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ABSTRACT

The functional measure and corresponding eifective
action in three-dimensional gravity are studied in the
gauge in which the metric is diagonal.
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1. INTRODUCTION

To get any idea of what is quantum gravity it is useful to refer
to the low-dimensional models. In particular, the Faddeev — Popov
determinant in the two-dimensional gravity found by Polyakov in
the conformal gauge [l] provides a non-trivial dynamics of the
quantized theory [2].

In this note we calculate the Fadeev— Popov determinant in
three-dimensional Euclidean gravity for metric written in the diago-
nal gauge:

ds? =" (dx'f &2 (dx?? 4 62 (dx)? )

'LocaHy, this gauge is always possible: we first transform metric

tensor g,, to principal axes at the given point, then we make it’s
three non-diagonal components vanish also in the vicinity of this po-
int by proper small transformations of three coordinates x* The
problem of global diagonalization of the metric is more complicated,
but it is not important for us here.

2. THE ACTION

Consider for definiteness the Einstein action. In the diagonal
gauge

Se= — % | Gg'’d’x, G=2e"""Fy,F;, 4+ perm, g=detg,. (2)



Here u=const and (...), =4(...)/dx". Variation of (2) with respect to
. leads only to the diagonal component< oi the Einstein equations;
in the linear approximation

1
GUERH"?EIIREF3.22+F2.33=G-PETW- (3)

However, since not all of the Einstein equations are independent
(due to Gj, =0) the non-diagonal components

Goz= Raz— %Q’EERE — Fy 23 =0, perm (4)

follow from (3) and appropriate boundary conditions of the type

Gosl i — oo = Gasloe _ o =0, perm. (4a)

Such the conditions should be also implied in the corresponding de-
finition of the functional integral for gravity.

3. THE MEASURE

Classical dynamics of three-dimensional general relativity is lo-
cally trivial —empty space-time is flat [3]. Nontriviality of quantum
dynamics stems from the gauge nature of gravity and from the ne-
cessity to extract in proper way the measure on the equivalence
classes of metrics g,; from the measure Dg on the space of all the
metrics in the functmnal integral [4]":

(D(g) )y = { £ d(g)exp(—s(g). (5)

To take into account physically equivalent metrics no more than
once we have divided the measure Dg in (5) by the volume Q of
the diffeomorphism group Difi R® tangent space to which is spanned
by infinitesimal translations n":

X' =x"—n"(x), ﬁh Hap = Bay T]:Ill.i -+ Spy Tﬂ: ‘i"gc:ﬂ,'r n'. (6)

Introduce invariant norms in the functional spaces of dg,; and
n (1, 6]:

* Due to the bottomlessness of the action (2) the Euclidean path integral (5) is
defined by integrating over complex-valued fields [3]; see below.
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Iogl?=§ &' d% (g™ + Cg™ £™) beup es (7a)
Ini*={ g'”d°x q"n® g,5, C=const. (7b)

Corresponding measures are normalized as
1 i
| Dogexp( — - logl?) = | Dnexp( — 5 Ini*)=1. (8)

The measure DOg on tangent space is identified with the measure of
interest Dg [6]. Physical variation of the metric 8;g,, in the gauge
(1) is parametrized by 8F,. The total variation is

88ap =(8r +80) €ap. 8€11=2g18Fi, SFi=8F +n)+n"F .,
5312=§i1ﬂ,i2+g22ﬂﬁ , perm, (9)

so the norm is

v 2 3 2
16gl’= S g'd3x [ 8gis +perm +4 Z §F:2 +4C( Z ﬁF&) ] (10)

11822 a= | =l

Replacing integral | g'/?d°x[...] by the sum over points we get the
measure normalized up to a constant:

Dg = DnDF [det M [[ g~ "/*(x)].
X

Dn = H g} x)dn(x), DF = [| d*F(x], | (11)

X

0 exp (g1) da exp (—qu) 92
M= ( exp (—pz) ds 0 exp (g2) 4, ),
exp (qa) 0 exp (—@s) 4 0

ad

@1=Fo— F3,perm, d,= ;
ax”

Det means determinant in the operator sense. Make two remarks
concerning (11). First, the metric diagonality condition does not
uniquely fix the frame: 6 g,=0 for as=p does not necessarily
mean n*=0, i. e. M has zero modes. The latter are excluded by im-
posing boundary conditions

N e =241+ =00 =0 (12)



(1 e. fixing the frame at infinity). Second, the factors like ]] C,

C =const are omitted in Dg in (11). By locality and general covari-
ance these factors are equivalent to including some cosmological
term in the effective action [6]. If invariant vacuum expectation
values are of interest, integration over Dn is cancelled by Q. The
factor [...] in Dg in (11) can be written in the form

b = 0 d1 a2
[detMan / (x)]detMMo : Mg ( % 0 0 ) (13)
X 2 1

Here the factor [...] is proportional to
Hexp(*- ) det @ ~H exp(— Fa)(dx*)~'=T](ds)"" (14)

X,a

which is 1 up to an adjustment of cosmological term.

4. DISCRETIZATION

So we are left with det MM;"'. The matrix MM;' takes the form
(MMg ™' )up = 85 + Gup(x) 30, (15)

(there is no summation over a, ) where

ch (Fz—F3) sh (Fs—F2) sh (Fa—F3)
auﬂ,‘}'auﬂ: ( Sh {Fa—Fi:l ch {Fg—F|] Sh {F|—F3} ) (16}
{Fz'— |} sh {F|—Fg) ch {F| F?}
Then
In det MM; Z
X Z Gy O Blr O Ml i Ol D S (17)

Lr TIPes

We lirst evaluate the trace on regular lattice with spacing & along
each coordinate axis. In terms of invariant geodesic length As bet-
ween neighbouring sites this lattice is inhomogeneous one. Such the
«naive» discretization can in some cases lead to wrong continuum
limit and, in particular, it does not reproduce the conformal trace
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anomaly in two-dimensional gravity [7]. However, there is a dis-
tinctive circumstance in our case. Below we shall establish the addi-
tivity property of (17) for M defined on subspaces V(Qn.) of functi-
ons 1 (x) vanishing outside some lattice subsets Q. (see (26)). This
immediately generalizes our analysis to cover the piecewise-regular
lattice with Asaconst (this lattice is regular in the regions Q, suf-
liciently small for that the metric in them might be considered flat;
see Fig. 1). It is just the point our treatment differs from that of
two-dimensional gravity on the lattice [7]. In the latter case we
deal, roughly, with the determinant of the Laplace operator A on

xz
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/v : : ™
I’;’ <k
L] & @ l \
LG, S
i 4 {
e
R TGN, RSO S -"-""--.
I f' L » [ ] & [ ]

—— B — 1
[ S « C
Fig. 1. The piecewise-regular lattice: it's spacing h* in the region Q, and Q. is diffe-
rent;, Q=Q,J Q2.

curved manifold [l]. Explicitly writing the determinant on the lat-
tice it is not difficult to convince ourselves that boundary effects
between nighbouring subsets Q. break the additivity property for
Indet A. Therefore introducing piecewise-regular lattice makes the
analysis quite involved. In any case, the answer will depend non-tri-
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vially on the metric. It is just the way the anomaly in two dimensi-
ons might show up within our approach.

5. THE DETERMINANT

Consider vector space V(Q) oi functions f(n) defined on a set Q
of the points n of one-dimensional lattice Z taken along any of the
coordinate axes x”. Introduce differentiation operator 8 on V(Q)

@ (m)=Fn+1)—f(n—1) (18)

formaily: putting f(n) =0 outside Q. If Q=/={n|1<n< 2N} is an
interval®, the matrix of 7' has the following nonzero elements:

7 2L2m—1)=1, I=m EFIET,  s.
=1, %)= = | :gm} (@ ”W=k;ﬂ (i, &) [(). (19)

The problem reduces to evaluating one-dimensional traces of the
type TrA=Tra,,0,a,, a* ol g Oy amagl. It follows from (18),
(19) that

2N
T A= ) g, (n)agy, (n—(—1)")...a5,, (1) Gyy, (n—(—1)" (20)

T |

(there is no summation over «). The index in Tr, A means that 4 is
defined on V(/). It is worth noting just here that if Q=1,1J/, with
I, I; being intervals each consisting of even number of points and
f|ﬂfg=ﬂ then

Tro A=Tr, A+Tr, A. (21)
The matter is that (20) is the sum of quasi-local terms of the type
f(2k, 2k —1) with non-intersecting pairs of arguments.

Thus, the effect of operators d,...6, "' in (17) amounts to the
shift

Gup ()05 (1) =Gy (n—(—1)" (22)

in the x* direction. As a result, (17) can be summed up to give

* The requirement for the number of points of / be even is necessary for ' to
exist on V (/).

8

Indet MMy ' = ) In det 8,5+ agy ()] =
=Y inch @@=y - o )+0 @), (23)
4 3 i

O=R'—F'+ -+ F’—F .

Here ii= (n', n®% n®). In the assumptions of sufficient smoothness of
F, the term O(®*) is O(h*). It's contribution to the effective action
vanishes as O(h) in the continuum limit. The remaining sum can be
rewritten as

% ,,Z[('ﬁ” — (@1 +perm] + Y'[(¢” — o) (95" — g3)+ perm] (24)

where ¢,= Fy— F3, perm. Here the second sum is the sum of combi-
nations of the type

[pa(n’, n2 41, n3 4+ 1) 4 gan’, n%, n¥)—qo(n', n? 41, n®)— ga(n', n?, n341)] X
X [gan', a®+ 1, n° + 1) +@s(n', n®, n®)—qs(n', n® 4+ 1, n®) —@s(n’, 0%, n® 4 1)] +
+ perm=0(h*) (25)

and also drops out. Finally, the first sum leads to the term O(h™")
in the effective action.

6. THE EFFECTIVE ACTION

To perform continuum limit we must properly define finite ele-
ment approximations of integrals and derivatives d,. In order not to
violate space symmetries the points placed at equal geodesic dis-
tance As from each other must enter these definitions with equal
weight, i. e. we must consider the piecewise-regular lattice. But first
consider non-intersecting subsets Q,, of the regular Z° lattice with
Q being the union of them. An additional, not very restrictive requi-
rement is that intersection of each Q. with any coordinate line of
the lattice be an union of intervals each consisting of even number
of points. Then

Indetg MMy ' = Y Indety, MMy ", (26)
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which immediately follows from (21). This formula can be taken as
a consistent definition of the determinant on the piecewise-regular
lattice. To make use of it we introduce inhomogenecus lattice spa-
cing h®=e""As (see Fig.l; Q. are taken small enough to assume
an approximation F,=const inside each of them). Then we get the
following Euclidean effective action:

Sejf = — 5 E”Edax{ “a [II-le Fi+ é [Fﬂ‘—Fafl] +perm+l} .« (21)

where £?=2As—0, A is the cosmological constant.

Description of the system with the action (27) (with «incorrects
sign) can be given a sense by performing path integration over
complex-valued fields [5]: F,—F.+mni. This corresponds to quan-
tizing conformal degree of freedom with negative metric [8]. Then
S reverts it's sign while ds® remains unchanged. In this treatment
the dominant contribution to the functional integral is given (at
least, in Gaussian approximation) by those fields which realize the
absolute minimum of the redefined S

(Fa— F3),,=0, perm. (28)

This constraines F,— Fy to be E,(x*) —E&;(x*) with &, being an ar-
bitrary function of x*. Therefore we can made F,=F,=F;=F by
proper reparametrization x'=x'(x""), perm. preserving the diagona-
lity of gup. In the nonlinear theory redefining the fields

fi=(F2— Fy)/e,perm, f[i4fo4fs=0 (29)

we get at e—0:
Sy =\ d*x[ue’ GFP+ e (f}, + Ba+ )+ 1. (30)

7. DISCUSSION

The above calculation illustrates the main idea about three-di-
mensional gravity: there is the dynamical mechanism connected with
the Faddeev-Popov ghost effect which enforces this theory be con-
formally Euclidean one. At least the latter property is the necessary
requirement for the functional measure on the equivalence classes
be free from ultraviolet infinities. Of course, the results of calcula-
tion can depend on the regularization procedure used as well as the
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lunctional integral itseli in the nonrenormalizable field theory does.
A nice possibility to sum up ghost diagram series into exact analyti-
cal expression is connected with factorization of the diagrams into
the products of one-dimensional integrals over p;, ps, ps. UV regu-
larization which does not violate this property is necessarily reduced
to the product of one-dimensional regularizations. Of these only Z*
lattice regulator mekes an apparent physical sense although another
regularizations (e. o Gaussian exponential momenta cut-off) also
lead to the local O(\) term in §; in [lirst approximation quadratic
in F,— Fs (A is cut-off parameter with the dimension of mass). No-
te that continuum invariant regulators like that of Pauli— Willars
or the stochastic one [9] elfective in the quantum field theory do
not remove divergencies in the problem at hand: roughly, they me-
re y cancel contributions with large | det Mo| ~|pipopsl in the mo-
menta space.

The author is grateiul to [.B. Khriplovich, Ya.l. Kogan,
E.V. Shuryak and B.L. Spokoiny_for valuable discussions.
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