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ABSTRACT

We study the conditions of the mutual distinction of

the structures of the 12-atoms close —packed clusters

(FCC, HCP, icosahedr) in the presence of thermal

fluctuations via the analysis of the distribution functi-

on in the space of structural invariants. It is shown

that the close-packed types of local structure remain
distinct ‘well above the melting point.
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I. The concept of the local crystal-order in melts makes it pos-
sible to understand and to study many of phenomena connected
with the melting and the melts [l —4]. No matter what the local
order in -melts is, it manfests itself in the presence of the thermal
fluctuations. To characterize these fluctuations one defines the Lin-
deman ratio Li, Li=E/a, where E is the mean-square deviation of
the thermal displacements of atoms from their supposed ideal positi-
ons and a denotes the interatomic distance. In the melting point
Li=Li,=0.07—0.17 [5]. The aim of this paper is to study the con-
ditions of the mutual distinction of some patterns of the local struc-
ture of the condensed matter in the presence of the thermal fluctua-
tions of the atoms. These patterns are the candidates for the struc-
tural units of the simple liqulds.

In order to study the configurations of .the atoms of the melt
one has to treat each of the «virtuals clusters, constituting the part
of the configuration, as a fluctuation of an ideal pattern. The set of
the ideal patterns { T} is a priori known. Next, one has to define the
quantitative characteristics i, i=1, 2, ... of the cluster’s form. To
each configuration of the cluster’s atoms corresponds a point P in
the [ pi-space. When the thermal fluctuations are small, the study
of the distribution of the ¥ points in the { Wi-space makes it possibie
to find unambiguously the ideal pattern I, the fluctuations of
which generate points . When Li increases, the distributions in the
{ pi-space generated by the fluctuations of some ideal patterns T, I
(i==j) cover each other. In such the case the patterns I';, I'; become
fluctuationally indistinguishable. The general lines of our approach
were described in [6].

"9 The structure of the cluster can be characterized by the lo-
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cal-order parameters, chosen here as
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The summation in (1) extends over all the points 7 —the centers
of the atoms that surround the central atom located in the origin of
the coordinate frame. w(F) is the weight function, defining the con-
tributions irom different coordination skells. T, , are irreducible
multipole moments of the density func.on of cluster’s atoms. From
the mathematical point of view, 7, , form the basis of the irredu-
cible representation of the rank n of the 3-d rotation group Os. The
characteristics of the cluster’s form have to be both rotationally and
translationally invariant ones. They can be obtained via the contrac-
tion of the indices of { T, .}, n=0,1, ..., i. e. are all the scalars
that can be constructed from the set { 7, .}, n=0,1, ..

Mathematically equivalent are the local-order parameters con-
structed with the help of another basis of the irreducible representa-
tion of the O3 group, namely that of spherical harmonics Y,:

Tim =?_;.w(r N, (3)

where
{9 = ¥, (@%). - 4)

0@ denotes the polar and azimutal angles of the point 7 and @ (7)
is a new weight function. T, , and t, , are the linear combinations
of T,, and{,, respéctively. The invariants of 7, can be constructed
using the 3-j, 6-j etc. symbols technique [7]. In this paper we study
the quadratic invariants of the parameters (1) and (3).

3. We have studied three 13-atom clusters, corresponding to the

closest packing of hard spheres in 3-d space, namely the first coor-
dination shells of the FCC and HCP lattices, and the icosahedral
cluster. The crystal structure of most of the elements near the mel-
ting line is close packed. Such the structures were studied in the
computer modelling of the structure of the melt [2, 8]. The icosa-
hedral cluster is included as a candidate for the main structural
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unit of simple liquids, according to [8]. Each cluster has N=12
atoms, equidistant from the central one. The distance from any of
the atoms to the center is taken as the unit of length. The problem
of the classification of the fluctuating structures in the liquid near
its melting line is the cruicial one in understanding the phenomenon
of the liquid-liquid structural phase transition [4]. The calculations
were done as follows. Each of the 12 atoms of our clusters was dis-
placed in the random way onto the surface of the sphere with radi-
us r located in the atom’s position in the ideal cluster. No correlati-
ons of the displacements of different atoms were accounted for. Two
weight functions w(F) were used. In the first case we obtain the
bond-order parameter [9]

Qim = L th (Q{ﬂ}) . (5)
N @

Parameter Q,, characterizes the angular correlations and is inde-
pendent on radial fluctuations of atoms. Such the fluctuations can
be accounted for by the space-order parameter, defined as a sum of
harmonic polynomials

i A (@) aj 1
Rin = 7 i @) 171" (6)

We have studied the invariants
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The statistics of in lependent fluctuations of atoms, used here to
find the distribution fi nction in the space of invariants is different
irom the statistics of tte thermal fluctuations of the cluster’s atoms
in a large system, where the correlations are present due to the in-
teractions. We assume that for fixed value of Li such the characte-
ristics as the half-width of the distribution function do not depend
on the details of the statistics of the fluctuations of atoms too
strong1y.



The dependence of Q;, R, on r is shown in Fig. 1. For each clus-
ter 400 configurations were generated (the case of 1000 configurati-
ons was also studied; in.both the cases the results are, with good
accuracy, the same). These data yield the sufficient conditions of the
mutual distinction of the fluctuating structures (or the necessary
conditions on which they can’t be told one from the other). The sui-
ficient conditions on which the fluctuating structures are no longer
distinct ones can be found via the study of the intersections of the
distributions themselves and not of their projections. It’s the simple
consequence of geometry. Namely, the m-dimensional projections
(m=1, 2, ...k—1) of the k-dimensional distributions may intersect
while the distributions themselves remain distinct ones.

For a given value of r the bands in Fig. 1 correspond to the va-
lues [ of the invariants such that | (/) — /| <o, where (/) denotes
the mean value of / and o denotes the mean-square deviation. We
present the results for /=6 from the {Q;-space and for /=4, 5, 6, 8,
10 from the {R/-space. The invariants with other values of [ yield no
new information about the fluctuating structures. Unlike the cubic
and icosahedral clusters, the hexagonal cluster isn’'t the central-sy-
mmetric one, which leads to non-zero values of odd-rank tensors.

The most informative of the calculated invariants is Qg for
which the essential intersection of the projections of the distributions
takes place at r==0.21. In the space of invariants {Rj} the fluctuating
FCC cluster remains distinet until r<0.14: the HCP one — when
r<<0.17; the icosahedr — when r<Z0.13. :

The distinguished behaviour of invariant Qs is due to the specific
geometry of the clusters under consideration. In general, to each
pair of clusters there corresponds a combination of invariants which
characterizes their mutual distinction in the «best» way. This combi-
nation is the order parameter in the phase transition with the chan-
ge of the corresponding local structures (see [4, 6]).

4, Consider the problem of the mutual distinction of the three
clusters under consideration in a melt near its melting line. On the
melting line the mean-square deviation £ for the close-packed matter
is, as a rule, small. For example, for the rare-gase crystals (Ar, Kr,
Xe, Ne), which display the FCC structure near the melting line, in
the melting point Li=0.09—0.11 [10]. In what follows we take
Li,=0.10. One finds from Fig. 1 that the fluctuating structures ma-
intain distinct ones when crossing the melting line. This property is
independent on the choice of the set of invariants ({Q4, {R/). As sta-
- ted in sect. 3, the domain of such the «structural stability» is larger
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than found from Fig. 1. We'll not deal with this problem here, since
the main goal is achieved by using the 1-d projections of the distri-
butions.

5. Our results support the concepts of the local order in melts
[11]. This, in turn, gives firm ground for the understanding of the
phenomenon of the structural phase transition liquid-liquid [4]. The
above considerations and the data presented in Fig. | lead to the
conclusion that the temperature interval in the p—T plane where
the melt may display some fixed type of local structure is of the or-
der of magnitude of that of the existence of the crystal phase. The
configurations of atoms of model liquids and amorphous solids can
be generated via the molecular dynamics and Monte Carlo methods.
The study of the statistics of clusters in such the systems in the
manner proposed in this paper would contribute strongly to our un-
derstanding of the structure of the condensed matter.

The more profound understanding of the fluctuations of the
structure of the condensed matter will arise when quartic etc. inva-
riants of parameters (1), (3) and also the invariants, constructed
from T, with different [ are taken into account in a systematic
way. The discussion of these problems is beyond the scope of this
aper.

i pOne of us (A.Z.P.) thanks the participants of the MECO’84 con-
ference for the discussion of some of the questions presented here.
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