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SYNCHROBETATRON SIDEBAND OVERLAP IN
ELECTRON-POSITRON COLLIDING BEAMS

A.L. Gerasimov, F.M. Izrailev, J.L.. Tennyson
Institute of Nuclear Physics 630090, Novosibirsk 90, USSR

The detrimental influence of synchrobetatron sidebands on beam
integrity is quantitatively estimated using analytic techniques. The
treatment includes both the horizontal and vertical betatron oscillations
and takes into account the sidebands of both parametric and coupling
resonances. Two thresholds are calculated: the threshold at which
betatron amplitudes begin to diffuse due to dynamical instability, and the
threshold at which the rate of this diffusion becomes significant in
comparison to the rate of diffusion caused by quantum fluctuations. The
results may be applied to any accelerator with beamn aspect ratio greater
then oy/0, = 20.

1. Introduction

In a colliding beam storage ring, the beam-beam force is the collective,
relativistically enhanced, transverse electromagnetic force experienced by a beam
particle as it passes through a bunch of the opposing beam. This force gives the
particle a transverse impulse, or "kick", which changes slightly the amplitudes of
the vertical and horizontal betatron oscillations. Accumulated beam-beam kicks can
result in an average growth of the betatron amplitudes, either via diffusion caused
by a sequence of uncollelated kicks, or via resonant pumping caused by a sequence
of correlated kicks. This growth can result in a loss of luminosity, beam lifetime, or
both,

To estimate the cumulative effect of many beam-beam kicks, it is necessary to
determine the extent to which the kicks are correlated and the nature of the
cornrelations, This requires an analytic model and the identification of one or more
transport "processes’; specific mechanisms with known statistical properties. .

Beam-beam transport is a particularly complex phenomena because there
appear o be several distinct processes involved. Each of these is highly sensitive to
both the working parameters of the machine, and the betatron amplitudes. All of
these processes involve, in one way or another, nonlinear resonances which are
excited by weak couplings between the two transverse oscillations and the
longitudinal motion. These couplings result from the nonlinear nature of the
beam-beam force and the presence of nonlinear components in the magnet lattice of
the machine. The processes themselves may be classified as either single resonance
processes (such as libration effects and resonance streaming) or as multiple
resonance effects (such as Arnold diffusion and synchrobetatron overlap). They
have been described in a preceding review [1].

This inveéstigation quantitatively evaluates the effects of one particular
transport process: synchrobetatron sideband overlap. This process appears when the
relatively low frequency synchrotron oscillations are coupled, either via the
beam-beam interaction or through r.f. cavity dispersion, to the betatron
oscillations. This coupling results in the splitting of each primary beam-beam
resonance into a multiplet of closely spaced (in phase space) sideband resonances.
Under certain conditions, e.g. when the modulation is slow enough or the
beam-beam force strong enough, the sidebands can overlap, resulting in
stochasticity and a "deterministic” diffusion of the betatron amplitudes.

The overlap of synchrobetatron sidebands has been examined for the
one-dimensional beam-beam system in a number of preceding works [2]-[5]. The
techniques used in those works have been extended, in the present study, to the full
two-dimensional system. The results presented here are therefore considerably
more comprehensive than those published earlier.



An investigation of dynamical instability requires a specific model. The model
used in this analysis makes use of the so-called "weak-strong” beam approximation.
This approximation assumes that the current distribution in the "opposing” beam is

a constant, and that the beam-beam force is an independent function of the two -

transverse coordinates x, z, and time. The weak-strong beam assumption precludes
the presence of "coherent effects” which require a self-consistent or strong-strong
beamn model. These effects, in most existing machines, are considered to be
negligible in comparison to the effects investigated below. The quantitative
- calculations are performed by computer. Because some of these calculations are
lengthy, it is convenient to represent the beam-beam force with a simple analytic
approximation to the exact force that would exist were the beam density profile
precisely bi-Gaussian. This approximation to the Gaussian force has been shown to
be accurate enough to produce reliable estimates of resonance characteristics in all
regions of the amplitude plane [6]. Since the beam is not expected to be precisely
Gaussian anyway, a force representing an almost Gaussian distribution is considered
1o be as good an estimate as the Gaussian itself. A description of the model is given
in Appendix B.

Synchrobetatron sidebands arise when there is coupling between the
longitudinal synchrotron oscillations and the transverse betatron oscillations. This
coupling causes the primary beam-beam resonances to break into a multiplet of
sideband resonances. There are three common coupling mechanisms: non-zero
chromaticity (resulting in tune modulation), non-zero dispersion at the intersection
poinis (resulting in modulation of the betatron oscillation center), and finite bunch
length (resulting in tune-shift modulation). All of these mechanisms result in a
swaying of the primary betatron resonances back and forth in the amplitude plane.
The magnitude and frequency of this swaying, together with the width and
frequency of the primary resonance, completely determine the characteristics of the
sidebands. Thus, the precise cause of the swaying is largely irrelevant in
determining its effect on particle transport. In the analysis that follows, the
mechanism used to illustrate synchrobetatron coupling is tune modulation (non-zero
chromaticity). This is known to be the primary coupling mechanism at VEPP-4,
and is the simplest mechanism to treat analytically. The results are easily extended to
the case of tune-shift modulation, as described in section 5.

This paper is limited to an investigation of the nature of dynamical instability
in the model system, as it depends on the various parameters in the system. It is not
concerned directly with the problems of beam blow-up and reduction of lifetime,
both of which might result from the presence of instability.

The study is broken roughly into three parts: the first investigates the
threshold conditions for instability in the model system, the second looks at the
diffusion rate that characterizes the instability, and the third analyses the extent to
which instability can be avoided by selecting an optimal working tune.

2. The Model System
The model system is defined by the Hamiltonian

H(ly,12.85.82) = Ix{@oxsMysin (QU)} + I {oz+Mzsin (QU)} + 51V(x,2) (1)

]
where 6t = I &(t-n) (2)

N=-20

The amplitudes of the horizontal and vertical tune modulations are My and M, while
the frequency of modulation is Q (the synchrotron frequency). The average
betatron frequencies are gy and Wyz. The term §¢ V(x,z) represents the
beam-beam impulse that is given to the particle every time it passes an interaction
point. At an interaction point, the coordinates x and z are related to (Iy.15.8y,85)
via the relations

(3)
Z = EEIEE;EJLIIIr2 cos 85

where By and B, are the machine beta-functions at the interaction points. The
actions [y, I are thus related to the betatron amplitudes Ay, A5 by

Ax = (214B,)1/2
Az = (21,8,)1/2 (4)

It is convenient to introduce the normalized amplitudes ay and a, defined by

where Oy and o, are the RMS beam width and height. The horizontal and vertical
tune shifts £, and £, are proportional to the auxiliary constants By and B. If the
beam current is fixed at a certain value, the tune shifts are related to the beta
functions by (see appendix A)

Ex = Byl Oy
£z = Bz/o, (6)

The beam-beam potential V(x,z) is represented in this work by the approximate




analytic model described in appendix B. It is independent of the tuneshifts, with a
parametric dependence on the beam aspect ratio dy/d- only.

The characteristics of nonlinear resonances were first described for general
multi-dimensional oscillator systems by Chirikov [7]. The characteristics of the
primary beam-beam resonances and their sideband multiplets are reviewed in
appendices D and E. The characteristics depend on the above mentioned parameters
and the beam-beam potential V(x,z). They can be expressed conveniently in terms
of two intermediate functions, the Fourier tranform Fp(ly.15) of V(x,2)
(transformed with respect to 8, and 8,), and the nmnlinearit}rﬁmi lx.1-). These are
defined by

Feall) i 2{15 sz {m,8 a.) vil,.l ) (7)
1] = B, COS + M J,8,8
T {2 ]2 o X a Fd oA B e L
d%F, 0%, d%F
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where Fo = Fry.g g and | and m denote the pairs (I,,1,) and (my,m,). The
amplitude-dependent frequencies w, and w, are defined to be

g 1
Biggeer
0.)2{,]_] = Wug + _él__—..-__ (10)

The sidebands are characterized by two additional parameters, the modulation
frequency Q and the multiplet width in frequency

Wy = mxHx + MM,

Most of the resonance characteristics refer to displacements in action space. In
the following list, they are expressed in terms of changes in the "resonant action" J,

defined in Appendix C. Given some displacement AJ,, the corresponding
displacements in I, and 1, are

Aly
Al

mx ﬂ'n.J1
m, Ady (11)

z

3. Resonance Characteristics

The following expressions for the characteristics of the primary and sideband
resonances are derived in appendices D and E, respectively.

1. Location of the mth resonance in action (1.1.) space. The location is given by the
condition

mxmxlﬂll + mzm?_[l] +« 27N = 0 {(12)

2. Resonance width AJ,

Ay =412 Fp/Apl (13)

3. Frequency of small amplitude resonant libration &,

Wn= v I12FnApl (14)

4. Sideband spacing ASJ,.

ASJy = Q/ Ay (15)

5. Average sideband width <AW J,>,

0 1/4
<ﬁwu]1> o ﬂJ1 = (16)
TIWM
6. Multiplet width AMJ,.
aMY; = 2 oy 7 Ag (17)

These six resonance characteristics are illustrated in Figs. 1-3. They provide the
basis for the following study of the instability thresholds and diffusion rates.

4. Thresholds and Diffusion Rates

There are three regimes which characterize diffusion across the sideband
multiplet (diffusion along the multiplet is usually small enough that it can be
neglected in the presence of quantum fluctuations). The first regime corresponds to
the non-overlapping condition, the second (intermediate) regime to quasilinear
diffusion, and the third to adiabatic diffusion. The thresholds separating the three




regimes are derived in appendix F. The quasilinear diffusion rate is calculated in
appendix G.

4a. Diffusion Regime Thresholds

The threshold for sideband overlap, equation (F4), is given by the condition

WM Q3
2FnAm |2 > |—— (18)
| 2FmAm | 2 (2103
The threshold for adiabatic diffusion is given by (F13)
{L‘IMQ
|2¢pl > |-
or iy
|2Fm Ap| > |oMQ] (19)

There is, of course, a region where (19) is satisfied and (18) is not. But in this
region

wy Q°
L EA S
or
|2 wy /Q| <1/ (2m)3 = .004 (20)

This means, from (E29), that the number of sidebands in the multiplet is .004. Since
for sidebands to overlap there must be at least two in the multiplet, this region is
completely stable and the diffusion rate is zero.

4b. Quasilinear Diffusion Rate

The quasilinear diffusion rate (the diffusion rate in the region of parameter space
where (18) is satisfied but (19) is not) for the random variable J; is given by
equation (G3)

(2F )2

Dl:ll = (21)

L

The diffusion rates for the amplitude variables ay and a, are given by (G4)

9
i ﬂax 2 "me,x"E
D'l:ﬂ } = m D - D
X LA 3ly ] ql L 8y Oy . ql
(22)
r day; 32 rmypts 42
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In electron-positron machines, the adiabatic diffusion regime is seldom
entered. For this reason, and because the adiabatic rate is always less than the
quasilinear rate, the adiabatic regime may be safely ignored in electron-positron
machines (this may not be true for proton-antiproton colliders).

The dynamical diffusion rate (22) is only significant if it is stronger than the
pre-existing diffusion caused by quantum fluctuations. The condition, for i- x or
2, is

where Dqy is the diffusion rate due to quantum fluctuations and T4 is the damping
time. More explicitly, from (21) and (22), this condition is

[miai }2 {EFmF
3j gj

WM

To estimate the effect of instability on the beam integrity of a particular
machine, it is necessary to both determine the conditions under which the sidebands
of a particular resonance m overlap and the rate of quasilinear diffusion induced by
this overlap. If overlap does in fact occur for typical parameter values of the
machine, and if the diffusion rate is comparable to or greater than the diffusion
induced by quantum fluctuations, then the resonance in question must adversally
affect at least the beam size, and possibly the beam lifetime.

> 1/Ty4 (23)

3. Quantitative Analysis

To simplify the results of the analysis (though not the analysis itself), and
because it corresponds roughly to the actual situation in VEPP-4, we consider onl y
the case in which My=0. The modulation amplitude is then given by M.. For
reference parameter values we use the operating conditions of VEPP-4: E2/Ey=4,
Oy/0 =80, P=271/Q=50, M,=.015 and a damping time of T4=1000 revolutions.

To maximize the intuitive utility of the numerical results, the parametric
dependences of the threshold conditions (18) and (23) are split. In both cases, the
dependences on the amplitude a, the resonance m, the ratio Ex/Ez and the ratio
O/ G5 are moved to the left hand side, while the dependencies on M, Q, £ and




10

Tq are moved to the right hand side. The condition (18) for overlap then becomes

OP1 > OP2 (24)
where OP1(a.m,Ex/E,. 0y/0,) = 2 (2FmAm )2/ (£ my) (25)
0P2(Q,M.E;) = M, / (P3E,Y) (28)

and P = 271/Q is the modulation period. The condition for significant dynamical
diffusion in the vertical direction (23) becomes

DP1 > DP2 (27)
(2F )2 m,
where DP1{a.m,Ey/E7 Oy/o,) = _{;zdz]'z (28)
M
and DP2(Ty,Mz. ;) & — (29)
Tg £2°

The parameters OP1 and DP1 appear to depend only weakly on the tune-shift ratio
£x/Ez and the aspect ratio 0y/0, for most resonances. Thus OP1 and DP1 are
fairly machine independent and can be applied to a wide range of electron-positron
machines with elliptical beams.

In the tops of Figs. 4-6, the functions OP1 (curved lines) and OP2 (straight
lines, except in Fig. 6) are plotted agai:. : vertical amplitude at five different values
of the horizontal amplitude: ay=0,1,2,3,4. Sideband overlap occurs where OP1 >
OP2. In the bottoms of Fig.s 4-6, the functions DP1 and DP2 are plotted against
vertical amplitude for the same horizontal amplitudes as the top plots. Again
dynamical diffusion excedes quantum diffusion when DP1 > DPZ. On each plot,
three cases of OP2 and DP2 are shown for comparison. In each case, Mz, Q, and T4
are the same, while £ takes on three different values £= .03, £,- .06, and £z

10.

By looking at the graphs, it is possible to see which resonances overlap at
which amplitudes, and at which vertical tune shifts E_z. To make the same
comparison for other machines with different modulations and damping times, its
only necessary to adjust the lines OP2 and DP2 according to the formulas (26) and
(29).

Figure 4 shows the case where ay=0. Since all coupling resonances have zero
width here, only the vertical parametric resonances with mz=2 to 20 are shown.
The parameter DP2 is proportional to the diffusion induced by the quantum
fluctuations. This diffusion rate is sufficient to counter the radiation damping at
amplitudes smaller than ay=1, but because the damping is proportional to
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amplitude, it is not sufficient to counter damping at larger amplitudes. Therefore,
even if the dynamical diffusion rate were twice the quantum fluctuation rate, it
could not easily transport particles beyond a,=2 (much less to a;=10 or a,= 20).
So for reference purposes, a straight slanted line is drawn into the lower plot of Fig.
4. This line corresponds to the function DP2 xa,2 and gives the threshold at which
the dynamical diffusion rate (represented by DP 1) would be strong enough to push a
particle to a, when £,-.06.

Figures 5a-d include coupling resonances as well as parametric, but are
restricted to 6th, 8th, and 10th order resonances only (the order of a resonance is
the integer OR= | my | +| mzl ). At each value of ay, these resonances are separated
for clarity of illustration into four groups. Each group is associated with a value of
my. with my =0,2.4, or 6.

While Figs. 4 and 5 represent the case of tune modulation, the case of
tune-shift modulation is shown in Fig. 6. Tune-shift modulation differs from tune
modulation only in that the amplitude of tune modulation is dependent on the
betatron amplitude dz: specifically, M, becomes proportional to the
amplitude-dependent tune-shift, which from (9) is given by

aFg(l)
al,

Aw(]) =

This only affects OP2 and DP2. Since both of these functions are proportional to
Mz, they are also proportional to Aw,(1). This, and the fact that tune-shift
modulation is identical to tune modulation at small amplitudes, allows for
straightforward modifications to OP2 and DP2

Mzo Awylay)

OP2(Q,M,&,.a,) = (30)
M Aw{as)
DRRLT My By} g O e (31)

where M is the amplitude of the tune-shift modulation Mzg=AL /2.

Note that since both OP2 and DP2 are proportional to Mz, small modulation
amplitudes have lower overlap thresholds and faster diffusion rates than large
modulation amplitudes. The apparent paradox at very small modulation amplitudes
is resolved by the fact that the validity of the threshold conditions (18) and (23)
depends on there being more than one sideband in the multiplet. Since from (E29)
the number of sidebands is 2mzMz/Q, the above analysis breaks down when

Mz < Q/(2m,) (32)

“Yhen this happens, resonance overlap, and thus dynamical diffusion, becomes
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impossible exccpt at very high tune shifts. Equation (30) is therefore a criterion for
the elimination of synchrobetatron instability. Parametric resonances of order
greater than about m_=16 are harmless, so a safe criterion is M, < Q/32,

6. Discussion of Results

For the purposes of this discussion, it is useful to refer to resonances in terms
of their order OR = | my | + | m, | and slope in the frequency plane SL= my/m..

Two resonances with the same slope but different order are similar in many
respects. Their resonance conditions (12) and locations in the amplitude plane are
identical. As a rough rule of thumb, the Fourier transform Fm falls off
exponentially with increasing order, the transforms of resonances at each order
being about 10 times smaller than those of resonances at the preceding order. From
(13) and (16) it follows that the sideband width is reduced by about a factor of three
each time the order is increased by one. This rule is generally valid at intermediate
amplitudes; the differences are greater than this at small amplitudes and smaller
than this at large amplitudes.

Two resonances of the same order but different slopes may have very different
characteristics, and these differences depend strongly on the amplitude. For
example, when ay<<1, only resonances with SL<<1 are significant while when
az<<1, only resonances with SL>>1 are significant. When ay=a,, at least at
intermediate amplitudes, the resonances of all slopes are of about equal strengths.
Again, this rule breaks down at large amplitudes where resonances with SL=
dominate and at small amplitudes where resonances with SL<<1 and SL>>1
dominate.

The overlap parameter OP1, for all of the resonances shown, peaks at an
intermediate vertical amplitude 2<a,<8 with high order resonances peaking at
higher amplitudes than low order resonances. The highest values of OP1 are
obtained for the parametric resonances SL=0 at small horizontal amplitudes. This
suggests that dynamical diffusion in a machine with a highly linear lattice appears
first at about az=5 and ay=0 (this result could be altered by the presence of strong
machine nonlinearities, which were not taken into account in this study).

A typical high order resonance is the (0,10), shown in figure 4. The sidebands
of this resonance begin to overlap at a,=5 when the vertical tune shift reaches
£2=.03. The diffusion due to this overlap (from the bottom plot) becomes
significant at E,Z:,EM, but only at larger amplitudes B8 <a <15, By the time £
reaches .06, the 10th order sidebands overlap in the interval 2<a;<25 with strong
diffusion in the interval 5<a,<25. Although 10th order resonances can be avoided,
20th order parametric resonances cannot be when £ > .05. These begin to overlap
at a; =~ 10 when £ =.06.
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Generally speaking, because the synchrobetatron instability affects only
intermediate amplitudes, its effect on either luminosity or lifetime is questionable.
In the case of luminosity, only the easily avoidable 8th order resonances can overlap
at amplitudes below a,=2, and even these have an insufficient diffusion rate at a,=2
to have any real effect. Since for beam blowup to occur, the diffusion rate must
increase substantially at a,=2, its unlikely that this mechanism is responsible for
beam blow-up, Furthermore, since at large amplitudes (see Fig. 4) the dynamical
diffusion rate appears to be insufficient to counter radiation damping, its also
unlikely that this mechanism can account for particle loss on apertures at az>30
(apertures below a;=20 could probably be reached). One experimental observation
that does appear to be explainable by this mechanism is the appearance of long
"tails” on the transverse density distributions [8§].

It should be noted that the modulation amplitude M, depends on the
synchrotron amplitude, and that this tends to diffuse at some characteristic rate, If
the value M, used here is interpreted 10 be the maximum modulation amplitude,
then any lower value is also accessible to the particle and will be realized within
about a damping time. As mentioned above, the diffusion rate increases as Mz drops
until resonance overlap fails altogether due to a deficiency of sidebands in the
multiplet. It is therefore necessary to know approximately how many sidebands
there are in the multiplets. Since this number is 2mzM;/Q, using the above values
with mz=10 gives 2.4 sidebands. It follows that when mz<4, the deficiency of
sidebands in the multiplet inhibits the appearance of instability at the thresholds
indicated by the condition (18).

The results illustrated in the top plots of Figs. 4-5 are summarized in Figs.
7a-f, In each of these figures, the dangerous resonances at a particular horizontal
amplitude ay are depicted in two ways. Firstly, the lines of dangerous resonances
are drawn into the tune plane to show their density. Resonances that produce
instability at tune shifts below £,-.03 are represented by lines with double
thickness. Secondly, the locations of the dangerous resonances are shown in the
discrete resonance vector space m. In the latter space, resonances are differentiated
by four different symbols, indicating the tune shift at which they produce
instability. Figures 7a-e show the dan gerous resonances associated with the five
amplitudes ay=0,1,2,3,4 separately, while Fig. 7f shows the combined group of all
dangerous resonances. Figures 7a-e show clearly the increase in the influence of the
coupling resonances as ay is increased, and the simultaneous decrease in the
influence of the parametric resonances. It is apparent from Fig. 7f that the vertical

parametric resonances are in general far more dangerous than the coupling
resonances (this is due, to a certain extent, o our restriction Mx=0). Finally, even
when only the the most dangerous resonances are considered (those that produce
overlapping sidebands below £2=-03). it is not easy to find a hole in the tune plane
of Fig. 7f big enough for a beam with 2 tune spread greater than £, = .05,

T
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7. Conclusions

This study gives an indication of the extent to which dynamical diffusion plays
a significant role in the beam-beam limit. It is comprehensive in that it considers the
dependence of sideband overlap and dynamical diffusion rates on the vertical and
horizontal betatron amplitudes, the synchrotron amplitude, the modulation
amplitude, the modulation frequency, the tune-shifts, and the full range of
parametric and coupling resonances excited by the beam-beam interaction.

It cannot, by itself, be used to predict luminosity and lifetime since it does not
take into account other known transport mechanisms. Furthermore, this study
includes only beam-beam contributions to the nonlinearity Am and the resonance
strength Fry. In most electron- positron colliders, there are significant nonlinear
elements in the magnet lattice which also contribute to Ay, and Fm- The lattice
contributions are typically negligible at small amplitudes (ay ,<S) but can easily
dominate at large amplitudes (a, > 20).

Taking into account the above mentioned limitations, this analysis is fairly
conclusive on several points. Firstly, its clear that the parametric resonances
(my=0) are the first to produce dynamical diffusion and are therefore the most
dangerous resonances at each order. At tenth order, for example, only the (0,10)
resonance is dangerous; other coupling resonances of the same order are not capable
of inducing diffusion at realistic tune-shifts. Secondly, in the absence of lattice
resonances and nonlinearities, dynamical diffusion appears first at intermediate
amplitudes above two sigma and below ten sigma. Thirdly, the sign of a resonance's
slope in frequency space is not important (only its absolute magnitude is
significant). So for sideband overlap, there is little difference between sum and
difference resonances in highly elliptical beams. Fourthly, dynamical diffusion
rates for all but easily avoidable low order resonances appear to be insufficient to
cause either beam blow up (at small amplitudes) or particle loss (at large
amplitudes). Dynamical diffusion could be responsible for extended "tails” on the
transverse density profile of the beam.

Taken together, these results imply that the dynamical diffusion induced by the
beam-beam interaction is, by itself, incapable of affecting beam luminosity or beam
lifetime to the extent observed in VEPP-4. It is therefore believed that either single
resonance (non-chaotic) effects play a more important role in the beam-beam limit,
or that the resonance strengths calculated in this analysis have been substantially
underestimated due to the omission of nonlinear multipole moments in the magnet
lattice and other nonlinear forces,
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Fig. 1: Resonance location and width in action space. The resonance is centered on
the line defined by the resonance condition (12), the direction of resonant oscillation
is given by the vector m (D6), and the width of the resonance is given by (11) and
(13).

Fig. 2: Phase space portrait of a nonlinear resonance. The resonance width (13) is
the full separatrix width. The frequency of small amplitude oscillation is the
frequency of phase oscillation when the particle is close to the center of the
resonance (analogous to the small amplitude frequency of a pendulum). Since the
invanant tori are three dimensional surfaces in the five dimensional phase space,
this portrait is a section of co-dimension two, corresponding to fixed values of the
revolution phase (equated in this work with time) and some betatron phase other
than -._pr1 .

Fig. 3: Phase space portrait of a sideband multiplet. Synchrotron modulation of the
betatron motion has increased the temporal periodicity of the Hamiltonian, resultin u
in the formation of sideband multiplets where formerly there were single
resonances. The sideband spacing (15) is proportional to the synchrotron frequency
Q, while the multiplet width (17) is proportional to the modulation amplitude M.
The section is similar to that in Fig. 2, except that it is taken at a fixed value of the
modulation phase instead of the revolution phase. Note that although strict temporal
periodicity does not exist if the ratio of modulation frequency to revolution
frequency is not rational (making it difficult to plot these portraits, even with a
computer), an irrational ratio does not preclude the existence of these invariant tori,

Fig. 4: Sideband overlap thresholds and thresholds of significant diffusion for the
vertical one dimensional resonances at zero horizontal amplitude. The top figure
shows plots of OP1 (25) (curved lines) and OP2 (26) (straight lines) as a function of
amplitude for different resonances and tune shifis respectively. Sideband overlap
occurs where OP 1>0P2. The bottom figure shows plots of DP1 (28) (curved lines)
and DP2 (29) straight lines. The dynamical diffusion rate excedes the quantum
fluctuation rate when DP1>DP2. In this figure, as well as in Fig.s 5 and 6, the tune
shift ratio is TSz/TSx -4, the aspect ratio is ASR=0y/0,=80, the period of
synchrotron modulation is PD-50, the modulation amplitude is
AM=Avz=Aw,/271=.015, and the damping time is DT=1000 revolutions.
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Fig.5: Sideband overlap thresholds and thresholds of significant diffusion for
coupling resonances at fixed non-zero horizontal amplitudes. As in figure 4, the top
figure shows plots of OP1 and OP2 while the bottom figure shows DP1 and DP2.
Sideband overlap occurs where OP1>0P2 and dynamical diffusion excedes
quantum diffusion when DP1>DP2. Sixth, eighth, and tenth order resonances are
shown, but are separated, for clarity of illustration, into groups distinguished by the
values of my. Each value of horizontal amplitude is represented by four groups, or
pairs of figures. Four different horizontal amplitudes are represented altogether:
Ax = ],2,3.4.

Fig. 6: Overlap and diffusion rate thesholds for the case of tune shift modulation.
Figs. 4 and 5 represent the case of tune modulation. If the tune shift is modulated
instead, th- modulation amplitude M becomes dependent on amplitude, going to
zero as the ampitude goes to infinity. This results in modifications of the graphs of
OP2 and DP2, causing them to bend downward at large amplitudes. Thus tune shift
modulation can be more dangerous, at least at large amplitudes, than tune
modulation.

Fig. 7: Dangerous resonances as a function of horizontal amplitude. Using the
graphs from Figs. 4 and 5, the resonances capable of inducing diffusion via sideband
overlap are illustrated both in the tune plane and in the discrete resonance vector
space m. In the latter space, resonances that overlap are differentiated by four
different symbols. The dots indicate resonances that do not overlap, even at i
The circles indicate resonances that overlap when .1>,>.06, dots within squares
indicate resonances that overlap when .06>£,>.03, and circles within squares

indicate resonances that overlap when .03>£. Figures 7a-e show the five cases
Ay=0.1,2,3.4 separately, with Fig. 7f showing the dangerous resonances at all

amplitudes.

Ty

APPENDIX A: Parameter Relationships; the Jacobian
The Hamiltonian of the beam-beam system has the form

The horizontal position x and momentum p, are related to the horizontal action Iy
and angle 8y by

x = (218,12 cos e,
(A2)
Py = (21/B )12 sin 8y
so the betatron amplitude A, is related to the action by
Ay = (218,012 (A3)

The change in amplitude §A, and change in phase 88, associated with a change in
momentum 8py (x held constant) is given by

8Ay = 8py By sin 8y
(Ad)
59}{ = Bpx ﬁx cOS Ex |"I AK

Since both &py and §p, are proportional to V(x,z), and therefore to the beam

current |, it follows that the tune shifts Ex and £ can be changed by altering either
the current i or the beta functions By and B,. In fact, all of the resonance

characteristics depend only on the two parameters iBy and iB,. It is therefore

possible, and in the interest of algebraic economy, to keep the current (and
therefore the potential V(x,z)) fixed, and adjust the tuneshifts with the beta
functions alone. Accordingly, it will be assumed that V(x,z) is fixed such that, for
any tune shifts £y and £, when x,z << 1,

avix,z) 4mx . 3V(0.2) 412

}{l_.na ax - =T ;I_,_.na THE T c, e
240 x=0
The Jacobian relating the action to the amplitude is
diy Ay
S o (AB)

dAy By
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From Hamilton's equations, the instantaneous jump in momentum due to the
beam-beam kick is...

-aV
Apy = ———
= ax
at small x,2z this is Apy = -4TIX/ Oy
Ap, = -4M2/ 05 (A7)

If the beta functions are one, i.e. the orbit is a circle in the phase plane, then the tune
shifts are just £y = 1/0y, £, = 1/0,. The tune shifts are determined by the beta
functions according to

Ex = Bx/oyx :+ &z = By/o; (AB)

Note that the units of measurement in the x and z planes are identical above. If,
instead, x and z are normalized to oy and o, then using the normalized
amplitudes

ay = Ay/Oy
az = Azi‘rdz

the Jacobian diagonal elements for the normalized coordinates are

dli  3j oi® ajgj

b 2 AS
daj © By & i
APPENDIX B: Beam-Beam Model
The approximate analytic model is defined by the potential
Vix2) = == F In[h(zx) ] (81)
SIS e ] ’

where 2) s 20 o B o CzZ?
g(x) = D exp (+x2/E)
h(z.x) = (x2 « 22 4 G)

and A-11.48 B-2. (o;/0y) C-.6
D=.82 E-4

G=2.3

The beam-beam kicks are given by

aV
Apx= bx 5y

gV
Apg= E,z oy

(B2)

APPENDIX C: Resonance Coordinates

The resonance Hamiltonian includes only one Fourier term of the full transformed
Hamiltonian (D3) and (14)

Hm,n = Ho(l) + 2 Fp(1) cos (myBy + m;08, + 27nt) (c1)

This Hamiltonian describes an integrable system and can therefore be transformed
into a new Hamiltonian with only one degree of freedom. A canonical
transformation replaces the old action-angle variables |, 8 by new variables J -
{Jq.J2}. and ¥ = {¥,.¥,}. The linear generating function for this transformation
is given by

G:lcg-iuﬂ+..l|2ﬂﬂt {CEJ

where lg = (lgx.lgz) is an arbitrary point in action space and p is a 2x2 tensor of
the form

Hxx Hzx

n =
Hyz Hzz

The new coordinates are then defined by the relations

aG aG
¥y = — Va =
dJ, dJ,y
(C3)
| aG ! aG
? 5 ety
and the new Hamiltonian by
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Since we want J, to be an invariant of (C1), we choose the components of p to be
such that ¥, will be absent from the transformed-Hamiltonian, i.e. such that (C3)
gives

The appropriate choice is Hyy = my and P,y = M, (see appendix J). This
specification alone (leaving py-> and p- unspecified) results in the following
additional identities:

and, when J,-0,

Aly w (ly-lgy) = my Jy

(C7)
ﬂlz — {IZ'IGZ} = mz -J'F

The new transformed Hamiltonian is found by seuing the invariant J, to zero
(using (C6) to find either the appropriate point |, or alternatively the appropriate
initial conditions), replacing ly and I3 in (C1) by myJy+lgy and myJy+lgs.
replacing the phase in (C1) by ¥, as shown in (C5), and adding J,27tn as specified
in (C4).

K[J].qﬁ} = HD{'J'I} + 2 Fm("JT:I COos ‘P] + JTETEH [CB]

It 18 convenient to approximate the first term on the LHS by the first three terms
of its Taylor series expansion about the point I;. Expanding H,(1) about 15 gives

3, 3Ho
3y 31,
2 2 2
T S - + - - e T - 2 +
2 [alx? {Ix ]ﬂx:l 2 a[zalx“x EGK] “z IDZ} a|22 [IZ 102} ]

Using the assumption that J,-0, the coordinate relations (C7), the definitions of the
nonlinear frequencies

dHg(1)
f.l.‘lx{l} - %Ix

(C10)
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AHgq(1)
mZ{IJ = W;

and the definition of the nonlinearity hm

92H, , 9%Ho , 9%Ho
nmszmxmzm+mx W+mz W (CH}

the Taylor series representation (C9) of H, can be rewritten

Substituting the first three terms of (C12) into (C8), and dropping the irrelevant
constant term, the Hamiltonian (C8) becomes approximately

K(J1.¥1) = Jy{wymy+@,m,4+270) + hmJFKE + 2FmlJy) cos ¥y (C13)

It is usually possible to neglect the dependence of F,(J;) on J; and replace it in
(C13) with its constant value Fy,(0) at Jq=0.

APPENDIX D: Primary Resonance Characteristics

A method for determining the characteristics of a non-linear resonance in a
system of N weakly couple oscillators was developed by Chirikov [7]. This appendix
reviews this technique for the case N=2. The beam-beam system under
consideration is initially defined by the Hamiltonian

H = Hy(z.pz) + Hy(x,py) + £ 8(t-n) V(x,2) (D1)
N==03

where H»(z,p) and H,(x,p,) represent the linear betatron oscillators. The third
term on the RHS represents the periodic beam-beam kick which couples the two
oscillators and provides non-linearity, It is convenient to change to the action-angle
variables | = {ly, I,} and 8 = {8, 8.} defined by the linear oscillations

X = (213Bx)1 /2 cos(sy)
Py = (21,/B4)1/2 sin(8,)
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z =(21;8,)1/2 cos(e,)
p2 = (21,/8,)1/2 sin(s,)
where By and B are the beta functions at the interaction point. If the beam-beam

term in (D1) is Fourier transformed with respect to By and 85, the Hamiltonian
becomes (see appendix I for details)

D0 00 00
H = I, ki + r T T 2F cos (myB, + M0, + 27IAt)
X=ox * 1z2%oz e My M X=X ¥z
rnx:1
Mo=-o
S0 60
+ £ & 2 Ep mzcus{mzaz + 27Int)
Nz-ca
mz:
o0
n=

The term Fogq is dependent on 1y, 1, but independent of By and 6. Itis convenient
L0 construct an integrable nonlinear oscillator Ho(l) by adding the two linear
oscillator terms to the F 54 term from the perturbation expansion,

HU[—” = Ixmﬂx L sz.l.‘loz + Fcﬂ{l] (Dq}

The Hamiltonian (D3) is not an integrable system, but a finite portion of its
phase space is covered by regular trajectories, i.e. trajectories that are bounded for
all time and are characterized by discrete frequency spectra (of phase variables),
The behavior of such a system is very complicated and can only be understood by
carefully examining the properties of its nonlinear resonances (represented by the
Fourier terms of (D3)).

A analysis of a certain nonlinear resonance m.n usually assumes that all of the
other . Lurier terms in (D3) can be neglected. The resonance Hamiltonian is then

Hm,n = Holl) + 2 Fp(1) cos (my8y + m,6, + 27nt) (DS)

The time derivative of the action from Hamilton's equations is

L o
8 e 1]
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Equation (D6) shows tha. "~ the action space (ly,I), the motion defined by the
Hamiltonian (D5) lies on a line parallel to the vector m. The frequency of
oscillation in action space is determined by the time rate of change of the resonance
phase {melx + mEEZ + 27Int).

The resonance system (DS5) is said to be "in resonance” if the resonance phase
is stationary

Since the phase velocities 8, and 8, are roughly equal to

: dHg (1)
Ex = mx{l} = a[
X
(D8)
; dHq(1)
O = wy(l) = b 7358
Fa
the resonance condition (D7) can be rewritten
mxﬁJx{i} + mzmzil] + 21Mn =10 EDQ:I

The resonance condition is either satisfied on a curve in the action space or not
satisfied at all.

Besides its location and the direction of its resonant oscillation, the nonlinear
resonance is characterized by a width in action space and a frequency of small
amplitude oscillation. To find the resonance width and frequency, a coordinate
transformation is made to new variables (J1.¥4) and (J,,¥,). Since the system
(D5) is integrable, new variables exist for which the Hamiltonian reduces to one
degree of freedor... We thus choose the new variables in such a way that one of the
new actions, J,, is an invariant, i.e. such that Y9 does not appear in the
Hamiltonian. This coordinate transformation is perforned in detail in appendix C.
The result is the new Hamiltonian (C8)

K(LW¥4) = Ho(d) + 2Fm(J) cos ¥, « J 2100 (D10)
Two approximations are now made, Firstly, Ho(J) is replaced by the first three
terms of its Taylor series expansion about 4=0 and secondly, Fpy,(J) is replaced by

its value Fm(0) at J-0. The final result is (C14)

K(J1.¥4) = Jy(wymyswomse27n) o Amdi2/2 . 2Fp(0) cos v, (D11)




where Ja o Imy(lgz-12) - ma(lgy-1x)]1 = 0 (D12)

and the nonlinearity A, of the mth resonance is

92H, d2H, d%H,
— My ———— M2 M- 2
gy = =t I TR A TR gL R T 8L

The point |, is an arbitrary point in action space. However, since Hq(J) in (D11)
has been approximated by its values close to lg., it is necessary to choose 14 in such a
way that it is close to the initial conditions of the system and such that (D12) is
satisfied. Since we are interested here in the characteristics of the mth resonance, it
is natural to choose |, on the resonance line, i.e. such that the resonance condition

mywy(lg) + mzwz(lg) + 21tn = 0 (D16)

is satisfied. With this choice of 1, the Hamiltonian (D11) reduces to the pendulum
Hamiltonian

K{Jy.¥y) = AEJ,EKE + 2Fp(0) cos ¥, (D17)

The small amplitude frequency of the pendulum corresponds to the small amplitude
frequency @ of the resonant oscillation

The width AJ, of the resonance corresponds to the pendulum's separatrix width
(the full width)

Ay =4 JI12Fp/Apl (D19)

or, in the original action coordinates, from (D13)

Al = m AJ, (D20)

APPENDIX E: Multiplets and Sidebands

Coupling between the synchrotron and betatron oscillations can result in a low
frequency modulation of some parameter in the beam-beam Hamiltonian. This
modulation causes each primary beam-beam resonance to split into a multiplet of
sideband resonances. Several different types of coupling are possible. If there is
non-zero dispersion at the interaction points, the center of the opposing beam
appears to sway back and forth with the energy oscillations. If the machine
chromaticity is non-zero, the machine tunes oscillate. A sharp dip in the
beta-function at the interaction points can create a modulation of the overall
beam-beam force or, again, oscillations of the betatron tunes. Although the sources
of modulation are diverse, the ways in which they ultimately affect particle motion
are very similar. The simplest and probably most significant is tune modulation. In
this appendix, the characteristics of the sideband multiplets (the sideband widths,
spacings, and frequencies, as well as the full multi plet width), are calculated for the
case in which the betatron tune @, is forced to oscillate slowly with frequency Q
and amplitude M about some average value @,.

We start with the 2.5 degree of freedom Hamiltonian for a single primary resonance
.

Hm,n(1.8) = Ho (1) « 2 Fp(0) cos (m-8 « 27tnt) (E1)

It can be reduced (approximately) to a 1.5 degree of freedom Hamiltonian (see

(D20), appendix D)

K(J1.¥1) = Jy( m-@q « 270) & Amdi?/2 . 2Fm(0) cos ¥, (E2)
where Ji = (y=lgyd/my = (15-157)/m, (E3)
"{"'1: ma8 «+ 21nt (E4)

and the nonlinearity Am of the mth resonance is defined by

3%H,, g Py A
J"\m =2 mxmz ‘_"alx_"alz + My _"'—z—alx + M _"&lz}" (ES)

The constant Fyy(0) is the value of Fy(1) at the reference point 15 used to define
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J1=0. The first ierm in (E2) would normally be zero since |5 is usually taken to be
on the resonance line

mﬂu[igj + 2n= 0 {EE‘}

We now introduce the modulation. Coupling to the synchrotron motion can cause
the betatron tunes to oscillate slowly. If the synchrotron frequency is Q, and if the
amplitudes of the vertical and horizontal tune modulations are M, and M,, then the
tunes Wq can be expressed as

¢ Woll, t) = @qo(1) + M cos Ot (ET)

where M = (My,M;) and @, is the average vector tune. The action I, now
satisfies a modified resonance condition :

m-wy(l) + 210 = 0 (EB)
and (E2) becomes
KEJ,.%]: Jym'M cos Qt «+ hmJ12.«’2 + 2Fp(0) cos ¥, (E9)

The resonance phase ¥, changes in time at the rate

¥y = 3K/8Jy = A Jq + wy cos Ot (E10)

where wp = m-M. The phase itself may be expressed as
" ¥y = Wy e (wy /Q) sin Ot (E11)

t
where Vo= | Aputdar (E12)
o

We now make a coordinate change in which the phase ¥, is replaced by the average
phase ¥ 5. We use the generating function

Ja OM f
G(Ja.¥1) = Jg¥y - —5—sinat / (E13)
which gives Jy = 96/av¥, = J,
i 1,
q"'a = ﬂGa’ﬂJa = "Pi - _‘ﬂ_ sin Ot {E]‘”
K'{Ja.Wa) = K(J1,¥) « 9G/3t = K(Jy,¥q) - J5 M cos Qt (E15)

In these coordinates, the Hamiltonian (E9) becomes

WM. :
K'(Jg.¥a) = Ay Ja2/2 + 2 Fy(0) cos [ ¥+ ——sinot | (E16)

Using the Bessel function identity

o0

cos(A + B sin 8) = £ Jy(B) cos (A.1L8) (E17)
=00

and putting J4 back in place of J4, equation (14) can be rewritten

v 4]
K'(J1.¥3) = Am 12/2 + 2 Fp(0) & Jg( @ /Q) cos (¥, +101) (ET8)
m |t e

Sideband Characteristics
In general, from (E3),

Aly = my | &4

(E19)

Aly, =my | ady|

Sideband Spacing

The sidebands are located in action space by the resonance conditions for the
Hamiltonian (E18)

¥,+00:0
or from (E12), Ampd1 + 1Q =0 (E20)

The separation A3J; between neighboring sidebands (represented by consecutive
values of 1) is given directly by (E20)

-

A Q/Am (E21)

Sideband Width

The Hamiltonian for a single sideband can be obtained by selecting only one
term from the sum in ([:18)
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K'(J1.¥a) = Ay 1272 + 2 F(0) Jglwp/Q) cos (W, +LQt) (E22)

This is the Hamiltonian for the simple pendulum. The width of the sideband AW J,
i$ equal to the width of the pendulum separatrix

AWy = 412 Fp(lo) Jgloy/Q) / Am| (E23)

Unforwnately, Jjy(wM/Q) depends on the particular sideband &, so different
sidebands in general have different widths. There is, however, an asymptotic
approximation to J ¢ (x) in the limit x-o0 .

Jo(x) = o/ 2/(1tx) cos (x-270/2-11/4) (E24)

The rms magnitude of J g (x) for sidebands inside the multiplet can thus be estimated
<Jg(x)> = (70¢)-] (E25)

or with X = wM/Q, when (4] < |mMKQ|

<Jglom/Q)» = JIQ /Tl (E28)

For |2] > lwm/Ql, <Jg> falls of exponentially fast with |2], Thus, only the
sidebands with 12| < | wp /Q| are of substantial size. The modulation thus causes the
primary resonance to split into a multiplet of 2wpM/Q sidebands. The average
widths of the multiplet sidebands can be obtained by substituting (E26) for
Jg(wpm/Q) in (E23)

» 2Fm [ 1/2 Q 1/4
<AW > = Am Ton (E27)
which can be written
0 1/4
<AWJp o Ay | — (E28)
WM

where AJy is the width (D19) of the primary resonance. The sideband width is
evidently only very weakly dependent on the characteristics of the modulation, Q
and M. In a typical e*-e- machine, Q = .1, and wpM = .1. Then [QJ’{-}MN /4 o
so that the sidebands are generally about 1t /4. 75 the width of the primary
resonance.

MULTIPLET WIDTH

The number of sidebands in the multiplet is equal to twice the value of L above
which the magnitude of the Bessel functions begins to fall off exponentially.

Number of sidebands = 2 wpM /0 (E29)
The width of the multiplet in J is given, then, by

aMy,

number of sidebands x AS] m

aMJy = 20y/ Ag (E30)
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APPENDIX F: Transport Re gime Thresholds

There are two characteristic ransport thresholds: the resonance overlap
threshold and the trapping threshold. These two thresholds divide parameter space
nto three regimes:

a) the stable or regular regime in which no transport takes place,

b) the quasilinear regime in which particles diffuse at the quasilinear diffusion
rate, and

¢) the adiabatic regime where the diff usion is adiabatic,

We calculate here the two threshold conditions separating these regimes.

SIDEBAND OVERLAP THRESHOLD

The sideband overlap threshold determines the tuneshift above which the
sidebands of a particular resonance will overlap at a particular point in action space.
The criterion for sideband resonance overlap is that the ratio of sideband width to
spacing must be greater than 2/1t, From Appendix E, equations (E27) and (E21),
the sideband average widths and spacings are given by

-~ - '1
<ﬂwu=1>: < -f_r-rﬂ.. -IIE __E_. Ifq
j"\m LR ATY
- T P
A J,-ﬂf!"ﬁ.m

The sideband overlap condition, as shown by Chirikov [7], is the condition that the
ratio of sideband width to sideband spacing be greater than 2/7t,

<AW s>

TR 4/Q (2FpAmIT/2 (Q/mtey)1/4 —ff (F1)
or substituting Q= 21/P
2P/TC (F A2 (2/P wy)1/4 £
P2FpAm)/2 (/P 174 5 (F2)
Raising to the fourth power gives
2P% (2F Ay )2 ;.:;,H > 1 : (F3)
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or finally,
W

The most important feature of this result is the dependence on modulation
period P. Sideband overlap, and thus stochastic diffusion, is more likely to occur at
low synchrotron frequencies than high.

TRAPPING THRESHOLD

The trapping threshold defines the boundary between the quasilinear regime
and the adiabatic regime., It is defined by the condition that particles can be trapped
in the primary resonance and dragged along with it as it sways back and forth in
action space. In order to trap a particle, a resonance must be able to push a particle
through action space at least as fast as the resonance itself is moving through the the
action space. The rate .Jr at which the primary resonance is moving through
action space is given by...

. dJ; v,

4 g - (F5)
: e AWy et
Now, since S
s A (F6)
R e
v, 3
e 2 e NS D)
at at
AV, 3 3
- = (mw, « mMcos at . 21nt )
at at
= - wM Q sin Ot (F7)
where WM = m'M. Then
=gl
Ir = sin Ot (F8)
i

The maximum rate at which the primary resonance is moving through |, space is
then given by... ;

Wy O
."._
Am

I"'IE!X{Jr-} = -

= (F8)
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The trapping threshold is defined by the condition that this rate be equal to the
maximum rate at which the resonance can push a particle. For the Hamiltonian

K(1.¥1) = Ay h12/2 2 Fm(0) cos ¥, (F10)

-

the rate J at which the resonance pushes a phase particle is given by..

; dH i

J1:-—&;{}"‘?‘ = EFm sin ¥, tF11) !
with

max J; =« 2 FIIL (F12)

The trapping threshold is then obtained by equating (F9) to (F12). Trapping occurs
if

WM 0
2F —
J ml :'I ‘h‘m I

or

|2Fm Ap| > |on@] (F13)

RELATIONSHIPS BETWEEN QUASILINEAR AND ADIABATIC REGIMES

Its useful to express both (F4) and (F13) in terms of the three characteristic
frequencies: the libration frequency of the primary resonance @, the modulation
frquency Q, and the multiplet half-width wy in ¥,

mmsafm thﬂll
oM = [mM|

Then the condition for sideband overlap (F3) is

‘ WM ﬂﬁ
mm > 2(21-[}3 {F]q}

and the adiabaticity condition (F13) is

wm? > wyQ (F15)
These conditions are valid as long as there is more than one sideband in the !
multiplet. We thus have an auxilliary validity condition !
Wy > 0 (F18)
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Each of the conditions (F14), (F15), and (F16) defines a surface in the three
dimensional space spanned by the coordinates W%, wy, and Q.

APPENDIX G: Quasilinear Diffusion Rate

In a multiplet of overlapping sidebands, there are two diffusion regimes, the
quasilinear regime and the adiabatic or trapping regime. In this section the diffusion
rate in quasilinear regime is calculated.

Quasilinear Diffusion

In this regime, the primary resonance is sweeping back and forth slowly
enough that the sidebands overlap, but not so slowly that particles become trapped in
the primary resonance.

Diffusion in this parameter regime corresponds to the so-called "quasilinear
diffusion” which is used extensively in the theory of particle motion in turbulent
wave fields. The validity of quasilinear theory depends on the satisfaction of two
conditions: the first is the "free particle" condition which requires that the particle
trajectory deviate insignificantly from its free particle trajectory during one
correlation time of the field. The second is the "random phase" condition which
requires that the phases of the different waves affecting the particle motion be
uncorrelated. The first of these conditions corresponds to equation (F19) for the
threshold between the quasilinear and adiabatic regimes, and the second to equation
(F18) which defines the threshold for sideband overlap. We derive here the
quasilinear diffusion rate for a one dimensional system in which a charged particle
is driven by a number of equally gpaced (in frequency) electrostatic waves. We
assume that the waves all have the same wave number k, but that their phases are
random with respect to one another, The wave-particle Hamiltonian is

o
H=p?2m + £ A, explilkx-Qnt)] (G1)

where the Ap are complex numbers. Quasilinear condition #1 above allows us to
assume that the particle’s velocity doesn't change much in one correlation time, so
the Hamiltonian can be approximated with

=+ ]
H= vp n—EmA" expli(kx-Qnt)]

where v is a constant equal to the initial velocity of the particle. Then




X =Xg + vi
and
=]
p=- —g—& = I -ik A, expli(kx-nQt)]
X, ne.to
t o0
Ap() = [ dt' _x ik Ay explifk(xgevt)-nat}]
0 MN=-0a
e B i t)-nQt} - explil ]J
= X o | explifk(xg+vt)-nQt}] - explikx,
o 80 REAH. = 3
Ap2(t) = £ E e | aXpli{kDagevt)-n'Ot]] < exp[ikxu]J x
Nz-0¢ n''=-00 (kv-n'Q) L
——Aﬂ”' [ expl-ilk(xg+vt)-n"Qt}] - expl-ikx ]]
(kv-n"Q) & . : :

We now average over the phases B, of AR, - | Ar:l eli®n), Each term in the above
sum is a product (Ap')x(A%p-) of two complex numbers Ap' and Ape. The
ensemble over which the average is to be made is the "random phase” ensemble
corresponding to the assumption #2 of quasilinear theory. It may be represented by
a uniform distribution on an infinite dimensional torus, the coordinates of which are
the phases 8. The averages of the cross terms are all zero, leaving

o k2 |An | 2 | 2
KAPHED = "y LR explifk(xg+vt)-nQt} - explikx,]
N=-0 (kv-nQ)?2

The product of exponentials is
| explitk(xgsvt)-nQt}] - explikxgl |2- 1 41 - e-ilkv-nQ)t _ gilkv-nQ)t

= 4 sin? {(kv-nQ)t/2}

The variance thus reduces to

oo sin? {(kv-nQ)t/2}
{Ap2(t)y = k24 % An| 2 -
N=-00 | nl (kv-n0)?

. I . i o
If the spectral density S = i An12/Q is held to a constant function of frequency
w=nQ while the frequency spacing Q is decreased to zero, the above sum
converges to an integral over w

35

sin? {{kv-w)t/2}

CAPR(E)Y = K24, j“&m 5
— D

(kv-ew)?
= k2458 mnt/2
The quasilinear diffusion rate is then given by
D= <Ap2(t)d/2t - k25 w (62) °

The quasilinear diffusion rate is remarkably simple since it depends only on the
value of the spectral density at the resonant frequency (where wW=kvp with vy the
particle velocity). It is independent of the frequency spacing between waves, or the
width of the full frequency spectrum.

Application to Overlapping Sideband Multiplets
The beam-beam system with tune modulation is defined by (E18)

o
K'(J1.¥3) = Ay 1272 + 2 Fpy(0) . L Jylwm/Q) cos (¥, +10t)
m g e

Comparing to the wave-particle Hamiltonian (G1), k=1 and the wave spectral
energy density corresponds to

Q

Using this and (E26)
Jg> = |a/mwy| 172
the beam-beam quasilinear diffusion rate is
Dqi = | (2Fp)2 / wy] (63)

This is the rate at which the random variable Jy diffuses. The rates of diffusion of

the two amplitudes a, and az are obtained by first changing to the action variables
ly and 1, by multiplying (G3) by my? and m,? respectively, and then to the

amplitudes by multiplying by the squares of the appropriate Jacobians.

D(a,) = [mx :‘: JE Dqi = [;’;xi-:]?i]m

day 2 my€, 42
[m 31, ] oq 155 va

(G4)
D (az)

The expressions on the right make use of the relation (A9) for the Jacobians.
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APPENDIX I: Fourier Transform

The beam-beam Hamiltonian is

H = Ixmux * [Zmaz + at V{IH,IZ.E;‘,EE] “.]J
[+x]
where 5t = I exp (i2mnt)
Nz=0a

Since the imaginary part of the nth term in 54 cancels the imaginary part of the -nth
term,

co
6t = I cos 27mnt

M=z =00
The Fourier transform is defined to be

W L eE |
o102 Jo d9y : de, explilmyBy + m8,)} VEly.1,5,8,.8,) (12)

For notational convenience, the Iy,I, dependence on the LHS has not been shown
explicitly. Since V(ly.17,6y,8;) is usually even in both 8y and 82, the imaginary
part of the exponential factor in the above equation gives no contribution to the
integral. Thus

1 211 270 ‘

The Hamiltonian can now be written

[+ ] 1] oa
== Xx==
My=-02

since V(Iy.l;,8y,85) is real, the imaginary part of the My.My term is cancelled by
the imaginary part of the -my,-m; term. In fact, since V(ly.1,,8,,8,) is usually

symmetric with respect to 8y and 85, Fy mz is usually real and equal to

F_mx-mz- We may therefore halve the number of terms in the above equation. The
third term in this equation becomes

o0 00 = +]
nfﬂgcs (27nt) [ Enx:% 2 Frym, €os (my8y + m;8;) +
I'I'I';‘::-ﬂ'ﬂI
=]
+ Fao ;n;:j Fo m, cos(mz8;) ]
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Now cos(ot)cos(B) = 1/2 [ cos(otsB) + cos(ot-B) 1 so that...

cos(21int) cos(myBy + M,05) =
1/2 [ cos(myBy + M0, + 2TInt) + cos(MyBy + M,B8, - 271nt)]

Since half of this nth term can be associated with the -nth term, the full Hamiltonian
can be rewritten

o0 D
H - Imex - Iszz + rE_I- - me mz cos {mxax * ITIZEZ * ET[rFtJ

N=z=-ca £
mz=]

oo
M=

Note that if V(Iy,l;,84,8,)=1, Fgo=1. On the other hand, if V(ly.15,84.85) = cos
(my8y + mM,86,), then Fmx,mz =1/2 and F_yy _mz=1/2 which is taken into
account by the factors of 2 in the summation terms.

APPENDIX J: Generating Function

The linear generating function for the transformation is given by
G:lo'ﬂ_ui'].l"§+\]12nnt (J1)
where p is a 2x2 tensor of the form

Hyxx Hzx
Hyz Hzz

The new coordinates are then defined by the relations

36 36

3J; 34,

I aG 3G
= -[ -

N i e

and the new Hamiltonian by
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K(J, ¥) = H(l, 8) + 8G/ot

Rewriting (J1) in terms of its separate components gives

G = loxBy + loz8z « J1HxxOx + J1HzxBz + JalyzBx + Jaliz287 + 27Nty

80...
Yy = aGHJI = HyxBy + PZKBE + 27Nt (J2)
WV, = afoan = pxzsx + jizzﬁz
|x = aG.’ﬂEK = Eﬂx + J1J‘[){I + JEJ"KE
IZ = aﬁfaﬁz I{]Z + JLU'ZH + ‘J.'ZJ'IEZ

Rewritting the last two equations of (J2) two different ways gives

Haxlly = lox) = Jiliyxhoy + Jalixz by (J3)

Mxx(lz - Toz) = JiMzxhyxx + JaMazzHyx (J4)
and

Hzz(ly - lox) = Jilyxhzz + Jalxzlzz (JS)

Hxz(lz - loz) = Jifaxlixz + Jakzzbxz (JB)

Subtracting (J4) from (J3) and (J6) from (I5) gives

Hzz (y - lox) - Hyz (17 - Igz)

J = J?
: Det n acs
Ty [, C bl
Ji x Pxx Uz - loz) - Bzx (Iy - Igx) (J8)
Det p
Now when J5 = 0, from (JS) and (J 6 ), then
(Iy - Tox) = J1 Bxx (J9)

Since we want J, to be an invariant , we choose the components of p to be such that
V= mxﬂx + M58, + 21nt (J11)
From (J2), this condition is met if pyy = my and p,y = m,. This specification

alone (leaving Jy> and p,5 left unspecified) results in the following additional
identities:
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From (J8),
Myll5- 1oz} - mally- lgy)
i x\z= loz z\x- lox (J15)
Det n
and, when J,=0,
Aly = (Iy=1gy) = My Jq (J16)

.&Iz = f,i-z-!ﬂz] = mz I.J'|

Since A] is always parallel to the vector m and the system is assumed to be initially
at lg.
ﬂlx My

&b . s

Thus, from (J15), J5 = 0 always.

Note that specification of Py, and Wy defines J; everywhere, but J; only
on the line J, = 0. However, since the system is confined for all time to this line,
knowledge about J, is not needed for J,=0 .
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Figure 1. Nonlinear Resonance in the Amplitude Plane
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Figure 3.
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