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ABSTRACT

Numerical results about the siatistical properties of a

number sequence generated by zero-entropy map of a

2d torus are presented. The problem is related to loca-

lization theory with a pseudorandom potential. The va-

lidity of Poisson statistics for the corresponding integ-
rable quantum model is analyzed.
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The investigation of the properties of cnservative quantum
systems that are chaotic in the classical limit has led to inquire
about the statistical properties of their energy spectra. It is now
well established that, in the case of fully developed classical chaos
(as, for example, for the Sinai billiard) the Wigner — Dyson statis-

-~ tics provides a very good description for the fluctuation properties

of such spectra [1]. A similar result was obtained for quasi-energy
spectrum of the simple models [2—3]. ' :
In the opposite case of a completely integrable classical system,
it is generally accepted that the statistics of the quantum energy le-
vels should be generally Poisson. This was first shown by Berry
and Tabor [4] who theoretically derived the exponential Poisson
law for the distribution function of :vacings between neighbouring
lev 2ls of a generic conservative systems. '
Nevertheless, the expectation that the Poisson statistics might al-
so describe high-order statistical properties in the integrable case
was contradicted by results of Ref. [5], in which the Aj-statistics
for a rectangular incommensurate billiard was .found to significally
deviates from the Poisson theoretical dependence. The behaviour of
the Aj-statistics was then theoretically analyzed by Berry [6], and
it is now understood that the statistical properties of semiclassical
integrable spectra depend on which scale is being used in order to

‘analyze them.

In contrast to the large attention which has been devoted to the
energy spectra in the integrable case, much less Is known about
quasi-energy spectra; the important difference in this case being
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that quasi-energy eigenvalues are considered to lie in some finite in-
terval, thus providing additional mixing.

In this paper we carefully investigate the statistics of
quasi-energies in a very simple case, which is related to the
well-known quantum rotator (see, €. g. [7]). The sequence of qua-
si-energy eigenvalues we consider is given by the simple formula:

an:{ Ao+ B0+ -ié—n(n—l)} ={a{,+ %.n2+(ﬂﬂ— -;—) n}. (1)

where | | denotes fractional part, 8, and t© are fixed irrational num-
bers. In the particular case Ao=0, Bg=1/2, we get

luz{'rf;}. (2)

which is just the quasi-energy spectrum of a rotator in the limit of
vanishing perturbation. The statistical properties of a number
sequence closely related to (2) also play an important role in es-
tablishing a connection between the rotator problem and Anderson
localization for a quantum particle on a 1-d lattice in a random po-
tential [8].

That (1) and (2) cannot have a very strong random character
is seen from an equivalent representation of (1) (with t=0) in the
form of a map on a 2-d torus:

lﬂ*l'i — {:‘Lﬂ“-ﬂﬂln
Ot 1 = {0,+1). (3)

It can be shown that even for irrational t this map is not mixing
and has therefore zero entropy.

We investigated two cases: (2) and (1) by taking different
values for © and 8. The typical results are illustrated by the cases
represented in Figs 1 —4. For comparison, we also used a standard
multiplicative random sequence. Computations were performed in
10— "* precision.

As a first test, we investigated the distribution of spacing bet-
ween neighbouring levels. A typical result for sequence (2) is
shown in Fig. 1. At first glance the agreement with the Poisson dis-
tribution seems very good, except for the first interval. The y*-value
for the whole considered interval is 1o =238, for 151 subintervals,
with a poor confidence level —10~%. Also, looking just at the first
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interval, we found x,~125 (with 10 subintervals), with a neg-
ligible confidence level. -

Therefore, we conclude that, while the spacings are distributed
according to the exponential law, their fluctuations do not appear to
be in agreement v-ith Poisson statistics. In contrast to this, a simi-
lar analysis for a different sequence with a nonzero «linear shift»
(6o—1/2) gave a much better confidence; e. g. for the case of
r=l/-\f?:, Eh]:'\/;-—'l"/g the x>-value is s, &~ 173.2 with a good con-
fidence level ~0.2, also 1’ ~5.6 which gives for the coniidence le-
vel ~0.8. These conclusions were confirmed by a detailed analysis
of fluctuations (Fig. 2). To this end, we used the same approach as
in Ref. [5]: we constructed a histogram for the normalized deviati-
ons of the observed number of spacings in 1000 intervals, chosen in
such a way that the expected number of levels in eash interval ac-
cording to the Poisson law is 100. We observe a strong deviation
irom the Gaussian distribution in Fig. 2,a (corresponding to data of
Fig. 1) which indicates a strong correlation in fluctuations about
the Poisson distribution, not restricted just to the first interval
(0; 0.02} .

Instead, the introduction of the linear shift greatly improves the
agreement with the Gaussian distribution: see Fig. 2,b, in which x’
from Gaussian law is ~29.7 with 24 subintervals. This can be com-
pared with Fig. 2,c which was gotton by standard pseudorandom
sequence, here y?~32.6. Thus the sequence with the linear shift
proves as good as the pseudorandom one.

A different approach to the analysis of correlations of fluctua-
tions is provided by the As-statistics, that characterizes the so-called
«rigidity» of the spectrum [9]. For a given number L of quasi-ener-
gies A, we found the dependence As(L) (as in Ref. [5]), by avera-
ging As(ka, L) computed along a segment of L levels starting with
L, over a string M<<A.<hy. Typically, N=10* The results are
shown in Fig. 3. We see that for LKN we have a good agreement
with the theoretical Poisson behaviour for all the investigated cases:
a pseudorandom sequence, a sequence (1) with a nonzero linear
shift. and a sequence (2). When L is increased, deviations appear in
all cases. The main reason of these deviations is that when L is not
small enough compared to N, a correlation in fluctuations appears,
due to insufficient statistics. Indeed, a closer agreement with Pois-
<on statistics was gotton by increasing N up to 5.10*. This conclu-
sion is also supported by the fact that, by averaging A; in a dii-
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‘ferent way, namely, over independent strings of length L, we could
not observe so large systematic deviations (Fig. 4). It is interesting
to note, that no substantial difference emerges in three cases irffves-
tigated. :

A somewhat similar behaviour of As was obtained in [b]. How-
ever, in our opinion, the sequence investigated there differs from
ours, in that its «local» rigidity is 1ot homogeneous ov i the spec-
trum. This feature could hardly survive in our case, because of the
additional mixing provided by taking fractional parts.

From our data we can draw two differeut types of conclusion.
The first is concerned with the properties L the sequence (1) and
(2); the interesting fact emerges, that introducing a linear shift
greatly improves the statistical properties. Indeed, the agreement
with Poisson statistics is quite bad if no linear shift is present, as it
is particulary clear from the analysis of fluctuations about the expo-
nential distribution of spacings. Nevertheless, supplementary checks
of a different nature are required, in order to decide about the use-
fulness of (1) as an eifective pseudorando'n sequence.

The second concerns the effectiveness of the statistical tests. In
this respect, As-statistics appears to be not so good as the analysis
of the distribution of fluctuations Fig. (2); indeed, the latter ex-
poses a much clearer difference between (1) and (2) than was pos-
sible guess just by Figs 3, 4.

A more general indication can also be drawn, since, as already
quoted, the statistical properties of (2) determine the most impor-
tant feature of the dynamics of a lattice model related to the quan-
tum kicked rotator, namely, they determine whether localization cc-
curs. This would be certainly the case it An were .a completely ran-
dom sequence. On the other hand. it is known that for «good» irra-
tional numbers 7, the sequence (2) always yields localization {7, 3].
It therefore appears, that localization does not require very strong
statistical properties. _
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