] to BTs

via gauge transformations. The relevance of nonlocal gauge trans-

formations (1.20) to the two-dimensional spectral problems has
been pointed out in [12].

The gauge operator G(x,y’,y), as it is not difficult to show,
obeis an equation. of the form (1.10). Choosing G in the form

G(x,y’, y)=h2 6_: &y’ —y) V,(x,y',y), expanding over 6: &y’ —y) and

solving the obtained equations with respect to V,,, we obtain the bi-
local recursion operator A(x,y’,y) and the BTs (1.17) with
B.,=ba(AT)" The Anzatz for the gauge operator G(x,y’,y) in the
form of the series on the n-th order derivatives of the Dirac del-
ta-function 8 (¢’ —y) has been proposed in [15] (for the infinitesi-

8

mal gauge transformation (1.20) for the problem (1.7) at N=2).
Namely by this way the Kadomtsev— Petviashvili (KP) and Devay
— Stewarson (DS) hierarchies in the form (1.18) and their
symmetry transformations (1.19) have been calculated for the first
time in [15]. Note that performing the integration in this Fokas—
Santini Ansatz we get the local Ansatz Gy, y)=
il
= 8(y" —y) Z Welx, i) ffl‘f which has been used in [22].
k=)

The two different forms (1.11) —(1.12) and (1.17)— (1.18) of
the general BTs and integrable cquations associated with the
two-dimensional spectral problems are equivalent to each other.
This can be checked straighforwardly with the use of the important
relation

Aty . y)= —a8, — A (x.1/. y). (1.21)

The form (1.17) — (1.18) is, of course, more convenient and beautiful.

The form (1.17) —(1.19) of general BTs, integrable equations
and their symmetries in 142 dimensions manifestly reflect the fact
that they are generated by the single bilocal 1.;;‘1{'-.";:‘10[' B~ whily ) sid}
will be recalled that the usual (standard) recursion operator which
exists in | 4+ 1 dimensions and has been considered in 12—8, 11] is
the operator which converts the vector fields given by the rh.s. of
evolution equation into the veclor fields {f..!h:ff:':{ifr_t’,:j. Emphasize
that the Fokas— Santini type bilocal recursion operator L' (x, ¢, y)
is not such standard recursion operator due to the presense of the

‘projection (degenerate) operator A in (1.17) — (1.19). Nevertheless

such a bilocal recursion operator is a true two-dimensional analog
of the one-dimensional recursion operator. It is the main result of
the papers [14, I5]. The bilocal recursion operators play a funda-
mental role in the description of the recursion and group properties
of the noniinear integrable equations in 1 +2 dimensions. '

The recursion operator method in the bilocal formulation is ap-
plicable also to the one-dimensional spectral problems. It is well
known that the local recursion operator with the property (1.3) can
be constructed not for all one-dimensional spectral ;‘J‘.‘ﬂ‘hftﬂlh: The
simplest (rather trivial) example is the N X N matrix problem

Mo +Px, DY =n¥. (1. 221
The local recursion operator for the problem (1.22) does not exist
9




But the recursion operator method in the bilocal form effectively
works. Using the corresponding bilocal (on x” and x) adjoint repre-
sentation for (1.22)

A dy DX, x, 1)+ 8, DX, x, wAd 4 Pix" ) Dx', x, p)—

—M(x", x, p) Plx)=0 (1.23)

one finds the bilocal recursion operator and consiructs the general
BTs and integrable equations in the bilocal form. Similar bilocal ap-
proach is eifectively applicable to the other one-dimensional spectral
problems, in particular, to the nonlocal Riemann— Hilbert spectral
problem.

Note that the bilocal adjoint representation ol the type (1.23)
plays a fundamental role in the whole IST method. For example,
the kernel K(x',x,u) ol the dressing transiormation W(x,p}l—
— Y (x" . n)= de Kix’'. v ulWix, n) for the problem (1.22) obeis equa-
tion (1.23). So the bilocal approach can be considered as a special
version of the general Zakharov — Shabat dressing method |23, 1].

We also will discuss the possible extensions of the bilocal appro-
ach under consideration to the multidimensional spectral problem.

The paper is organized as follows. In section 2 the one-dimensio-
nal problem (1.22) and the Rieman— Hilbert spectra! problem are
considered. Section 3 is devoted to the two-dimensional problem

(1.7). The spectral problem o, + i Ux, y, 1) 0 ¥=0 is discussed
k=0

in section 4. Recursion operators, BTs and integrable equations for
the problem (8;—06%0;)W4q(x,y,1)(0:4+00,)V+U(x,y, t)¥=0
are constructed in section 5. In section 6 the multidimensional gene-
ralizations are discussed.

2. ONE-DIMENSIONAL SPECTRAL PROBLEMS

The recursion operator method is applicable to a number of
one-dimensional spectral problems of the type (1.1). The principal
possibility of construction ol the local recursion operator is connec-
ted with the fact that (1.1) contains a pure derivative d,. For
example, for the well known N X N matrix problem

d. V4 Plx, )V =pAWV (2.1)

10

the adjoint representation is a local one (it is of the form (1.15)
with d,=0) and as a result one has the local recursion operator
A(x) which contains d, and ;' [24—27, 8]. The term a,% in
(2.1) defines also the bilinear form {}g‘l"}z'g dx tr(x(x)¥(x)) with
respect to which we calculate the adjoint operators.

The situation changes crucially if one considers the NX N matrix
problem

(Ad .+ Plx, )Y =pW. (2.2)

The problem (2.2) is obviously equivalent to the problem of the
type (2.1) (by the gauge transiormation Y—A '¥). Nevertheless
the problem (2.2) itself can be treated by the bilocal approach. The
starting point of the bilocal approach is the bilocal adjoint represen-
tation of (2.2) which is of the form

£ -~ B = i i \
Ad,O7(x, x, 1)+ a,D%x x, pA+

+ PxD" (X, x, w)— O (x’, x, p)Px)=0 (23]
where
P T . daf I - \
(D", X, uet = Fralx’, u) Fiy(x, p)
and

Aad, Frix, - Plx, 1) ﬁ"[_x’, =y Frix', i,
f o | oo ! i y {24}
=0 F(x, w)AF Fix, uy Pllx, Dz=pFlx, p).

We will consider for simplisity the case of diagonal matrix A
(Aa=0usa:}, Pi=0 and Pt 1) —— (),
| X |—= o
Multiplying (2.3) by the diagonal matrix-operator B(4d,, 1) and
integrating, in the manner standard for the recursion operator
method [8], we obtain the following fundamental relation

|- ix

ﬁ dx dx’” 8(x’ —xytr 1B, D{P D (. xi—D ', P(x =10 (2.5)
where @, =0 —OD,. < .:'([\}“ Ve P R 5 Representatineg B 1 in the
L] T
r - i i, 4 T T 1y o I i
form B(d., ti= Y ) bu{f) H.38; where the matrices H, (ee=1,.., N)
lorm a basis ol lhe algebra of diagonal matrices, we rewrite (2.5)




as follows

ban(l) { HuaP'd"DF — PH (— 9')"DFy =0 (2.6)

]

I~

-

Ipr?

de i3 ;

where d=d,, ’=24, and (..) ¥ | dxdx 8(x'—x)tr(...).

Now we must express d, D (1, x) and @’ @} (x’, x) recurrently via
M, (x’,x). To do this we again use the adjoint representation (2.3).
The projection of (2. 3} onto the maltrix diagonal gives
@y (x’, r:——d"'(P"(JJ —®; P), where d=A(3,.+d,). Substituting
this {!1 into the off-diagonal part of (2.3) we obtain
(ad, ® < [A, D])

Alx’ x}fl‘lp dd,q {A a, fD,«f{x’, x)+a, (D,f{x’,.r)fi -+
+ (P YDR(x', x)— DF (X, X)P(x)) —
— P'(x)d ™ (P'Df — ®f P)y +d~ (P’ Of — Df P), P(x)l =0. (2.7)

The relation (2.7) gives

&IJ{D}:{I’,I} ifx x}iD;,
(2.8)

8, Dy (x7, x)= Ay(x’, x)Df

where .-tzfixf—.-'\{x’,x} and ;i|=f?r+r-t{x’, x). Note that the opera-
tors A, and A, contain only the total derivative 4.+ d, in contrast
to the operator A(x/, x).

Together with (2.8) one has

A

F , F
G p(x’, x)= A (', X)Df |,

L 4 {29]
Ry TG S EE xj([lf

sl 290

A L]
where the operators A, are calculated by the recurrent relation

(7, x)

b Y

0x

A . A : Rt "E” :
Aplx’, X)= N, _ (X", 2} Nal X', x) s =2 3 ..

For the operators A, adjoint to A, with respect to the bilinear form

... one has

12

t” (x’,x}:ﬁ, £ x}ﬁ l—l———x—f—‘ﬂ
and therefore
A, xj=( AT (e, 04 ;‘1—) bt AT, x), (2.10)
T S S

where the operator —fl- in (2.10) acts only on A (', x).
ox

Analogously

W =1l ;
K, x)= (u (', x)+ —) Ao, v, (2.11)

ox

el 300

The use of (2.9) — (2.11) allow one to transform (2.6) into the
equality

N o p P L
L D balO)(HP'Au®F — PH,(— 1)"A,@F ) = = | dx tr{ DF(x, x)X

a=1 n=I)

X | dx’ 8(x' — x) Z Z banll) (A HoP' —(—1)"A PH,)) =0. (2.12)

=] n=

The equality (2.12) is fulfilled if

Z Z banll) AR HoP' —(—1)"A} PH,)=0 (2.13)

g =

where P’=P(x’,{) and A denotes the projection onto the diagonal
X'=x: AQ(x', x)=Q(x",x)],._, .

The transformations (2.13) are the general BTs for the problem
(2.2). Considering the infinitesimal displacement in time

f 7 ;I !lif i
(P'(x’, )= P(x’ 1)+ ES’%_J, ban=28, 0 —ewan(t), e~>0) one gets the

general form of the integrable equations

oP{x f]

N o0
Z anm ) (L HoP' —(— 1)"L¥ PH.,)

+ de ; ¥ - s
where [ —_f-.-’t,f ‘P*Em*.:p and wq.(t) are arbitrary functions.
13
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Following the second way described in the introduction one
should consider instead of (2.2) the problem

A 0¥+ Plx, )W = 1AW (2.14)

where A is the formal parameter. The adjoint representation for
(2.14) is given by
A0, " (x’, x, M)+ 3, D" (x’, x, NA + P/(x")®™(x’, x, ) —

— @™ (x’, x, WP(x) =MA, ®" (' x, 1] (2.15)

where
O, x, M) & P, )@ Fix, 4)
and
Aoy Fi(x )+ Py Fxr =2 B, ),
— a, F(x, )+ EP(x)=AF(x, WA

Multiplying (2.15) by an arbitrary diagonal matrix B(A,¢) and
integrating, one obtain instead of (2.5) the following fundamental
relation

HZ ( Balh, t) (Ho PO (W) — PH,®F (1)) =0 (2.16)

=1

The irreducible form of the adjoint representation (2.15) for
D} (x, x, 1) is
A(x’, x) OF (M) =ADE(x’, x, ) (2.17)
where the operator A is given by (2.7). With the use of (2.17) one
gets
N

Lh.s. of (2.16)= Y (HuP'BuA,1)®f —PH B A, 1) Df ) =

x=1

N
=( @ -A Y BoA, t)(H.P' —PH,)) =0 (2.18)
a=]

where the operator A% (x’,x) is the operator adjoint to the operator
A(x', x) given by (2.7), i. e.

At(x', x)- =ad; 'Ad,- +ad; ', -A+

14

+(P(x)ady ' - —ady ' Pl(xY) — Pix)d™'(Pad;". —ad;'. P
+d~'(Pady ' —ad; " P P, (2.19)

Finally the relation (2.18) gives

N

Y ABA ) (Ho P — PH,)=0 (2.20)

=1

where the operator A" is given by (2.19).

The formula (2.20) is the main result of the recursion operator
method. The transformations (2.20) form an infinite-dimensional
group (Backlund—Calogero group) of general BTs P—P’ for the
one-dimensional spectral problem (2.2).

The consideration of (2.20) for the infinitesimal displacement in

tithe, (Pix ) =Px'. D42 ”P{i Y s Ba=1—8Q, (L7, 1), e—0) gives
()

dP(x, 1)

ori

N
= Y AQUL*, H(HP — PH) (2:21)
= |

@

where L1 (x/ x) %L A+(y, e L nlr o and > QLT ) ahite arbitrary
entire functions on L.

Formula (2.21) gives the general form of the nonlinear evolu-
tion equations in 141 dimensions (¢, x) integrable by the NX N
problem (2.2). It is not difficult to show that the BTs and integrab-
le equations in the bilocal form (2.20) and (2.21) are gauge equiva-
lent to the corresponding BTs and integrable equations in a local
form for the problem 6, +A4~""'P(x, H W =714 ""W.

At last the same results (2.20), (2.21) can be obtained by the
using the nonlocal gauge transformations

Wix, p)— ¥, w)= | dx Gx’, x) W(x, n) (2.22)

for the problem (2.2) where G{x',x) is an NX N matrix-valued

operator of the form G(x’, x)= Y a: O(x’ —x)- V, (&', x).
B

1
The equivalence of BTs (2.13) and BTs (2.20) is proved rather
simply.
Note that the operators A7 in (2.13) act only on the functions
H.P’ (x',t) which depend only on x’ and the operators A, act only

5
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on the functions on x (P(x,{)H,). On the subspaces of such functi-

ons Z’(x") and Z(x) the actions of the operators A, and A are
equivalent to the following

AF (e, 02 =K (¢, )+ 0, P2 = (A (', x))"Z".

(—)"AT (&, 0Z=(— A (¢, 0)— 3. YZ=(A T (v, x))"Z (eed=)
where the operator A* is given by (2.19). In virtue of (2.23) the
relation (2.13) is equivalent to the relation (2.20) with

BiAt, = ¥ bu(f)(AT)"

nm=

The operator equality

AT (2, 0)=—0,— A (v, =0, + A (¢, x) (2.24)

can be verified straightforwardly with the use of the definitions of
A#, A and A*. Starting with the relation (2.20) and using (2.24)
we arrive to the relation (2.13). Thus the BTs (2.13) and BTs
(2.20) completely coincide.

In similar manner one can treat the other one-dimensional
spectral problems which contain a nonpure derivative 4,. Benja-
min—Ono equation and intermediate long waves equations have be-
en considered by Fokas and Santini [28]. Here we will discuss bri-
efly the nonlocal Riemann—Hilbert spectral problem

E. ¥ —U¥=)4¥ (2.25)

which has been proposed in [29]. Here E, ,=expind,, U=
=\l 4gr +( x q(x’t)) and A~——(1 U). By the gauge trans-
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formation W—¥=g—'¥ where E . g="\l4gqgrg, the problem
(2.25) is converted to the problem

Vi+gr D, W(x)— Pa)¥ ()= AT (x) (2.26)
where D,,—E,,—1 and P=(d”” ‘“‘E’ ”)_ The problem (2.26)  is
: , g
more convenient for our purpose. The problem adjoint to (2.26) is

VI4gr D, V() — ¥ (x)Plx)=2¥(x)A. (2.27)
The adjoint representation of (2.26) for X, x A=
16

=‘if’(xf, A® ‘if['x, A) is ol the form

\/I +o1 T Ry E L Ni+gqr D, _ . Dix’, x, k) —
— Px")D(x’, x, M)+ Dy, x, RP(x, )= NA, D', x, ). (2.28)
After the excluding M, the adjoint representation (2.28) gives

A, X)De(h) = 2Dp(x", x, 1) (2.29)
where the bilocal recursion operator A(x”. x) is of the form

I P p T £ 7 r X ’ ;
Alx’ x)= o Ald s — Pixd P+ — . P)4d (P — - P) P(x)) (2.30)

where d=~14qg(x"Wix) 0. —14+gx)rx) D .. ." The author_ is
grateful to P. Santini for the stimulating discussions of the problem
(2.25).

The bilocal recursion operator method is applicable also to the
N

problem Z Un(x) 8:W =AW with Uy (x) 5= const and. in particular, to
! [

the problem p°(x)3iW =AY which produces the well known
Harry — Dym hierarchy equations.

Note in conclusion that the bilocal approach can be applied to
the one-dimensional problems of the form (1.1) and, in particular,
to (2.1) or to the Schrodinger spectral problem (874
+Ulx, 1))V =i¥ {oo. But formally bilocal recursion operators and
other quantities contain only d 4+4. and they are really local ones.
As a result we arrive to the usual local formulation of the recursion
operator method.

3. MATRIX TWO-DIMENSIONAL SPECTRAL PROBLEM

Now we will consider the two-dimensional spectral problems
and start with the NX N problem (1.7), i. e.

o ¥ ' F'II = :—-- ‘:1 t'}]_‘, li F _|_ IF'][?._{-‘ _I-II'I. -{l_: i.i}' = O

where 4 is a diagonal matrix (A;=6:.a;. @), Pix gy t) is the

NX N matrix such that P;=0 and P(x,y,t)——> 0. The problem

-
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(3.1) is a natural generalization of the one-dimensional problem
(2.2) (with p=0) with the change x—y and an addition of the pure
derivative over x. The addition of the pure derivative into the spec-
tral problem will not change all the bilocal constructions essenti-
ally. So the results for the problem (3.1) are similar in their form
to the corresponding results for its one-dimensional- counter part
(2.2). Nevertheless we present here all the constructions for the
problem (3.1) completely in order to do the similarities and diffe-
rences between one- and two-dimensional cases more transparent.

As in the one-dimensional case the starting point of the bilocal
approach is the bilocal adjoint representation of (3.1) which is of
the torm (1.10), i. e.

f}_x [-D“I{I,' y_r’ y]-'— A [j J{I),u'n- X1 y;1 {jJ—|— dy[]]r.”[\'x, y.r, y:lA —I_
+ P'(x, y" )" (x, i, W O (x, i, y)P(x, y) =0 (3.2)

where @(x, ¢ J y) *F’{r ¥)® Flx, y) y) (in components (@"(x,y’, 4=
ﬁ}”[\x ) ;;(r EL otk i=] . N and
a, ﬁ"[x, y)+ A ﬁyxﬁ’['.t, )14 Pix, y’}ﬁ"{x, y')1=0
and _
— 0. Flx, y)— 0, F(x, WA+ Flx, y)P(x, y)=0.

Multiplying (3.2) by the diagonal matrix operator B(é,, ), in
tegrating and assuming that { dydi’ 6(y—y’)é, +3,) Q' ,y)=0, we
obtain the fundamental relation

(B3, H)P’®D" — B(— o', Hd" Py =0 (3.3)
wheie  ¢..) *ﬁg dedydy 8(y' —y)tr(...), d=d, =g, O =L

=0 —D,, (D) =L 8D Since B(d,, t)= Z Z boa(t)H, 8 where

g=] n=10
the matrices H, form a basis for the diagonal matrices, b,,(¢) are
arbitrary functions, the relation (3.3) is equivalent to the following

Z Z ban(t) { HaP’ 0"Df — PH,(— 8")"Df ) =0. (3.4)

B —

The adjoint representation (3.2) g:ws us also the recursmn ope-
rator. Indeed, from (3.2) one has ®j(x, ¢, y)= —d " Y P'D. — D) P),
where P'= P’(x y,b), and d=0,+A(6,+0,). As a result the irre-
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ducible form of the adjoint representation (3.2) for EIIF(): ", y) is the
following

Alx, o, y)F L ady (0, Of +Ad,Df 40,054+
+(P'(x, y') OF —Of P(x, y))r —
— P(x, 4 )d" (PO — @ P)y+-d~(P'Df —OF P, Plx, y) —=0.  (3.5)

From the (3.5) it follows that

Oﬂly‘f'[}}f{xs HJ" y;ll: -':/il{xﬁ yfs y,:l{]‘}f '

(.0, 9)=Ri(x, o, y)Of 6
f?y{D;(X,y,y,r:ﬂ.gx,gfyjm}, (3.6)

where tlwa —Alx,y’,y) and 1.—]“—|— X,4’,y). Note that the
operators A, and A, contain only the total clenvahve d,+ 4, in con-
trast to the operator A(x,y’, y).

Together with (3.6) one has

d;‘ m;-'[l'- Y, y)= firr{xr Y, y:}l(l\‘:? '

dy r(x, ', y)=Ax,y, y)Dr | (:7)

£ e

)

where the operators A, are calculated by the recurrent relation

# Fgme 2 ol .ﬁl;-ﬁl_ 4
ﬁ‘“{"r‘y *y}z‘;,“ﬂ- E(IuH 1y.}‘ii+ 1’ ;'I;F y}» ”’"__21 31-"

For the operators A adjoint to A, with respect to the bilinear form
(...» one has

-"/":.-j_[--f:. Y, s'a’J=i'{1Ir (x, 4", y) 1»:-—1 ‘f‘ :;; CAY)
and therefore
R . A 5] :t—t,\_'_ R :
Ay ) =(Awy o+ ) Aty (38)
= |, 2,3,

where the operator i in (3.8) acts only on ;"'{J"L (x, 4", u4).
ay’ ; :

Analogously
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P : v Ry
Ay (. yty}z( A ey Y+ —) " T (3.9)

o

n=a) 29

The use of (3.7) — (3.9) gives

N 0o . A -
Lhis. of 3.4)= ) ) budlt) (H.P'Au®f — PH(— 1)"Au0f Y =

=l ne={

o ﬂ dx dy tr{ DE(x, y, y) ¥

X | dy 8y’ —y) i xz Bk B WG B P —

a=1 a=10

i]".-'i,TPH_q}}=U (3.10)
The equality (3.10) is fulfilled if

banlt) AH. P —

)

— 1)"AT PH)=0 (3.11)

"LMH

where P'= P(x,y’,t) and A denotes the projection onto the diagonal

y'=y: AQY . ) = QW yly—,

The relation (3.11) gives the general BTs for the problem (3.1)
in the form (1.11). Let us transform them to the form (1.17).

Nole, that the operators At in (3.111 acl only on the functions
HoP (x,y’,t) which depend only on y° and the operators AL act
only on the functions on y (P’(x,y,t)H,). On the subspaces of such

functions Z’(x,y’) and Z(x,y) the actions of the operators A;j and
At are equivalent to the following

g"ar,'J‘ (x, ¢, )2 = {_';1]*" (x5, ¥ )+ 8,2 =(AH(x, ¢, )" Z’, (3.12)

o

(=)Ao, ) Z=(—A (x5, 0, ) — 8,)" Z=(A+(x, ¢, y)"Z, (3.13)

A= 2
where the operator A™ (x,y’,y) is the operator adjoint to the opera-
tor A(x, 4", y) given by (3.5), i
d;-+ady 'Ad,- +ady 'd,-A+
+(P(x,y)ady ' - —adi - Px, ) — Plx.y)d” '(Pad; '« —ady '« P)p+

Atx, g y)- =ady
+d~ ' (Pady" - —ady - PYp Plx, o). (3.14)
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As a result the relation (3.11) is equivalent to

N
). AB.(AT, )(H. P — PH,)=0 (3.15)

x=|
where the operator AT is given by (3.14)

== Li: bqf![fj{ ’ﬂ 3
i =0

The transformations (3.15) form an infinite-dimensional group
(Backlund — Calogero group) of general BTs P—>P’ for the two-di-
mensional spectral problem (3.1).

The consideration of (3.15) for infinitesimal displacement in time

(P’fx,y’,f)=P{x,y’,f3+ew§-ﬁ, Bie=1—€Q. (LT, ), e>0) as

and B.(AT,l) =

usually gives

N

=A Y QuL*, t)(HoP' — PH.) (3.16)

=]

oPx,y,t)

al

where Lt(x,y, y) &L "ﬁu ¥ W lpepsyn and Qq (LT, ) are arbitrary

entire iuns;tmnb on LT

Formula (3.16) gwas the general form of the nonlinear evolu-
tion equations in 142 dimensions (#,x,y) integrable by the NX N
problem (3.1).

The second way of construction of the transformations (3.15)
and integrable equations (3.16) is the following.

The redifinition of the wave function in (3.1) ¥ =
forms into the problem

0,V 4 A3,V + Plx,y, )\¥ =rAW¥ (3.17)

e "W trans-

where L is the parameter. Similar to (3.2) one finds the adjoint re-
presentation for (3.17). It is of the form

3, D" (x, i, y, )+ Ad, D" (x, i, y, M)+ 8,0 (x, i, y, WA +
+ Pix, g )" (x, y y, N — D" (x, ', y, WP(x, y) =
=NA, ®"(x, ¢, y, 1) (3.18)
where
M(x,y", y, ) def ﬁ y’,h]@ﬁ'l’x,y, L)
and
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)

o F A, F' 4 P, y) =0 A P,
—a8,F—a,FA+FP=1FA.

Multiplying (3.18) by an arbitrary diagonal matrix B(A,¢) and
integrating, one obtains instead of (3.3) the following fundamental
relation

N i
Y ( Balh, ) HoP'DF(M)— PH,DE(L) > =0. (3.19)

= |

: The irreducible form of the adjoint representation (3.18) for
Op(x, 4, 4, 1) is

Alx, ¥/, YD (M) =aDf (x, o, y, R) (3.20)

where the operator A is given by (3.5). With the use of (3.20) one
gets: .

N : -
Lh.s. of 3.19)= Y (H.P'BuA, )Of — PH,By(A, 1)Df Y =

a= |

3
= (DA ) BiA ) (H. P’ — PH,)) =0 (3.21)

o =]

where the operator A™ is given by (3.14). As a result we again ob-
tain the relation (3.15).

In virtue of the operator equality AT = —6‘94—;%':6‘{,—{—;{,* the
BTs in the forms (3.11) and (3.15) completely equivalent.

At last the third way of deriving the formulas (3.15), (3.16)
consists in the using the nonlocal gauge transformations (1.20)

W(x, 4)—> Wx, i) = | dy G(x, i, y)¥(x, y) (3.22)

for the problem (3.1) with the Anzatz

Gx, ¢, y)= Z} 6‘,3 Oy’ —y) Vilx, ¢, y)
k.._

(for N=2 see [15]).

Namely by this third way the bilocal recursion operator At and
the hierarhy of the integrable equations in the form (3.16) in the
particular case N=2 have been derived for the first time in [15].
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The transformations (3.15) with the time-independent B, form
an infinite-dimensional group of auto-BTs for equations (3.16). The
BC group of transformations (3.15) contains also an infinite-dimen-
sional abelian symmetry group ol equations (3.16). In the infinitesi-
mal form these symmetry transformations are .

OP(x, g, H=A

" 1

wa (LYY (Ho P’ — PH,) (3.23)
1

I [~1=

where w,(L") are arbitrary entire functions. Note that the quanti-
ties Zo=H.P"— PH, are starting symmetries in the terminology of
the paper [15].

All three ways ol calculations give, of course, the equivalent re-
sults. The different forms of BTs and integrable equations may be
useful for the different purposes.

The first way of construction of BTs (3.15) and integrable equa-
tions (3.16) is the logically complete formulation of the initial bilo-
cal approach proposed in [13]. The operators A, and L; contain
only the operator d,+ 4, but not 6, and 4, separately. Hence these
operators permit the direct projection onto the diagonal y'=y. As a
result the formula (3.11) can be rewritten in the terms of local ope-
rators and quantities and we obtain the general BTs in the form
given in [9].

The second way is the most close to the usual one-dimensional
procedure (see e. g. [8]). Emphasize that the bilocal recursion ope-
rator AT (x,y’,y) does not permit the direct projection onto the dia-

gonal ¢ =y.

4. TWO-DIMENSIONAL DIFFERENTIAL ZAKHAROV — SHABAT
SPECTRAL PROBLEM

The scalar two-dimensional Zakharov— Shabat problem
O, W 4 YW+ Uy _olx, y, 08y *W+ ...+ Uglx,y, HF =0 (4.1)

has been considered previously in [10, 13]. In order to construct the
general BTs and general integrable equations in the forms (1.11)
and (1.12) one needs only the minor modifications of the formulas
derived in [I13]. Really the only thing one should do is to convert
the local operators A, and quantities K, found in [13] into the bilo-
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cal ones (it is simply the change Ui(x,y)—Ui(x,y’)) and apply the
projection A onto the diagonal y’=y at the very end. And as a re-
sult we arrive to BTs and equations in the forms (1.11) and (1.12).
Note also that the bilocal operators A are calculated by the recur-
rent relatign (1.13).

Let us consider the simplest and most popular case of the non-
stationary Shrodinger problem

3, 4+ 02 4 Ulx, y, )WY =0 (4.2)

in more details as the illustiration.
The well known 2X2 matrix form of (4.2) is given by (1.7)

with A(U U) and P(D
[ 4 U/

Multiplying (1.10) by the malirix-operator B(a,,{) of the form

_;) The adjoint representation is (1.10).

B(d,, t)=By(d,, 1)+ B:d,, f.:'( ? _{D

where B, and B, are arbitrary functions, we obtain the fundamental
relation

(B(d.H)P’D—B(— 08’ 1)DP) =0

0

where =g, @'=4d,, and .-":( i
: ! 0

' ]J In the matrix components
K1 by Dy 1 SR
of tﬂz(_ ; ) this equality is
M([]::i (114 i
(Bi(8, HU Dy — Bo(d, HU' D) —

LBy =a% DUDy - B — 8%, HUD y =0 (4.3)
The equality (4.3) with B=1 delines the independent dynamical
component of ®. Since (PO—-DOP) = (U —U)D;) then it is My,
The adjoint representation (1.10) also gives

D= %a}; (= 02— (3,4 8, YDy — (U7 — UYDy),

. (4.4)
P % 8. L s < dy + 0, )y — (U — UYDy)

and

i 1 'Eﬂr"l I- d\? i - - §oT | i T [ -
Alx, ¢’ y)Dy = T{ d, +20, —28,+ U+ U448, (U4 U)o, 4
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+ 0 Eia-*f’ + 6, + U —U)dy l{ﬂy, 48, 4 Ui U]} My =0, (4.5)

The equation (4.5) is equivalent to the following
3, Dox, i, y) =A\(x, Y, y)Ds,

9, Dolx, o, )= Ailx, o, y) Dy
where

A= Oy —Ax, ¥ y)= — i—{r?f —2A Gy~ @)+ U - U
+d, (U4 U)d, +3; (9 +0,+ U —U)o; (6, + 0,4+ U'—U), (4.7)

and Ay=A,— (6, +d,). The equalities (4.6) also give

| ; A ; Y
Oy Malx, ', )= Aulx, ', )05,

5 : gt g 4.8
0y Dalx, y', y)= Aulx, y', y)Dy, St

g o

where

e T Fa) A .dd-h k. 2 'J,
At/ =R, i (e, g A+ 22 '-f;fy 2 (n=2,3,..).
{

For functions B, and B, of the form Bo= Y bu ()’ (a=1,2) in

virtue of (4.4) and (4.8) the equality (4.3) is equivalent to the fol-
lowing

<Z bia(t) (U Ay —(— 1)"UR )P, +

n=f)

oo | £ ‘ ;
+ Z b'lﬂ(r:] '"é_[ U;a.r ](6.5 +6y“ —l_ ﬂg “+ L‘”) ﬂ.rz‘-l—'ﬂ"—
n=>0

— Y U (5)  UAn®eb(— 100 (@2 — 0y — 0, + V) R

m={)




Transferring to the adjoint operators in (4.9) we finally obtain
the relation

A Y bty A U —(= 1R+ U)+

n=1{)
1 T ; 2
+a5 Y b K (=02 40, 4+9,— U)o, v/ —
n=0
—(—1)"A (0 + 0,46, + U)o, ' U+

1

+ ¥ Cn (A (a;:—”*Uja;‘Uf—{k1)*1,-%,?(@;1"”‘{;’)51"Uj}:0 (4.10)

m=10
where
- f— |
Ay, y)= ( Aty g+ —{;) Aty y),
3 n—1 {4]: ] }
Ay, y}z(ﬂﬁ' X8 8+ ;T;) Al (x,¢.y),
i o
,-{ﬁ_{x, v )= .-'i;_ (X, ¥, y)+ 0, + g, (4.12)
and
iy 7’ 1 Y O o - Faar i ; Ty "
Al (x,y Y= — T{ﬂﬁ +200, +06,)+ U +U+0,(U' 4 Uha, ' +
+(0y + 0,4+ U—U"3; (9, + 0,4+ U—U")a;"] (4.13)

The transformations (4.10) form an infinite-dimensional BC group
for the problem (4.1) in the form (1.11). The general form of the
integrable equations (KP hierarchy) is

eyt . 3 P e e
e mi Zn{ml”['” (Lo U'—(—1)"L7 U)+

_|_ mfrﬂ{’f,‘}( E-”-l_[\_— 6;:'2 —|_ dy'" + c}_,!d,- ey U’Jﬂx_ : Ur -_
—(— 1)L (0} + 0, 46,4+ U)o U+

F 1) CutlNg " , t — (1L (@ "o U)) (4.14)

m=I0)

where U'=U(x,y’, 1) and @,,, g, are arbitrary functions. The KP
hierarchy in the bilocal form similar to (4.14) has been considered
in {15, 30].
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It is easy to see from (4.11) — (4.13) that all the operators A;
and A} contain only the total derivative d, +d,. Hence these ope-
rators permit the direct projection onto the diagonal y’'=y. Apply-
ing the projection operator A to all factors in (4.10) and (4.14) we
obtain the local forms of BTs and integrable equations.

Now let us consider the second bilocal way for the problem
(4.1). The NX N matrix with the formal spectral parameter A is

O:x+Adyx+Plx,y, )y=1Ay (4.15)
where
RS 0
I i l e 0
R e ] (4.16)
A= et 0 P= art: SR TR S ST i,
l AL ‘ Deafteiim.in D jasad
R £ e N e

The adjoint representation of (4.15) is the form
0D, i, y, )+ A0y D(x, ', y, M)+ 8,D(x, y’, y, WA +
+ P, )0,y y, ) — O(x, ', y, WP(x, ) =NA, O(x, y', y, M) (4.17)

Multiplying (4.17) by the matrix B of the form B(, )=
N—1

= ) BaM,O)(—AA—P,)" where P, = lim P(x,y,1), Bu(h t) are ar-
r=[)

X, j—= o0

bitrary entire functions on A and integrating, we obtain the funda-
mental relation

{ B(h, £) (P’ D(L)— D(A)P)) =0 . (4.18)

The relation (4.18) with B=1 shows that the independent dynami-
cal components of @ are @, , Dyy, ..., Dy_, y- The adjoint representa-
tion (4.17) enables one to calculate the bilocal recursion operator
and to exclude the explicit dependence on A from (4.18) These cal-
culations are close to those in the one-dimensional case d,=0
[31, 8]. So we present here only the main formulas.

The relation (4.17) gives

(—0:—Ady — P'(x,y")+MA)"D(x, ', y)=
=O(x,y’, y)(A 9, + P(x,y)+rA)" (4.19)
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Projecting the matrix system (4.19) onto the last column and
using the obtained recurrent relation, one gets

A (x, i, )Oy(A)=F(x, ', y)Ds(A) (4.20)

where (@, ), £ §,, D, (i,k=1,..., N) and

N

d
F(x, ¢y, y)= E ((—a,— A8, —P(x, ) +AA) e (-0 V) — 1, (4.21)

FEy.y)=— ) (—0,—Ad —P(x,¢)+AA)" |,_o(-oV.) (4.22)
m=A0

where (@oV, ) L dy V, and V,, _Um—+—13m0 d,. The operator & is
degeneraled one and there exists a constraint

N
Y b Dy =0 (4.23)
k=]
where
(%, ¥, 4)=(0y + 0,)86 + Ui 1(x, y')— Up—(x, y)—
s S
g Z et | — U iX. 1) (4.24)
=
which allows one to express ®,, via @®,, @, .., O, .;
N—I1
‘:I-JNN= {2 Z fkmk”.
k=1
As a result, equation (4.20) is equivalent to the following
M,y ) D' =F(x,y, y) D (4.25)

where G)*d‘gi((l)m,(hw,... ®y_, »)'; and (N—1)X(N—1) matrix
operators & and F are

Jﬂ.‘n'

Fulr. g )=y (%{(_ax_fqay:—mx, y)+2A4)™) I,-mn) X
e e
X(*oVm)—8upin. (4.26)
Falx, ¥, y)= —mij (—8:—A8; — P/(x, 4" )+ AA)" |y — s,k (-0 Vi) —
28

*

— ¥ (— 0, —Ady — P(x, ")+ AA)™ s —o)on (e o Vim). (4.27)
me={

The operator & is lowertriangular one. Hence 7' is easily calcu-

lated. So we finally have

:"\{I, y"I' y)(b*(:"") e ?'..CD-{I, yr, 4, }"} (428,
where
Ax, ¢, 9)=(F~'F)(x. ¢.y) | (4.29)

and & and & are given by (4.26) and (4.27).

The bilocal operator A(x,y’,y) is just the bilocal recursion opera-
tor for the general problem (4.1) which we are interesting in.

With the use of (4.28) similar to the one-dimensional case
[31, 8] one excludes the explicit dependence on A in (4.18). Then
transferring to the adjoint operators in the relation obtained, one
gets

N—1

A f t) K.(U’, U)=0 (4.30)

where AT is the operator adjoint to A and K, are the certain bilo-
cal quantities. We do not present them here due to their cumberso-
meness.

The relation (4.30) represents the general BTs for the generic
problem (4.1) in the bilocal form. The general form of the integrable
equations is

aU(x, y, t e

£ Wi ;
5 =0 ) QAT 24U V) (4.31)

where U‘ﬂ(Uu,.,.ﬁ UN_..!]T and Q,(L™,¢) are arbitrary functions en-
tire on L.

Let us consider now our simplest standard example, i. e. the
case N=2. The matrix B is ol the form B(A,{)=8B,(\1)+

+Bs(0, r}( .

; I) where B,, By are arbitrary [unctions. The inde-
=il

pendent dynamical component of (:ﬁl 3::"3) is @,;. The fundamental
3 4
relation (4.18) is equivalent to the following (Us=U)
{Bi(k, ) (U —=U) Do+ Bo(A, ) ( — U'Dy+ UDy)) =0. (4.32)
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The adjoint representation (4.17) gives the relations (4.4) and
the bilocal recursion operator A(x,y’, y):

Alx, vy, y)Do(h)= LDo(x, y', y, 1) (4.33)
v-;h_ere Alx,y’,y) is given by (4.5). Using (4.33) and (4.4) and tran-
siting to the adjoint operators, we oblain from (4.32) the relation

A(BiAT, 1) Ki+ BiA T, Ko)=0 (4.34)

where B,, B, are arbitrary functions entire on AT, Ki=U/'—U .,
l i 1% calps :
ng—g—fﬂi‘_{.[_U + U)+ ?{ri'__,f—l—(?y—i—U-——U’j@A "(U—U"and the recursi-

on operator A" is
'\_} ; I g : ¢ Yy P E RS - ]
AT (x,y *y,'ﬂ:?{ 0y +20, —20, + U+ U~+d,(U'+ U)a,  +
+(0y +0,+U— U3, (8,43, +U—U";"). (4.35)

The transformations (4.34) form the infinite-dimensional group of
general BTs for the problem (4.2).

Correspondingly the general form of the integrable equations is

w=mszlu, b2+ QLT O.2s) (4.36)
where LT & A+ b P L i Kot vy and £y, Qo are arbit-
rary functions entire on L7*. Equation (4.36) with Q,=0 and
Qy,=4L" is the famous KP equation.

The transiormations (4.34) wilh the time-independent functions
B, and By form an infinite-dimensional group oi general auto-BTs
for equations (4.36). The symmetry transformations of equations
(4.36) in the infinitesimal form are

OU(x, gy, h =MoL ) Z |+ oA L)) (4.37)
where w; and w; are arbitrary entire functions
The equivalence of the BTs and integrable equations in the

fﬂfﬂlﬁ {41{}]}, “-'1'14} and {134]* 1\436} can be ¢ Lié*!'l]u;.‘":“:{'-jl, ‘w.‘-_':i!; th
use of the equality

Aty | . g s i 3
ATLY Y= —0y — A (g = 0,4+ A (x, ¢, y!.
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The third way of construction of the KP hierarchy (4.36) has
been considered earlier in [14, 15]. Note that L™ (x,y1, y2) =D
and (I)g{,t,y’,y)zq"{x, Yy) ‘T"{x, y"). The quantities &, and #Z, are start-
ing Fokas-Santini symmetries.

5. THE SYMMETRIC SECOND ORDER DIFFERENTIAL
TWO-DIMENSIONAL SPECTRAL PROBLEM

Here we will consider the spectral problem

(02— 02024 qlx, y, 1) (8, +08,)+ Ulx,y, 1)) ¥ =0 (5.1)

where ¢lx,y,t), Ulx,y,t) are scalar functions such that ¢, U——0

and o’=41. The generic problem (02—o%0%4qid.+
+qod,+ U)W =0 is reduced to (5.1) by the appropriate gauge
transformation W—»gW. The problem (5.1) and some corresponding
integrable equations have been considered in [32—36].

Firstly we represent (5.1) in the 2 X2 matrix form [35, 34]

1 0 0 —1 :
fﬁig—kﬁ([} _J(’i‘_.,,{-—f—(u q})x—(}, (5.2)

The adjoint representation of (5.2) is given by (1.10) with
Az{r(é __{:) and P:(B _[D Multiplying this adjoint repre-
sentation by the matrix-operator B(d,, {) of the form B=B,(d,, {)+
+ By(d,, t)(ﬁgy. ]

—od,
and integrating, we obtain in a standard manner the fundamental
relation

) where B, and B, are arbitrary functions

(B(—a,) PD— B3’ ) DP) =0. (5.3)

It follows from (5.3) with B=1 that the independent dynamical com-

P {I)"?) are @y and @,. We denote @, :(LD:,_.) ;
D, @, M,

We will consider the functions B,(é,, {) and B.(d,, #) entire on

ponents of @M= (

3,0 Bu(dn1)= Y bai()dj, @=1,2. The fundamental relation (5.3),

n=0
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rewritten in the components of @, contains @,, ®,, @5, ®4 and their
derivatives over y* and y. It is necessary firstly to express @,, @,
via @,, and (114 (i. e. @) and secondly to express 4, @, (x,y’,y)
and 8, @, (x,y',y) via @, (x,y’,y)). The adjoint representation alows
one to do this. Namely, ll gives

O(x, ¢, ) =07 (—(0— - +¢' —¢) Dy +(U—U") Dy),

Dylx, i y)= —(0  +¢'—¢) Dy — U'D,, (5.4)
and
0y Lh_.: (x, Y, y)= A (E 7 aN7) (l]._‘:. (5.5)
where
I e SN TS T SR L 7 T R
Vo= | H—20U;+ U+ =204, + U~ (5.6)

4 U+ U —q),  +(0y | +¢)0__ +¢' —¢)) J

Here 0,, & 0,+00,+0d, , I] & (0 _4+¢'—q) ' =
exp (-1 (g—@")-0_" fexp (0 (¢'—@)-B and U'=U'(x. y'),
¢'=0q'(x, ).

[t follows from (5.5) that

{?;.- (Di l'x:" !:;r;" y-}: ‘iu I:'r".y.;'l .y.:l I']Ji L] = I? 21 35 B "- &

g |
=]
-

where A, are calculated by the recurrent relation

At b A o o ) A S0V g g
dy
For the adjoint operators one has
! n—1 i ;
Ay (X, Y, !J:‘-(’\t (x4, tJJ—I-T Afisan=2.8, . (5.8)
LLEN]
where (I"'=1[(g+¢"))
a + g (U —LFa . o U4+ U'd, . +
e i +Ue—9 )4+ 2al,) I" e
gy eeiakarihireiluith o ; | : (5.9)
<0 (—28.+9"—9p)ad, (U —U—(0__ +4—¢ )X
X0, . —¢')+2aq) I

,.‘

Emphasize that in (5.8) acts only on A"

oy’
Analogously one can show that
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o Of (5. ¢ y)= Adx, ¢, y) Dy, n=1,2,3, .. (5.10)
and

n— |

:\{;{x.y’,y):(ﬁ["(x.y’,y}—ki;;) A e 8=1,23, .. (5.11)

Using (5.4) — (5.11), we exclude the explicit dependence on the
operators d, ,d, in (5.3). Then transferring to the adjoint opera-
tors, we fmally obtain from (5.3) the relation [35]

n;ﬂ b A((—1rkF () =& () +

+ Z f’“zn{f}ﬂ{ _l)"An-H( )-i- ﬁa+|(_[pﬂ)+

=}
A+ (0Y , A+ (U= U+ ¢ U’
o (U)+A“ ([ﬂ-—+w—m’Jﬂ¥'+ U'-*{ﬂ_._+fp—tp’kp')+ -
m—— ﬂ+l m n MU a';'li' U’ ==
+m;ﬂ{ yrierhs ( S o) } =0 (5.12)
nl

where Ci' =

m!(n—m)’

Transformations (5.12) form an ifinite-dimensional abelian
group of general BTs ((U, @)= (U’, ¢’)) for the spectral problem
(5.1) in the form (1.11).

The consideration of (5.12) for the infinitesimal displacement in
the time: U'=U(x,y’,t)+¢ aU(‘; }. ¢ =¢(x,y )-I—Eﬂq'{gf’_t).,

=0, | +2wqa(t) , e>0) gives [35]

5() =2 5 {00t () -2 (7)) +
o ([ o(— 1L () +o L (L)+E()~+

+ fﬂ+( (U —U)ay  U'+-q'U"
(O +9—990, , U'—(0__ +o—¢W

+"f el (o asl ) e

)+
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where L) €A |, _s.,» and @..(f) are abitrary functions.
gy 1

Formula (5.l§) g!ives the general form of nonlinear evolution
systems in 142 dimensions (¢, x, y) integrable by the spectral
problem (5.1).

The transformations (5.12) with the time-independent b;, form
an infinite-dimensional abelian group of general auto-BTs for equa-
tions (5.13). The simplest auto BT (5.12) with bi,=0 (i=1, 2,
n=1, 2, 3, ...) is of the form

U —-u £ U+ u
bl T 8 a{ — oA}
m( ) 20 | (cp,_r{p)—l‘

(U= U)o W+ ¢ U —o Uy }—D ]

The group of general auto BTs’ is generated by the two elementary
BTs.

The simplest equation (5.13) with ,=0, =2 and
W20 =022 =we3=..=0 and o=1 is the BLP system [34].

For the functions .. of the form w, ,, =0 (a=1, 2) the system
(5.13) admits the reduction ¢=0. As a result we obtain the hie-
rarchy of equations the simplest of which (wi3=4, wss5=...=0,
0= 41) is the Nizhnik — Veselov— Novikov equation [32, 33].

In the one-dimensional limit d,U=d,p=0 the BTs (5.12) and
integrable equations (5.13) are reduced to BTs and integrable equa-
tions associated with the spectral problem (8,+¢+ Ud, W =AY
(see [37, 38]).

Now let us consider the second way. In this case we must use
instead of (5.2) the problem

B 0 —1\Y) - =S
(ax-i—a(u = )ag,+(U {P))x__ :u.-;(ﬂ -I)x (5.15)
with the adjoint representation of the form (1.15). Multiplying this

adjoint representation by the matrix B= Bi(A, t)+4 Ba(2, f)(ﬂul _13)
-1

where B; and B, are arbitrary functions, we obtain instead (5.3)
the following fundamental relation

{ B(A, t) P O(R)— B, ) D(A) P =0

The adjoint representation (1.15) gives the relations (5.4) and the
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bilocal recursion operator A(x,y’,y)

Alx, o, y) DA (A= AD4(x, ¢, y, ) (5.17)
where
d,_—g—d L (U'—U),  —1—374(0__+9¢'—q)
A= | —(0_+¢—970 U+ @ +o—9 WU-U+ (5.18)
+U0_ +U@—9).  +O-_ +¥—eNo_, +9)

Using (5.4) and (5.17) we exclude the explicit dependence on A in
(5.16). Then transferring to the adjoint operator, we obtain the ge-
neral BTs for the problem (5.1) in the form (1.17). They are
[17, 18]

AB(A™T, ) K+ Bo(A*, ) K3)=0 (5.19)

where

Ki=(g—g) =( . ff;‘-”i?iiff};‘fﬁh_u) “"‘”‘"‘(ifg )

and the bilocal recursion operator A7 is

oy +o—(U=U)7Y, (@,_U'+Ua_, —U(g—e)X |
A o X(@__+o—¢)!
20 | 140 _+o—¢)d7y, (U—U—(0__ +9—9¢)X

X(0_y —¢NO__ +o—¢)"

(5.20)

General form of the integrable equations is the following [17, 18]

%( z) = AQ(LT, N2 +QALT, ) 2>) (5.21)

where Q, and Q. are arbitrary functions entire on L™.

Emphasize that again ﬁ+=—-——6y,—ﬁ,+=6y+z(f where A7 is
given by (5.20) and A" by (5.9) [35].

The bilocal recursion operator A* (5.20) and BTs for the prob-
lem (5.1) have been derived independently by the gauge transfor-
mation (1.20) approach in a recent preprint [36].

The recursion operator method in the bilocal formulation is ap-

At+m=N

plicable also to the generic problem ) Unn(x,y) 079;¥ =0.

A, m=0
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8. MILTIDIMENSIONAL SPECTRAL PROBLEMS

We see that the recursion operator method in the bilocal form
allows one to represent the integrable equations and their BTs in
the two different forms (1.11) —(1.12) and (1.17) — (1.18). In the
form (1.11) — (1.12) they are defined by the sequence of the opera-
tors A which contain only the total derivative 4,44, . Hence the
operators A; permit the direct projection onto the diagonal y' =y
and the formulas (1.11) — (1.12) can be easy rewritten in the local
form.

The bilocal recursion operator AT (x, ¢, y) is the principal in-
gredient of the BTs and integrable equations in the form
(1.17) — (1.18). This operator does not permit the direct projection
onto the diagonal y’=y but it seems that the operator At (x, ¥, y)
more adequately reflects the recursion structure of the two-dimensi-
onal integrable equations. The forms (1.i7) — (1.18) of BTs and in-
tegrable equations manifestly indicate that they are generated by
the single operator.

For the multidimensional spectral problems the situation chan-
ges crucialy. Let us consider the matrix spectral problem

(A8, +A2d,, ...+ Aud, + Plxy, ..., xa)) ¥ =0 (6.1)

where A; are diagonal matrices and P,=0. The adjoint representa-
tion of (6.1) is

ia,-ax, O(x’, x)+ HZ 3, D(x', X)Ai 4 P(x') D', x)— D', x) Px)=0. (6.2)
i=1 i=1

Multiplying (6.2) by an arbitrary diagonal matrix-operator
B=B(d, ,...,d,) and integrating, we obtain the fundamental relation

( B(0)P' @y — B(— ")y Py =0 (6.3)

where {...)zsd,rdx’é{x—x’)lr{...'} ST B R B o
Within the framework oi the first approach one should try to
exiract from (6.2) the relations of the type

ﬂ.x: f.h.r.- (I;, I): EI{I}: {x’, I:IfI}F p
B, Dp (&, x)= Ry (¥, X)Df

ol PR

(6.4)
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where the operators A, should contain the total operators a,+d,,
(k=1, ..., n) but not 4, and d,, separately. It is not difficult to see

that such operators A;, do not exist. Indeed, one can rewrite (6.2)
in the form

[Ak, 0y O(x’, I}]—l— (0 + 0y,) DX, x)Ak+
T A, D, )+ T 3. O, A,
+.-;. ; D(x x)-l-ﬁ;z  O(x', x)Ai+

+ P/(x") D(x’, x}—D(x’, x) P{x)=0 (6.5)

The relation (6.2) gives
D (¢, x)= —d~ (P D — Df P)p (6.6)

where d=l2A¢-(6ﬂ—|—6L). Substituting (6.6) into the off-diagonal
part of (6.5), we get the equation for @, (x’, x)
[Ar, g Op (&', X)|= — (0 + 8, )Dp (x”, x) Ax—

l

— A;axg m_;:- (IJ, .II] —— Zﬁ (}xr (D,t.- E:JC'F, .JC] Af o

i i

—(P'®p — O P4 Pd= (P ®p — @ Py —d (PO — Dy PP .  (6.7)

Equation (6.7) is the irreducible form of the adjoint representation
(6.2). The index k£ in (6.7) is any from 1,...,n. But (6.7) contains
the total derivative only on x, i. e. 8,40, and other derivatives
dy, 0, (i=1, ..., k—1, k+1, ..., n) separately. So the operators of
the type A, are essentially bilocal ones on the variables x,, ..,
Xe_i s Xgqy-.»Xn. This prevents the existence of the needed (comple-
tely localizable) operators A,, and stops the further construction
within the first way of the bilocal approach described above.

The nontrivial result which can be obtained from (6.3) is the
system of equations for the resonantly interacting waves in multidi-
mensions. Indeed, if one consider the very special infinitesimal dis-

placement in time, namely, P’=P(X'}+E% B=]—eX

?

N ]

X ZIH“‘“““"“ d., (e—=0) the relation (6.3) with the use of (6.2)

=1 k=

or (6.7) gives
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dP,(x, ) Py - %
—h Z Qlaﬂm ‘ . Zl (Qey — yp) Py Pyg =0 (6.8)

s Oy i) = Wak)
Ael =8, ﬂ{fe;;'} and .u;}ql H{Z{ =05
[kl — “R)p

(k=1,...,n) . The system (6.8} has been derived in [39] in a way
very similar to the described here.

Within the second way in the bilocal approach one should intro-
duce the formal spectral parameters into (6.1). One can introduce n
different formal parameters in (6.1). Namely, one can consider in-
stead of (6.1) the problems

where Qg0 =

r:.lk* a{k}a

Y Aidy, VA Plx) T =ne A (x, ha) (6.9)

i=]

for any k=1, ..., n. The corresponding adjoint representations are

Y Ac by D(x', x, he)+ Z 8, O, x, M) Ai

f=] Fi

+ P(x") D(x’, x, he) — D27, x, hie) Plx) = [Ar, D(x7, x, As)], (6.10)
Rea=] .. ih

Excluding @, by (6.6), we obtain

A(X, x) Op(ds) =M |Ap, Dp X', x, M)], k=1,...,n (6.11)
where
ME X = Z( i 0y 40, - A+
i=1
(P — P —Pd (P — . P)y+d (P —.P)P. (6.12)
Thus for given & one has
Ak(X’, X) Dp(h) = e Dp(x, X, As) (6.13)

wher{: Ar=ad; ' A.

formali; one has n different bilocal recursion operators A
{k_l .., 1) for the problem (6.1) but effectively there is only one.
The mnwieratmn of the nonlocal gauge transformations for the
problem (6.1) gives the same result.

Another appmach to the multidimensional spectra! problems has
been discussed in [40].
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