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ABSTRACT

This paper in the first in the series ol works, applying
the method of collective coordinates to the description
of ensemble ol interacting topological fluctuations, the
so called «instanton liquids. We [irst present the re-
sults of the semiclassical theory of instantons and
then proceed to a summary of known phenomenologi-
cal facts, both coming from «real» experiments (for
QCD) and from the lattice data (for the SU(2) glu-
odynamics). Then we describe the main ideas of the
collective coordinate method (in the case when such
coordinates are no' based on a symmetry) and derive
the main formulae for the resulting effective theory in
the semiclassical approximation.
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1. INTRODUCTION

Nonabelian gauge fields are the main ingredient of the theories,
by means of which we hope to understand strong, weak and electro-
magnetic interactions (and may be even their unification). Although
the famous «asymptotic freedom» has allowed many useful calcula-
tions at the perturbative level, the nonperturbative phenomena are
much more complicated, and, in spite of multiple efiorts, we are
still far from their understanding.

Several years ago much excitement was raised by first succes-
sful numerical experiments [l] based on the lattice formulation of
these theories [2]. Their attractive feature is the fact that informa-
tion about the gauge vacuum and the lowest excitations is obtained
directly from the fiist principles of the theory. During these years
many works has been made in this direction, which have indeed
provided a lot of interesting information.

And nevertheless, the main goals of this programm are still very
far from being reached. First ol all, experience have shown that the
nonabelian gauge theories in four dimensions are indeed too dif-
ficult problem for such a straightiorward approach. Even considera-
tion of the simplest quantum mechanical examples (we consider one
of them in details in paper IV of this series) clearly demonstrates,
that in order to obtain an accurate description of the ground state
wave function, the correlation functions etc. the number of lattice
sites (per dimension) should be taken at least of the order of lew
hundreds, or even thousends. Obviously, it is impossible to do in
four dimensions with available computers.

Moreover, experimental data indicate that in QCD there exist

3



some nontrivial dependence of the behaviour of the correlation func-
tion on the quantum numbers of the «probes» used [3]. In particu-
lar, in the spin-zero channels the violation of the perturhative pre-
dictions takes place already at distances of the order of 1/20 fermi!
It is possible only if the nonperturbative fields are very inhomogene-
ous, possessing nontrivial hierarhy of intrinsic scales [4]. Obviously
these facts make straightiorward numerical experiments on the lat-
tice to be especially difficult.

Another problem is even deeper. Imagine that in some future all
technical limitations are overcomed and some supercomputer will
reproduce the exact values of hadronic masses etc. But we need not
only the correct numbers, but rather some insight into the problem,
which can only be reached by a development of some approximate
but understandable models. The present series of papers is an at-
tempt of this kind, in which the gauge field vacuum is approxmated
by the «instanton liquid».

The main disadvantage of the lattice parametrization of the
fields is the necessity to use too many parameters. (In practice,
people use up to a million of them per one configuration!) Reducti-
on in their number is badly needed, but this is possible only ii one
manage to select the minority of the «most important» coordinates
from the majority of the «noninteresting» ones.

One known possibility is to use the renormalization group ap-
proach, based on the «smoothed fields» (or «block spins»). It pro-
ved to be useful in the perturbative context, as well as in the theory
of critical phenomena. However, in both these problems the fluctua-
tions are similar at all scales, therefore the effective theory for the
«smoothed fields» differs with the original one only in small varia-
tions of the coupling constants. It is impossible to apply this method
if the underlying physics is rapidly changes at some fixed scale, as
it takes place for the gauge theories under consideration.

In this series of works we study another approach (also known
in many physical contexts) based on the introduction of some «col-
lective coordinatess for the gauge fields. For example, let me men-
tion that the field in magnetics can be described in terms of the do-
main wall positions; the deformation in solids can be described by
the positions of dislocations; the tow velocity in liquids can be re-
constructed from the positions of the vortex lines, etc. As a more
nontiivial example let me mention collective coordinates instroduced
for the description of the solitons (in fact, being the «close rela-
tives» to our instantons).
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Instanton-type fluctuations take place in various places in (Euc-
lidean) space-time, which are in fact correlated due to mutial inte-
raction. Therefore, our effective theory reminds that of some liquid.
Although for such models it is somewhat more difficult to write the
efficient codes, but, comparing them with the lattice studies one can
see that the economy in the number of parameters is enormous. In-
deed, as we demonstrate in next papers of this series, for the des-
cription of the «instanton liquid» one needs the number ol parame-
ters per fixed space-time volume by the factor 10*—10" smaller
than it is used in current lattice works. That is why, with a modest
computer we are able to study many phenomena which remains
beyond reach of modern lattice calculations.’

One more comment is that although in the present series of
works we concentrate mainly on the topological fluctuations, in
principle the methods developed can be used in more general con-
text a- well. For example, even in the simplest quantum mechanical
problei.: (e.g. that to be considered in 1V), apart of instantons (the
tunneliny events) there exist also other strong filuctuations (the
«fluctonss), being events in which the particle spontaneously goes
far into tie classically forbidden region, and we show that they can
indeed be studied quite similarly to instantons.

This work is structured as follows. It starts with a very brief
summa 'y of the present stage of the instanton physics (a detailed
review can be found e.g. in Ref. [5]) in which the main formulae
(Sect. 2), phenomenological facts (Sect. 3, 4) and the necessary re-
ferences are presented. We turn to our own programm in sections
5—7, considering the general collective coordinate method in the
case when these coordinates are not specified by some exact
symmetry. Finally, in section 8 we outline the content of the subse-
quent works of this series.

2. INSTANTON DENSITY IN DILUTE GAS APPROXIMATION

The topologically nontrivial classical configurations of the non-
abealian gauge fields, «pseudoparticles» (below PPs) or instantons
and anti-instantons, were discovered in the classical paper [6] by
Belavin, Polyakov, Schwartz and Tyupkin in 1975. It was immedea-
tely recognized that this discovery has opened completely new per-
spectives in the gauge field theory, showing that the barriers sepa-
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rating the topologically distinct sets ol gauge fields, are penetrable.
Instanton is the path connecting the topologically (jhstm-;:t se+{:t0rs,
possessing the minimal possible action. Therefore it is a solution of
the Yang— Mills equation. |

Throughout this work we use it in the so called singular gauge

Ay =21, %, 0* /(" +07)] (1)

where 1 are the so called t"Hooft symbols. (For anti-instantons one
" should put 7 instead of n.) Our field normalization is such that the
field strength and the gauge action are as follows

a b b
Go =0, As — 3, A+ ALAL,

1 o
S=— 7 | d'x (G )’ (2)

The semiclassical theory of instantons was developed in the clas-
sical paper by G. t'Hooft [7]. If one considers strong fl_uctuatinns
of this kind, posessing strong field Gj,~p~? in the region of the
small size p, he may be sure that it happens rarely and therefore it
is possible to ignore all other fluctuations of such kind and to con-
sider this fluctuation placed in the «perturbative» vacuum. Such ap-
proach, known as the «dilute gas approximation» (DGA), leads to
the following expression for the PP density (instantons and
anti-instantons together):

Lol —@cy /BN (5)"" X
X exp |—PB(p)+(2N.—b’/2b) (b’ /2b) In Blp)/Blp)] (1 +0(1/B)), (3)

where

4.66exp(—1.68N,) .
A} Ne— DN (Ne—2)!
def

Blp) =b In(1/pApy).

Cy. =

The particular definition of lambda parameter here is made via
the Pauli-Villars regularization method (for other definitions one
should change the coefficient C, ). Note also that in (3) we have in-
cluded the two-loop effects in the effective charge (as it was sug-
gested in [8], following [9]). The constants b, b’ here are the
well-known coefficients of the Gell-Mann-Low function
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b= Ne— = Nelj Ff (4)

with N, N; being the number of colors and light quark flavors, res-

pectively.

Expression (3) is valid in the semiclassical domain, where the
action per pseudoparticle p(p) >1. One may observe that, extrapo-
lating this expression literally to small g, it leads to a peak in the
distribution over radii and then even vanishes at B—0. Uniortuna-
tely, this peak is in the region where one cannot trust expression (3).
Therefore, the integral density (and other integral effects) cannot
be estimated in dilute gas approximation. Multiple attempts to use
similar expressions for the evaluation of some observable effects
(e.g. see [10]) have failed, and it was finally realized that in order
to do so one has to go beyond this approximation and to face the
question about the physical nature of the effects which may cut off
the integral over p at large p.

Logically speaking there are two candidates: (i) mutial repul-
sive interaction of the PPs; (ii) «melting» of PPs due to large qu-
antum fluctuations. Below we are going to show that in fact the
former effect dominates, stabilizing the instanton density at the po-
int where quantum corrections are still small and the semiclassical
approach is quite reasonable.

3. PHENOMENOLOGY OF THE «<INSTANTON LIQUID»

Soon after discovery ol the instantons it was realized that they
may be responsible for such important effects as the solution of the
Weinberg U(1) problem [7], the spontaneous breaking of the chiral
SU(N;) symmetry [10], etc. (In other words, it was susspected that
it was the instanton-induced forces between quarks which make the
n’ meson so heavy and the pion so light). Unfortunately, due to the
shortcomings of the «dilute gas approximations it was not possible
to make any theoretical estimates of the magnitude of these effects,
thus these suspicions have remained to be a plausible although un-
proved hypothesis.

New page in the development of the instanton physics was open
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with the development of the so called «QCD sum rules» [11], con-
necting the correlation function of various operators with hadronic
phenomenology. The value of the so called «gluonic condensate» has
set the scale for the nonperturbative fields. As a result, one had the
following phenomenological upper limit on the PP density

( G?Y ~ (197 MeV)'. (5)

fpp (N g+ N_) V<fpe = 327

Another important number came from the physics of the n’ me-
son, it is the value of the so called «topological susceptibility» [12]
(in fact, in the world without light quarks):

Xeop =lim (N4 —N_)?)/V=(180—190 MeV)' (6)

-

where N, and N_ is the number of instantons and anti-instantons
in the (space-time) volume V considered.

Generally speaking, this quantity depends both on the PP den-
sity in vacuum and on the correlations of their positions in space-
time. In particular, in the simplest case of independent Poisson dis-
" tribution over N, and N_ one can see that this quantity is just
equal to the PP density because :

(N4 —=N_)y)=(N++N-). (7)

Thus it is tempting to asciibe two independent experimental num-
bers (5, 6) to instantons, taking only one free parameter, the PP
density of the order of 1 fm™".

(It was noticed by Novikov et al [3] that the dilute instanton
gas with its Poisson distribution over N4, N_ cannot be the true
picture, as it contradicts to the low rnergy theorem. Indeed, ascri-
bing all nonperturbative field to inccantons, one finds from it that
the iluctuations in total PP number snould have statistics different
irom the Poisson one because this theorem leads under these as-
sumptions to

(N4 4+ NPy — (Nt +N_Y*=@/b){ N+ +N-) (8)

and not just to ( Ny 4+ N_). However, (8) follows from very gene-
ral arguments related to the correct renorminvariant dependence of
the calculated vacuum energy, so it should hold in any selconsistent
model. In particular, as it was shown by Dyakonov and Petrov [9],
(8) does take place for their approximate theory of the «instanton
liquids.)
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The most important conclusion drown by Novikov et al [3] from
the analysis of the QCD sum rules was the following one: in the
spin-zero channels data indicate appearence ol some nonperturbative
corrections already al the momentum transier ol the order ol
Q?=20 GeV?. Moreover, it seemed impossible to describe them by
usual operator-product-expansion formulae. It means that the QCD
vacuum does contain strong nonpe-turbative fields!

[n a series oi papers [4] | have attempted to it all these data
by some simple instanton-based model. It has just two free parame-
ters, the PP densitv and the typical instanton radius. Not going into
details I may just summarize that a lot oi phenomenological facts
were found to agree with their values -

p~03im, npp~1 im™*, (9)
i so, one may make four important observations:
(i) the vacuum is reasonably dilute:
nppp' &1 ; - (10)
(ii) instantons are nearly classical:

g:‘.qﬁ):faln(_i )~m;-;.>1; (11)

P Spy

(iii) interaction does not spoil instantons
AB™ ~2 < Bif): (12)

(iv) interaction is not negligible, so we have some «liquid» rather
than a dilute gas:

exp [AB™ > 1. (13)

It is clear that this «instanton liquid» picture of the QCD vacu-
um, being a phenomenological observation, cannot shed any light on
the gauge theories other than QCD. However, later studies made by
Dvakonov and Petrov [9] (their variational approach is discussed
below) have lead to essentially the same vacuum properties for
quarkless gauge theories as well.

4, INSTANTONS ON THE LATTICE

The question of whether the ensemble of the gauge flields gene-
rated on the lattice does or does not contain essential fraction of

9



the topologically nontrivial fluctuations was raized from the first
days of these studies, but it turns out not so easy to answer it.
Only rather recent studies have resulted in more or less delinite
conclusions on this issue. We first say some words on the «prob-
lems» and then come to the results.

Generally speaking, any studies of the topological effects on the
lattice is rather tricky bisiness because in this case the groundstone
of the topology is lost: all discretized configurations can be connec-
ted by a continuous transformations. As a result, all definitions ol
the topological charge on the lattice are some conventions, counting
only the fluctuatons of the size much larger than the lattice spa-
cing. (We are going to discuss this point in IV in details, using as
a toy models the quantum-mechanical double-well system). As phe-
nnmenology suggest the typical instanton size in QCD to be around
0.3 fm, while the typical lattices spacing used is about
0.15—0.20 fm, such cut oif may produce significant systematical er-
rors.

Another problem (common to all lattice studies) is related to
matching of the unites used. In principle, there is no question about
the relation between the lattice parameter \, (defined in terms of
the lattice spacing and the bare lattice coupling g) and JApy used
through this work. In particular, for the simplest SU(2) gauge the-
ory without fermions (for which most of the studies are made) the
calculations of various physical effects can be compared for both re-
gularizations, with the well-known result

iﬂ.pV:Zl.ﬁl'J’\L. (14}

However, it is not quite clear whether the bare lattice coupling g
is indeed small enough, so that all diagrams but the two-loop ones
(used in the derivation of (14)) can indeed be neglected. The lattice
data themselves demonstrate, that the so called «asymptotic sca-
ling» is not yet very accurate. This means that so far the ob:ervab-
les do depend not only on A, (as they asymptotically should do),
but on other details of the «numerical experiments» as well. There-
iore. one should use «exact» expressions like (14) only keeping in
mind that some systematic corrections to them are possible.

As it was mentioned above, the upper bound on the PP density
iollows from the value of the nonperturbative gluonic condensate.
for the SU(2) theory the best statistical accuracy (~5%) was re-
ported by Ishikawa et al. [13]:
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(G?) ~8-10° A} (15)

which leads to
fpp < fmax = 1,3+ 10° A} . (16)

However. the lattice definition of the «nonperturbative» fields is
based on the subtraction of large «perturbative» ones, and the
systematic errors due to them are much larger than the given sta-
tistical errors. And nevertheless, one may hope that (15) holds at
least up to the factor of two.

First attempts to measure net topological charge Q the gauge
field configurations in the box [14] have lo.a to surprisingly small
values of the topological susceplibility

Yiop = 2- 10° AL . (17)

However, later other definitions of the topological charge and
essentially larger lattices have lead to much larger y,,. In particu-
lar, the definition suggested by P. Woit was used in the experiment
made by the Prinston group [15] with the result:

meZIDEI\i- (13]

Using another definition of @ due to Lusher, DESY group [16]
has found somewhat larger value  (

Yiop = 2.6 10° A} . (19)

Both results (18, 19) demonstrate reasonably accurate scaling,
so their descrepancy in absolute magnitude is presumably due to
different cut oif implied by these two definitions of 7. Thus, it is a
measure of the systematic errors involved, showing that we know
the order of magnitude of y,,, at best.

New chapter in the «hunt for instantons» was connected with
the aplication of the «cooling» method [17]. Starting with a confi-
guration from the ensemble, the programm minimizes the action till
some minimum is reached. It may be either the trivial one (zero
field). or that posessing the nonzero topological chage. These mini-
ma have passed a number of tests, showing that the objects obser-
ved are indeed instantons: they do have about the needed action,
exactly one fermion zero mode, etc. Thus, now we have also some
clear lower bound for the PP density:
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fpp = My ~2-1 [].1 ‘t"i x : ‘.201

It is still much lower than the upper bound (16), but it clearly

shows that th_ early estimates (17) were wrong.

Moreover, recent data reported by the ITEP group [I18] show
clear evidences that the «survived- instantons do have radii about
1/3 of the interparticle spacing R, and even strong evidvnces for the
PP repulsion, from the distribution over R.

Of course, one may well criticize this method too. Say, these in-
stantons are not really the action minimum if the standard Wilson
action is used, therefore they have «finite liletimes». Also, one may
argue that close instanton—anti-instanton (and even instan-
ton — instanton) pairs most probably annihilate during the minimiza-
tion process, so the picture seen «a posteriori» is strongly distorted.

Summarizing this section we may say that although the real ac-
curacy of the particular numbers mentioned is not yet good enough
(and even is not yet well understood), the steady progress is obser-
ved. The numbers for the topological succeptibility have changed by
two orders of magnitude and are definitely convergent. It was
shown, that what is seen is, at least somet mes, the true instantons,
possessing the continuous limit, and no' just some topologically
nontrivial lattice «defects». And what is the most important: due to
these works the lattice-oriented people are becaming convinced, that
the topological phenomena are indeed the important ingredients of
the gauge field vacuum, providing significant fraction (or may be
even the main part) of the nonperturbative fields.

5. THE GENERAL IDEA OF THE COLLECTIVE COORDINATE METHOD
AND THE VARIATIONAL APPROACH

The main technical problems ol any quantum field theory deal
with evaluation of some statistical sum Z over all configurations of
the system. Generally speaking, the collective coordinate method is
just a selection of some subset of «interesting» variables
ai(i=1, N) out of the (infinite) set of the rest («noninteresting»)
ones. The standard formal trick used is the incorporation of the
Faddeev — Popov unite factor into the statistical sum:

12

i

N

.'"I'r
1= {]] da (A, a) || 8iA, a)). (21)

f==1 i=1|

Here .’,—{Aﬁ[x},a} are N «conditions» and /(A(x), a) is the corres-

-ponding Jacobian. Taking the integration over a; apart and perior-

ming [irst integration over all other variables, one obtains thel 50
called «effective theory» expressed in terms ol the collective variab-

les a:

P Iﬂil-
Zofj = E H dai exp = Sff”a” 1

i==|

N
exp(— S(@)= | DA exp(— SlA)l}-/ (A.a) || Blud.@).  (22)

Applications of this method are well known in th:_e simplest case,
in which the definition of all collective variables is gwerned' by
some exact symmetry. For example, if one has found one single-i}ns-
tanton solution. he may well construct the whole set of them using
translational, rotational and dilatational invariance of the classical
Yang — Mills theory. (For the SU(2) color group it leads to some
«plane» in the configuration space, parametrized by 8 parameters.)
For all directions (again, in the configuration space) transve_rse: to
this plane the action increases, thus the integrand‘m i!lE sta}lstrcql
sum is peaked at this plane, which is the basis of IHD{JTT. 5emu_:la.351-
cal theory. The 8-dimensional integral over this plane is left intact:
the action is constant on it, so the sum is proportional to its volume.

This lesson should teach us, that the basis for any similar calcu-
lation should be some n-dimensional manifold, to be called Fhf.‘: «an-
satz plane» below, which is able to absorbe the non-gaussian part
of the functional integral. However, generally speaking it 18 not ne-
cessary to hold the action constant on it. What we EL‘.t‘UHH}F want t::}
do is to integrate safely over the «transverse» coordmatea,‘rema!-
ning ‘ntegration over the collective coordintes for separate m_vestl—
gatinn. Therefore, we have first face the question whether the integ-
rand is indeed peaked in the transverse directions. 20 |

In the present series of papers we consider superpositions oi in-
stantons and anti-instantons, and these configurations do not pos-
sess any exact symmetries: the action in general depends nqtrwnaﬂy
on all coordinates. Moreover, in this case there are no classical con-
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figurations available: for any of them the first variation of the
action, the current, is nonzero
68

o oyl b o
j“{x}z ﬁ_AEE;i l_4=ﬂallsa[2: lkD]-'— Gpv.} A — Aonsalz ;&l::lF (23]

Therefore, writing the field potential as the sum of the «ansatz»
and the «fluctuating» nart

Al (x)=Agy ™ () + bau (). (24)

one generally has the so called linear term in the action expansion,
S(A)=S(A"?)+ (d*x ju(x) bay(x)+ ... (25)

which «shifts» the mean values of A away [rom our ansatz.
Dyakonov and Petrov [9] have made quite a ra:!’ .l step, omit-
ting this «linear term» (25). The physical idea behind it can be ex-
plained as follows. Suppose one has added some external current
i (x) which exactly compensates the linear term, forcing the integ-
rand to have its maximum just at our ansatz. However, this exter-
nal current makes some work on the system, therefore ils energy
becomes greater than that in the unperturbed vacuum:
)> e (] =0)=4eu. (26)

LX{f

e (f

This inequality (which they have regorously proved using the Feyn-

man variational principle) is the essence ol their work: they have

suggested the variational approach to the problem. Indeed, taking

better ansatz one find smaller current and, respectively, lower
E“:trx!}.

However, this interesting work has left a lot of questions open.

What ansatz is the best possible one, and how to find it? Is it pos-

sible, even in principle, to get rid of the current completely, so that

the estimated quantity e(j*') be arbitrarily close to ¢,,?

6. WHAT ANSATZ IS THE BEST?

Imagine the action distribution in the configuration space (we
remind that its point is some flield configuration A(x)) for a set of
instantons and anti-instantons. The resulting «landscape» is similar
to that in some mountain country, it posesses a series of «peaks»
(extremely unprobable conligurations) separated by a complicated

14

system of deep «valleys». If the PPs are well separated and nearly
noninteracting, the action on the valley bottoms is nearly constant.
[f they approach each other, the slopes of the valleys increases, but
it still may be much smaller on the bottoms than on the «wallsy.

Such structure suggests the idea of natural separation of the
«longitudinal» coordinates along the valleys from the «iransverse»
ones mentioned above. Indeed, everybody who once was in the mo-
untains knows that there exist some outstanding line in each valley:
it is the «streamline» on its bottom. Formally speaking it is the line
which is the minimum in the transverse directions. Another its defi-
nition: it is the line at which direction of the «driving force» (the
first derivative) is tangent to it.

In the gauge theory this «driving force» is in fact the «current»
j. It can be decomposed into two parts, the longitudinal and the
transverse one, according to the chosen ansatz plane. Thus, the best
ansatz is that which has the properties of the «streamline», for all
point on this plane the current should be «tangent» to it, or in other
words,

jon (x)=0. (27)

This is the answer to the questiones posed at the end oi the pre-
ceeding section. Indeed, the current is nonzero everywhere, but _its
longitudinal part of the current is not dangerous for us, as the in-
tegration over the collective variables is presumably made accura-
tely. I the transverse part is absent, the integration over transverse
coordinates (leading to our effective action) can be made without
any external currents etc.

Unfortunately, even for the simplest toy models it is not easy to
find such «streamline» configurations analytically (see e. g. [19]).
There exist simple numerical method suggested by myself [20] (see
its discussion and application in paper 1V of this series). The idea is
quite simple: one should just start with two well separated pseudo-
particles and follow the direction of the «driving force», which leads
to the «streamline» and then «downstreams.

However, for such a complicated system as the 4-dimensional
gauge field the «streamline» configurations are not vet explicitely
found and, as a first step, in the subsequent papers we approach
this problem in the variational way, considering various trial func-
tions which approximately describe this «streamline». The quantity
which we are going to minimize is now clear, it is j*. Thus, compa-
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ring various trial functions we calculate the current and make - (so
far rather crude) estimates of the corrections induced by it.

7. THE SEMICLASSICAL EFFECTIVE THEORY

In this section we are going to outline the efective theory which
corresponds to gaussian (semiclassical) approximation. This is pos-
sible if the field fluctuates around our ansatz plane, and the quan-
tum fluctuations are not too strong. All steps are in fact quite stan-
dard. First, one has to expand the action up to the second order in
the fluctuating field

S(A)=S(A" ")+ | d'x jy(x) bayx)+

1 .
+"2" S buu [.x} Dup,ﬁv (X, y,:l bbv {yj dxdg'l" {28:'

and then integrate over the «transverse» coordinates in the gaussian
approximation. I it is possible, the simbolic result for the effective
action can be written as follows

exp[—S{,H}=ng¢[.‘:j}e'5= e
=exp |., Bt Sn’ar; 2% Sc'urr{mf S Srrnaum.’rr e Sltlcohiﬂr!} : {29}

(where { Db, ... means{ Db [| 8(1))J...).

Let us discuss four terms of the resulting effective action sub-
sequently. The first «classical» one is just the action distribution in
the ansatz plane

S;‘Ias {ﬂ.:'.J= S|Au"w”|;x, a,]i ; {30]

Obviously'it is the simplest one, and it is quite easy to deal with
it, provided the ansatz is defined. However, it is the main part of
the effective action only il its «current part»

SCH.I'TE."H iy

LF i o

. S;HL (%) Ogpv 1%, Y) ;hL () dx dy (31)
is reasonably small compare. to it. Note, that this term is formally
of the same magnitude as the «classical» term (in pertubative lan-
guage it corresponds to the «zero loop» order), even ii the ansatz
field is strong enough to justify applications of the gaussian appro-
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«imation. The sum ofi (30,31) is in this case ansatz independent,
and the relative role of them depends on how close the ansatz used
is o the «streamline».

The third «quantum» term in this action

S a)es —;— log det (D7) (32)

contains the functional determinant of the diiierential Dperatnvr 54
Such determinant was explicitely found for the instanton solution by
t'Hooft [7]. which can be used as a reference point for estimates of

its magnitude. :
Finally, there is the forth structure in the effective action, rela-

ted with the «transverse» projectors and the corresponding jacobian
S!amfriun L |Dg.|"{.rqﬂnmlz, a_}. [33}

The most natural way to write our conditions / is to project
them «transversly». This means that the Iluctuating part of the field
b, (x) is orthogonal to all tangent vectors V' of the ansatz plane

ap
fi= | d'x by(x) Vau(x). (34)

For the non-gauge systems these vectors can be obtained by a difie-
renciation of the ansatz, but for the gauge one have also take care
about the projector P,,.. which garantees that b is not just pure
gauge transformation

(i ﬂA{u.m.st x’ 'ﬂ-l]
VLL {JCJN gauge _-_F_I'_'I‘&L_ [35}

In particular, it is most convenient to take both by, (%) and Ve, (x)
satisfying the background gauge condition
D" b, (x)=0, D Vi (x11=0. (36)

The Jacobian in general can be written as

{ dx Vo) Prauge Van(%)

7 T ovi/2 (37)
{E dx H:p.(x} Pgnuge Vup(x}} .

J =det

In the semiclassical context it should be taken at the ansatz
plane. Again, as for the «quantum» part of the efiective action, in
the first ap ~oximation it may be taken irom the known expressions
for the individual PPs.
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7. SUMMARY AND OUTLINE OF THE SUBSEQUENT PAPERS

We have shown that at the moment all necessary ingredients for
the creation ol the theory of the topological phenomena in gauge
theories are ready. Indeed, on one hand there is rather detailed pic-
ture ol the «instanton liquid» [4], which is now supported by rather
impressive set of phenomenological observations, both coming from
«real» and lattice numerical experiments. On the other hand, they
are in agreement with the first results of the variational approach
due to Dyakonov and Petrov [9]. And the third, now there is much
better understanding oi how to find better trial functions, how one
should naturally introduce collective variables and how to derive
the effective theory.

To put it into practice is the main aim of this series ol papers.
Of course, practical realization of this programm needs a lot of
work, many methodical problems should be solved etc., therefore we
naturally proceed from the simpler theories to more realistic ones.
In paper Il we consider the SU(2) gluodynamics, being the sim-
plest non-abelian gauge theory. We compare various trial functions,
derive the interaction law for the pseudoparticles, perform numeri-
cal simulation of the resulting statistical mechanics of the «instan-
ton liquid» and end up with some set of physical results, ranging
from the integral instanton density to rather delicate measurements
of the correlation functions.

The difficulty of the problem increases enormously when light
quarks are involved, for they generate specific interaction between
the PPs. Our studies of these phenomena are collected in the paper
[II. The central question discussed in it is whether the instantons do
or do not generate the so called «quark condensate», manifasting
spontaneous chiral symmetry breaking, and our answer to it is deli-
nitely positive. We show, that in the presence ol light quarks the
«instanton liquid» consists of essentially two components, the «poly-
mer», creating the condensate all over the space, and the separate
«molecules». Their relative role depends nontrivially on the number
of light quark flavors.

The paper IV is devoted to much simpler «toy model», a quan-
tum-mechanical motion in a double-well potential. In this case it is
possible to obtain both very accurate «lattice» data for the ensemble
of the paths, and to push our programm significantly further. The
path containing tunneling events forth and bac! also can be consi-
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dered as a one-dimentional «liquid of kinks», and although in this
case their mutial interaction is much less important, its studies
turns to be very instructive.
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