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Abstract

An expression for the high-energy Delbrick asmplitude at
large scattering angles is derived. This expression is exact
in the parameter Z4 . The consideration is based on the use
of the relativistic electron Green's function in a Coulomb
field.

1. INTRODUCTION

The elastic scattering of a photon in a Coulomb field
via virtual electron-positron pairs (Delbriick scattering [11)
is one of the few nonlinear quantum-electirodynamics processes
that are directly observable in experiment. The situation when
Wz2m( w is the photon frequency, m. is the electron mass,
and K= C = 1) is most favourable (see refs.[2-4] ).

At present the amplitude of the process is studied in de~
tail in the lowest-order Born approximation (see refa.[E-E]}.
The corresponding calculations have been carried out for an
arbitrary value of the momentum transfers A (R=R,-B, W,
and K, are the momenta of the incoming and outgoing photons,
respectively;]E&f:#El}=:gg) + The amplitude, exact in Z4 (Zlef
is the charge of the nucleus, d. = 2 = 1/137 is the fine-struce
ture constant, @ is the electron charge), has been found by
Cheng and Wu (refs.{9-11])in the limit tu/.y 5> 1 with DL -
They have solved the problem summing in a definite approxima-
tion the Feynman diagrams with an arbitrary number of photon
exchange with a Coulomb centre. It appears that the Coulomb
corrections at Zd ~ 1 drastically change the result as com-
pared to the Born approximation (refs.[9,10]).

The main contribution to the total cross section at (s>
comes from the momentum transfer A ~ ym » the scattering angle
Bo~Alu<< 1. The characteristic impact parameter © ~1/A . The-
refore, the value of the angular momentum ﬂ'*?UJNhﬂb;pTOVEE
to be large and it is possible to employ the quasiclassical
approximation. The corresponding approach intended for descrip-
tion of quantum electrodynamics processes in a Coulomb field
at high energies has been developed by V.M.Strakhovenko and
one of the authors in refs.[12,13]. In particular, the depen-
dence of the total cross section on the charge of a Coulomb
centre has been defined. The consideration has been based on
the use of the quasiclassical Green's function obtained from
the integral representation for the electron Green's function
in a Coulomb field (ref.[14]).

In the last ten years the elastic photon scattering at

large angles was being studied intensively in the experiments



(see e.g. refs,[15,16] and the survey [4]). The results of
these experiments show that the Coulomb corrections to the
Delbruck scattering amplitude have to be taken into account.

In the present paper, in order to study the Coulomb cor-
rections the exact Delbruck scettering amplitude is found in
the 1limit wW/m>>1, A/m>> 1« At A~ the scattering angle

Bs (Sin(8e/2)=Ml2yy) is not smell and the characteristic angu-
lar momentum P ~ 1. Therefore, in this case the quasiclagsi-
cal approach is not valid and one has to develop another ap-
proach. At m < A& the amplitude obtained agrees with the
results of refs.[9,13]. It has heen shown in ref.[8] that the
Delbruck scattering amplitude scales in the form of $(8,)/w)
as W/ wm=>»o0 with @, fixed. Our explicit calculation con-
firms this statement.

2. Calculation of the Delbruck amplitude

Let an incoming photon produce at the point Ej,_ a pair
of virtual particles that is transformed at the point ?g,
into an outgoing photon. In the Purry representation, the cor-
responding amplitude is

M=2ia(d%:d%; e“fq‘“ “’E’}Sdhdh S(w-g+8,)

: : (1)
'T’C (<7 G(Eﬁ.{ s--'zz]ﬁ:.) .é: G(E:E}ilsi)

where 'gi and -Eb; are the photon polarization vectors,

& = € 2 S 3"“ are Dirac matrices, and G (%, %2l¢) is the
electron Green's function in a Coulomb field. As known, the
function G(%y,%alge) has, in the complex plane £ , cuts
along the real axis from -o9 to wm and from wt to o0 ,
which correspond to the continuous spectrum. It has also simp-
le poles, corresponding to a discrete spectrum, in the inter-
val (U,m. ) for an attractive field under consideration. Ac-
cording to the Feynman rules, (&) is equal to G(& +i0)

at € > 0 and ig equal to E(g-10) at €& < 0, The integral
representation for the electron Green's function in a Coulomb
field which is valid in the whole complex plane &€ has been

obtained in ref.[14]. Let us represent the 9 -function in

(1) in the form

8 (w-g,+ B st ] =
AT Ea)= 31?[ W-E,+8,400 W-E+E5-.0

Using the analytical properties of the function (3 , it is
possible to deform the contour of the integration with respect
to E; and €, in (1), in such a way that with the first
term in (2) the integrals with respect to €; and &, encirc-
le the right- and left-hand cuts, respectively, With the se-
cond term in (2), the contours of integration with respect

to E; and €, will encircle regpectively the left-= and
right-hand cuts. The contribution of the discrete gpectrum
can be neglected at wW>»m . Performing the stated transfor-

mation, we obtain
e -
L{mi gi E:'E?E)

M=% S5d%.d%, e Ydades: (5

T [ 1 8C (%% le,)8s SC(Rauley) _ 848G (B, Ralen) &Y Scti‘zi}r-s;}]
W=-€4-E,+ L0 WH+E +Eo- L0

where  3G(£)= G(e+10)-G(g-i0) is the discontinuity of
the Green's function on the cut. Note that each term in the
expression (3) corresponds to theé contribution of the non-co-
varient perturbation theory diagram. Using eq.(19-21) of ref.
[14], we have for the function $C@ at m = 0

8G (LTl leh)=- > Cas EXPEL[TEEﬂLg""iEl('tp'cAc‘l:E.S-'ﬂ[Y]Z'

2 gz o

gf[??ﬂﬂ P R £ k3 520 ctba e ¢ ¥1-R7.- (4)

_szﬁzﬁhi ﬂﬂ yl:j} +[L+EI(‘C‘= ti) (x ,ﬁii' RE)B e G'I;Bl?b(ilﬁz-ﬁi) H] ]sz(g)}

where V(a2 , @i, . B= £ (P@-R, =)
H=EFE (Pf(":"" P:-r{")) "ﬁ’ﬂﬁ”htz f3bs ’ -ﬂﬁi;z:fi,zf'rhg .



In formula (4) 'I,,(4y) are Bessel functions, Pe(x) are Legendre
polynomials, ‘:IH{;;} ﬂ- Haulq) « Let us make the following change
of varisbles: w;zR+t , % =R/t ;s €12R=Pi2 It is easy to
see that the substitution ¥%i,->-%,;, does not change the tra-
ce in (3). Uging this fact, one can show that the sum of two
terms in (3) is egual to the first term in which the integra-
tion over R is extended from -<°¢ fto o ., In consequence,
we have the integral over R

-t e

T ‘dRecs(wia)’ _ i octlel(ReeRe) o o (5)
_imﬁfﬂpi'pai'i-ﬂ w

= = = = =

where o= )7t - }zﬁsz s A,2% Ki2fwo » One can see from
eqs.(5) and (6) that we have the factorization of the integrals
with respect to the variables Py , P; 5 Sis Sz

" Let us consider a typical integral (other integrals can
be calculated quite similarly):

% o c(¥- Plai) 5
N= gaPE_ds e :1“(3%{15) - "
-ipial

-—SdPgdg e ﬂz"(sﬂ.s}(ew + éw)_’ = 2248+ F(h%i)c.’tﬂs - %Y

'Ei..‘l'\l &
where the relation Uz,,(e“ x)= J,y(x) is used. Then, we

change over to the variable Pfs?.s = P and deform the con-
tour of the integration over P in the second term so that
the integral is extended from @ to -o0 (p= p-é."'r). As a
result, we have -

. éiwﬁcgdpﬂzv(zp)ids-g?.S- z.th i[P({ t %)eﬂﬂ + E,EJ.S-Fta.isﬂs]:iz
; (7)

,__“w[ﬁggm;a).wﬂsapnz,(ap)[saguH (:9)- & ehso HYog)

where L= 2,.,24, H‘,P-(f“'-) is the Hankel fuactmn of the first
kind, HEG)= £ Wl 93 (4P a2 5B =1allg
cﬂ%;=(_l:+j.ft)/3 . Calculating the integral over @ in (7)
we have made the change of variable ¢ >»gs+g_ , and have

used the standard definition of the Hankel functions. Taking
the integrals over S, and S, , as in deriving eq.(7), we get
for the amplitude M (8B):

M= Z S 4 N ciﬂ-xg é PolD B 131&_,_[3,_ o +2,(4- %)ﬂ J+

ei jE'E 1o

A

+2 R [ F QR 22505, + s s,)- AFCAG CRTRERT L ®

= 2'H1 Elg %J‘(‘?Jq:;:(g)[ial E_; 4 So + {'i: & ift) Zg c‘ﬁtgl}}}
where

P, ()= ghritany)ic SPdP 12,(2p )H (gp)

(9)
F(f=e R S*‘E T, (2p) HY (gp)

The functions P,(3) and F,(§) are expressed via the hyper-
geometric functions (see the Appendix). The subscripts 1, 2

In Hy o By oo My Az Bey ik denote the dependence of these
quantities on f; and £, , respectively (the definition see
after eq.(4)). The coefficients Z; are

= =

21 = (R E)E8F) + (B Rax R (&% Rar W)+ (44 R[4 N[ ]
Zy (.e'i.:"""i“" HZ)(EE }‘Fl-.f.*f“:z)‘ L'E‘i E—:)(i‘l‘ W z):'

. (10)

Ze = (B30 (€1 W2) -~ (EYR(Eaity) 5

_ = = o | - :
22 = Zi('ﬂ?i :?“'r;l-"i)-, 35~ ‘é‘(zi-} E;)- Eig: y Zs = E" (ﬁi_}_-ﬁij

These coefficients appear as a re 'ult of taking the trace.

Let us discuss now the polari ation properties of the
amplitude. In terms of linear polarizations, by virtue of pa-
rity conservation, the amplitude diifers from zero only if the
polarizations of the incoming and outgoing photons lie both in
the scattering plane ( M, ) or are perpendicular to it ( M, ).
The corresponding polarization vectors are



IINTF

(11)

R B ¥
where gr'-ﬂi;f,. Therefore, the tensor T Y= eies da of the
form

& ) L
T_LJ - %J %

(,11 T i,
4 [12)
: et

(11.1'}"'1111) 'S’

3’
3. l
T -lilz is’(iilz )

For helical amplitudes, the following relations hold: M, = M__=
2(Mar M N2y M= M= K_,T..-Mﬁf__g. K ;:he mi”’aj; pola~
iizitii,ns are defined as ©,,= ( ¥*x Lt i % )/\2 , wher
g = A 11/“!1- 351 B e

Note that the amplitude ™ is & function of 142, , when
a1l the integrals are taken. Therefore, one can use a Very con-
venient trick: let us multiply both sides of eq.(8) by S(ll';z
- g:)a"asr and take the integrals over the angles of unit
vectors 1, end X, , using the relation S5 AR dTe 3
-$)/ g? =1, After that, the integrend for M in eg.(ﬂ)
will depend on Wi and W, only in the combination Wy s
S0, the integration over Wi and W, reducesto the integra-
tion over X : ityitz

Let us consider now the integral

= "Lq‘: -i 5 E':i-i )
g = Scmclla SCul.-8)e <43 i (13)

Using the well-known expansion of & plane wave in spherical

harmonics, we get

e : - (14)
g= 3 (26+1) §o(q0) de(q2) Pe(§) Pe (W)

E=0

where  4o(=) =(%/22)"?  Jess» (=) is the spherical Bessel func-
tion, ¥ is the angle between vectors ﬁ"i and % » 1l Q=
der to take the integral

. | =
s f op i 58 s c(@y - ‘lz)ﬂ) L) (15)
g = 7 (dXd R 8RR e T

one can replace :’*i By -L"@h and Ay By L%"h Tl 2k,
and act on ¢ (13) by the operator obtained. We shall illusira-

f te our futher calculations by the consideration of a typical
integral:

1d i-z i

X982 §(Rufa- ) DY) (16)

:-L.

ol
dt
G=S% 5%

: Al R
where 9D(R)is a function of the variable ¢ =Y(t+i/4)-a? ,
a=Niiat - ewa/t  (see (7).

Making the identical transformation

¢ )= Sde D(\(erarer-o2)S 8= exp§-is(reRitie-Raa) "
g *-uﬂ + ._n-nz P L iy ri t
substituting (17) into (16) and using (13) we get

oo oa , oo w3 (18)
G=22 e+ i)é ‘%de 53({ (Hii’-tf-xl)s %:s; ‘305@1)32[‘5 DIe(SIORP) R (L)
£=0 Q b

™

Let us use now the following formula for a product je(zi)ﬂ;utxz)
(see {17], p.838):

é‘rt(:':i} :.;IQ{IZ )=

i ] 5:.-1.1'3& i 3 ;
‘2',51‘*?1 Pe(y) g %Agﬂ{g)}}daw;(aﬁ),

>
5 .
(19)

5
e =V’Idzi +* fz T 2’1111‘5

With (19), we take the integral over S  and then over «C
We obtain



: .';.m 3 q“‘“ ; ‘ i
G= 52 20 DRUPP(®, wg‘%}? 2)dy PeD|(¢+ - #(8+4-24))(20)
Then we make the transformation such as in eq.(17):

D= S@ dg DR _Snaf: PEL'S[( trdlg)1-200h + '~‘|Ez+i~ng3__|§ hEL)

Substituting (21) into (20) and making a change of the variab-
le t= ef2 , we carry out the integration over W and 4 .
We have

o0 o i oo .
G = 2 RErDR(P Pe(RuR)§3dp D) d2$ds §(32):
(22)

-L3U4- §72) O su- 1))]

erd  LS(4-§¥2) W ‘
I[L E:' ( E-) H : (15(1_31}) + E%:l E

@ and HY  is the Hankel functions of the first
end the second kind, respectively. One can take now the integ-

rel first over 2Z and then over ¥ , using the relations

i
_ ?_.. 42 3. (s2) 3y(st-2) =

Here

UHT\IF':'SJ
M (23)

= Lpx Ve iz
gwi% e Gvuf;@"):‘% = Q,(p+i0)

where (ly are the Legendre functions. The representation of
the Hankel function

2 9y:y.q

has to be used too. Finally, one obtains, for the integral ("7

G = 5 RpPRIT g DR §4(9 (24)

- 10

where 51(3) is

(=4 COMBR- R FR) + UG- Al - 1) (25)

Be(x)= % Puu"—)h-: e
over 7y end W, in the amplitude M (8). The corresponding
integrals are expressed via the Wigner 3-] symbols. In the
same manner, one can obtain the expression for the whole am-
plitude M .

. Then it is easy to take the integrals

As was mentioned above, there are two amplitudes M, and
M, which differ from zero, in terms of linear polarizations.
1t is convenient to consider the combination Mg=(M,+ pM.)/2
and the amplitude M™M,= M, . Let us start w:.th the evaluation
of My . After the integraiion over 5:.; and hz , we obiain
that the coefficients (10) .u eq.(8) for the amplitude My ,

should be replaced by
g 0o
Z; = Egntami)&f&}%;

T { (4+ %) Pe.(x)[@ Jela) Jea) + 3a(@0) (a2 + (241 35!11_».3 :ilezfi;]} "
Je(49)3e(92)

i
- (1) Pel) T

1 " i Yl 5 &{ :
b=t §-0ned B aniua)- T ied s e T3 (et

51Q%1)&:§1i}

i
- (4-2F) Pe(x) 1.9,

§y= - (L-22) P )[a—ﬁ*lji‘i*l + ) e@g, + de(3) iesidla, ]

$e = - (4-2) Pe':x)[ (22)3e@a)/a, = 3e(30) (@) q"]

where =W, » Je@=LicE) 5 U=t »9,:%/4 o« The vep-
resentations for the pro&uctﬂ of Bessel functions in (26) are
given in the Appendix. Then we take the integrals in the se-
quence used in deriving eq.(24) We represent our amplitude

1



Mi,2 as follows

o

__ 8ium? v T |
MesEas ¥ O %S’dﬁ’(%i(s)%z(gjci-

EiIE."-':-I'- E=p

o . (27)
"‘( Fvi(\f) Fu.(8) ';-2 Fuy(§) F“*(‘?)) Co ~

r

i & -H_ ]
(AR~ & Fu@RuE)cs- E A w,00,)

After cumbersome caelculations we obtain for the coefficients
C: in M™M; the following expressions:

Ci=§ Ya[0er)(85-52) + € ( 9%+ 85)- e .5, Putsr/2

C2= § Wa[eler s+ 50 55]- v, gy

(28)
. . 2e(e+d :
Cs = _ﬁs,;_) ¥3 (S5 +€S,) Pel®
Cy =~ [ 3G8; + (26-4)(Sy+ 2%,) + ':‘:c;] ¥5 Pe($)/}

Here é=i‘fth y ?‘—'ii:=m59,,-

« The coefficients Y,
are the integrals over X: i {7,

ti = Can iy P Bitd Bl 5 Y= (s &1
1% 3 3 4 2x) 5 ¥a= (-1) Bi82 ¥4,

i + PP
1'2 =+§€11U'11)P;(I}Bl(x}52(1) ;] Hl.! = (‘i)al Skt EiEz ﬁg

A (29)
KS = _gd"x (i‘xt} ptf_,('-t) Fl'i{x) Bz(l‘)

These coefficients ﬂi'e expressed via the Wigner 3=] aymbols
(see the Appendix). The functions S. appear as a result of
integration over the parameters § and %

(compare with
eqs.(23-25)):

P ~
O1% > B(2-§)Pe + ¥(§-2) Qe »

12

g ,H)E'ﬁ{Z'_.ﬂ[ NL rﬁﬂ-*i + Pt-i'Fh.i] i 1&(?"2)[ Ele_,; i G.Ehi_._:‘}
2 2 b

i-
"To(oe+d) (204  20+3 2+ 9041 | 284 = 2es3

p

(20-1)2e+3)

e b B Pez-Pe  Pe-Peiz |, R27(8-2)Ce
Sumld) "0 ‘?)[(23-1)&%) RTTE lftzm)*]

et &)FEH C(@DPos , Pt PE_;];aﬂ(s--z] e Qe.q _(Ed}ﬂ—ﬁ:} .

Sy 5grq |2e-L 2er3 = 2@erd)] 26+ (261 203

& 'f.'i)t o [ E—ﬁe-i I (E*i)ﬁuL g EGIHI (E*i)am-i:l
S &)lEE-i 25 ]+ e 2)126-1 i TIT

e
D vav] PezBea. ELLE%}

where the Legendre polynomials end P (recall that P =
:i F*.,L'I)lwe_ ) depend on §-= i- 3%’9, , and the Legendre
functions (, depend on P= §/o-41 « Tt is easy to verify that
C; have no singularities at E’ = 2, By virtue of the momen-
sum conservation M(2z=0) = 0 for the case under study A £ O
1t is convenient to gubtract, from the integrand of M in
(27), its value at Z = 0. This gsubtraction removes fictitions
divergences, which cancel after the summation over €, and £ .
In the following such a subtraction is assumed to be made.

Quite similar are the caleculations of the coefficients
in M,

coeR@f Vus+ 2z 0082 + B (850 90)- % A[SSACRLILICE
C2= P 1,3, + i_—??[ﬂqs, v B(sps)- shrﬂ]iir ;71(1-:3)1592 AORER

Ca = g-, ¥[8 82+ 95| Pe(@)

13



Cy +ipi&) %.\?’1"5[(26" 1)S, + S ] Yin[(ad i)Sa."'g.e]

Ju 2t [ (2¢-1)(35+5c) + ]}

The coefficients YG-_U. are defined by

i i
Yo = §ebx (4-2)Pe(x) ByG) Ba) , ¥y = (dx x(U-2)Petx)Byx)Bo(x)

i+€z+E L+ex+€

¥g = (-4) i€ ¥g 5 ¥g=¢41) €18 ¥y >

(32)

Vig= S&x (4-x2) Pe(x) AsBy o Yiy= de(i o) Pe) A4 B,

I% is seen that the amplitude ™M (27) has a scaling form
M= §5(6.)/wa a8 W/ o with @, fixed, i.e. is in
agreement with the result of ref.[ﬁ]

Let us discuss the asymptotic form of ™My and M, at
0,41 (A« ). In this case the main contribution to the
amplitudes comes from the region € ~€,~¢ ~ . . 9~ Qs
ltx ~ Q% Su. one can neglect (Za)® in the quantities Vi,2 =
131}2 - (223 « After that one can takes the sum over b; and
L2 Dbefore the integration over i (29), (32). This sum~
mation can be performed, using the formulae in the Appendix of

ref.[13]. Then, replacing the Legendre polynomials by its asym-
ptotics we obtain

evd
" (-1)
gq‘g':?{; ﬂlﬂz(ﬂ}

where 4=€§ ., We have also Pe($) = J.(28,) and Pelfx) ==

(-1)% 9,(e®) , where X:z-cosQ=-14+@Y2. Substituting these
asymptotics into (27) we see that (-4 )% disappears and we
can replace the summation over € by integration. Performing
this integration and then taking the integral over § and

Pi,2 (see the definitions of P, and F, (9)), we obtain

14

ultimately for the small-angle asymptotics:

L ok 2% 2o 3 2\ _
M1 == 505 L Sttenen (1 2(247) i}

(34)

M;,: My * L-E:i-

1(2432[24, T ¥'(1- Lﬁ)-i] |

where W(x)= d— Bn M), Wlix)= A""r"(x) . Note that My=> M,, as

= 1. Dur result (34) co:l.ncldes with the results of refs.
[9], [12-13]. The asymptotics (34) are the imaginary quantiti-
es, but at Q,~ 1 the real parts of the amplitudes (27) are
not equal to zero.

3. DISCUSSION

Eqs.(27), (28) and (31) solve, in generel form, the prob-
lem of calculation of high-energy Delbruck amplitude at large
angles. One should bear in mind that in scatterlng by atoms
the point-charge approximation is valid if A<<g', where R
is the radius of the nucleus. Then, one has to lmow the cor-
rections of order (mfm)z to determine «J for which our re-
sults are spplicable. This problem is very difficult, but it
can be solved using the technology of the present paper. We
hope that the appropriate photon energy « is not very high.

The problem of numerical calculations with the use of
eq.(27) end comparison with the experimental data is an in-
dependent one. Note that the terms with a small €y and €
give the contribution to the emplitude at @~ 1. We will
discuss this problem elsewhere. L

We would like to thenk V.N.Baier for his interest in
this work.
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APPENDIX

In the Appendix we discuss the properties of the functions
introduced in the text. Let us consider the functions (8
and F,(§) (see (9)). These functions are expressed via the
hypergeometric functions, If P>2 ,we have

e _1;_”1 M{d+vepmi2) MA+v-pM) y K. a4,
¢"{3)+2w(fz) M(2v+1) Frvrty siev-§ (sﬁi} m‘]
YV T rRR) T Ki2) s oo
Fu() == = (&) mr e P H2,v-Ma; ey, oy

If P<2 , the formulae for Py, and F, are the analytical
continuacion of (A.1). The functlon Fv(§) has no singularities
at f‘ = 2: F“(E}"-L[Eﬂ(ﬁ Jf'fq}] :-yfgﬁg (recall that
vz gy ). The function <¢p,(§) has a singularity as
5= E. However, the coefficients at the dlvergent terms do
not depend on Z

i
Py = EW v+ € [En(?‘fq i+tD) o ‘V(iﬂH H2)+
(A.2)

+ WA+ v- B2) - W) -W(z)]i

We give now the formulae for the products of spherical
Bessel functinns, which are needed for the calculations, like
in the derivation of Eq.(EE} Using (19) one can obtain that

jti‘i‘d) jz(‘lz} _ oea

M- 3y + Sdg Pe(y) 2 Sdi(i+£} cox 2 %S)
i7%2

; ; . , 1 {
j;(qi} jg{q_,_)fq'ﬂ 5*4%} 1e(45)/q =+ %._31 dg Pe(y) " g,a 2(4-2?)cos(z2e's)

:irf.(“'h.} ‘jz(‘lz)f(q.z o j{:(‘h} 'jgfq,i}fq’i= - % {_{1+ i.-’{,-*} .

; . (A.3)
- §dy Pe(y) Sdz (1-2%) eos (2 2es)
-J_ i~

Here 4,=%4 , q,=%¢/+ , %= '\‘{14’ 1142 - 23 .
To obtain the formula for the product ‘i:("ri}jc{%} y one has

16

-
-

B i

e, ™ e o e e e

to perform the integration by parts over B (see (18). Then,
with the use of the second relation in (A.3) we get that this
product may be replaced by

: (A-4)
e o eet) ] . il (@) §
fea)dut> ] § -1- GE2 |« M s M)

Let us calculate now the coefficients ¥. (see (29) and
(32)). As mentioned above, these quantities are expressed vis
the Wigner 3-~j symbols. We use the recursion relations for the

Legendre polynomials (see e.g. [1'?])
(4+3) & (Pel) - Pes () = €(Pe)+ Pe_y()

.5
VIS & (P~ Pey) = Po @) - PhyGo) e

P:-.(IJ = é- [ PEH(:r.) + E(EH} Py (x)]

and the following formula (see [18], p.63)

iyl W m, m\2(Q By B7\[L €1 € (R.6)
SJ:::: Pg_ ('x) Ph (=) PE ()= 2(“11“’2;‘:"1!) {0 0 0)(—m Wiy mz)

i Lo
where P':(x)are the associated Legendre polynomisls, Q¢ =
=(i'.+lm1)!,!"{e+|ml}l - The signs of wva , w; and m, are
chosen so that mM=w;+rwm, . Let

Se=Pet Peos 53¢ Pe- Py '{!e* e, Pg.;, ) 32’ Pt c 1 (R.7)

With the help of (R.5) we have
Y= % Ed‘x Pg('IJ[Ei €2 o, () $¢ (2] + ati(x} 3:;(":’] .

i
%o= 5 397 96 G0 Pl () + ecers) Pers@]

8
Ei'*E] +e+4 {A }

€18 ¥1 F*i =(-1) .8 K2

e +E 4R

¥3= (1)

7
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