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One of the main difficulties in search for MHD stable axi-
symmetric mirror configurations is associated with the stabilization
of the outer plasma boundary on which plasma pressure vanishes.
As it is well known [l], in a paraxial axisymmetric mirror cell this
boundary is unstable against interchange modes”. In this paper we
show that going beyond the limits of paraxial fields one can make
an axisymmetric configuration in which plasma (without sloshing
ions) would be stable against flutes.

For the sake of simplicity, let us consider stability of a sharp
plasma boundary supposing that at some field line plasma pressure
drops from a finite value to zero. Assuming B to be small, this bo-
undary is stable if the integral

rBB

is positive [1]. In eq. (1) x is the curvature, B is the field strength,
r is the distance from the axis to the boundary field line; the integ-
ration is extended from one mirror point to the other. The value
(and the sign) of V depends essentially on the pressure distribution
along the field line. To begin with, let us take it that the sum
p,+p. is constant between the points of the maximum magnetic
fiecld and sharply falls to zero at these points. Then V= (p, +p, )/,
where

IZR I'n:ri:i (2)

T

") This is not true in the case ol sloshing ions [2, 3] which we are not considering
here.
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Fig. 1. Magnetic field lines in the case of a long ideally conducting straight cilin-
der (a) and the cilinder swelled in the central part (b). In figure b, dashed lines
are lines of mirror points.

and stability corresponds to /> 0. The integration in (2) again is
extended between the mirror points.

Recently, it has been shown [4] that the inequality /= 0 can be
met in the limit of very small mirror ratios k&, k—1<1. In this pa-
per we present an example of a mirror field for which /= 0 for any
k, no matter how much it would be.

To this aim, consider first magnetic field generated by a long
ideally conducting thin cilinder shell inclosing the flux o (see
Fig. 1,a). The cilinder length [ is assumed to be much larger than
i4s radius a. Consider how B changes on a field line which is cha-
racterized by the flux y. Deeply inside the cilinder, at large distance
from its ends, magnetic field is homogeneous. Near the axis, for ¢
smaller than some critical value ,, B monotonically decreases
when approaching the end. The calculations give P, =0.39¢o. But
for > ,, magnetic field grows from the center to the ends, rea-
ches maximum and then begins to fall outside the cilinder. These
lines are able to confine plasma particles trapped between two
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Fig. 2. Field lines on the plane r, z near the end of the cilinder. The dashed line
consists of the points of the maximum B.

maxima of B inside the cilinder. It is remarkable, that the curvature
of the field lines in the system considered is everywhere favourable.
This is clearly seen in Fig. 2 showing the field lines near the end of
the cilinder. Hence, integral (2) is positive for any ¥ ($=>1.) and
the plasma outer boundary will be stable.

An evident drawback of the scheme described above is the lack
of magnetic field maxima near the axis which does not allow confi-
nement of plasmas without hollow in the trap. This difficulty can be
easily overcome if one «blows» the central part of the cilinder as is
shown in Fig. 1,b. As a result, a paraxial magnetic field will be for-
med inside the cilinder (we assume [3>a;, a) and mirror points will
occur at the field lines y<<, with the mirror ratio a’ /a’. One can
show that the distance from these points to the ends of the cilinder
is of the order of aln ({/a). Since these points are deep enough in
the cilinder, the only contribution to the integral (2) comes from the
paraxial magnetic field and for p<<+,, in general, /<<0. But in the
region = V,, the transformation from Fig. l,a to 1,b makes only
slight changes near the end of the cilinder so that the positions of
mirror points here and positiveness of I will retain. The value of [
at v= ¢, will change a little because a negative contribution to it
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coming from the paraxial field inside where the curvature w~a/l?
will be small according to small parameter a,//.

We conclude now that in an open trap shown in Fig. 1,b a non-
hollow plasma can be confined with the outer boundary stable
against flute modes.

[t is easy to see that the requirement of p,+p, to be constant
along field lines is not crucial for stability. Since the positive contri-
bution near the end of the cilinder essentially (//a, times) exceeds
the negative contribution of the central paraxial region, even a
strong reduction of the pressure at the end would keep integral (1)
positive.

Finally, note that though above we dealt only with the stability
of a sharp plasma boundary one can prove that stable smooth radi-
al profiles also exist. This will be shown in a separate paper.

The author acknowledges S.V. Kuzmin for numerical calcu-
lations.
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