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ABSTRACT

We present new data from numerical simulation of
microwave excitation of a 2-dimensional Hydrogen
atom which show that in a wide parameter range, un-
der the 1-dimensional delocalization border, the quan-
tum localization phenomenon persists. We theoretically -
reconsider the problem of 2-dimensional localization
by using an appropriately constructed 4-dimensional
map over an orbital period of the electron, and thus
“explain the numerical results.
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In Refs [l —3] we reported about our extensive studies of a
one-dimensional model for a highly excited Hydrogen atom in a li-
nearly polarized monochromatic microwave field. The most interest-
ing effect which was observed and theoretically explained was the
localization of the diffusive excitation under the condition:

gp < &) & —e (1)
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where no>1 is the initially excited level, go=-¢eny, @wo=wnj are re-
scaled field strength and frequency, and all physical variables are
in atomic units. We also checked the validity of the 1-dimensional
model for extended states (n.=1, m=0; ny, m—parabolic and
magnetic quantum numbers) by means of a 2-dimensional model
[3, Fig. 7c], which made use of a basis of unperturbed eigenfuncti-
ons up to n=128. This we theoretically explained [I, 3] by deriving
a rough estimate for the 2-dimensional delocalization border:
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Here we report about preliminary results of the 2-dimensional
numerical simulation. We used two values of wo=15, 2.5;
0.04 <e,<0.06; ng=66 and n,<{30 (which is about the largest
possible value). Since 2d computations are much more time consu-
ming we had to restrict our simulation to a relatively short number
of field periods t<C120. In Fig. 1 we show a typical 2d behaviour
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for the quantum and the corresponding classical ‘model. From Figs
l,a,c it is apparent that the quantum motion in n is localized. This
is also confirmed by the comparison of quantum and classical dis-
tribution functions (Figs 2, 3). In Fig. 2 we show the full distribu-
tion F(n,n2), but a better illustration of localization is provided by
Fig. 3, where the distribution integrated over ns is plotted versus
the number of absorbed photons (which, as shown in Rei. [4], more
adequatly exposes the localization). Moreover, the localization
length in this as well as in all other cases is satisfactorily described
by the I-dimensional estimate [I, 3].

The relevant fact emerges from these data that the n-motion re-
mains essensially 1-dimensional independently of the n. value.
Another important feature is that the np-motion has a qualitatively
different character, namely, it shows no localization (at least in the
inspected time interval, Fig. 1.h) but still has no impact on the lo-
calization occurring for the n-motion. This picture is completely dii-
ferent from the one we assumed when deriving (2).

Attempting to understand these numerical results, we developed
a new theoretical approach, which is a 2-dimensional generalization
of the theory of Rei. [4]. To this end, we first derived a convenient
approximate representation for the 2d classical dynamics by means
of a 4-dimensional mapping that describes the change, during an
orbital electron period, in canonical variables N--the energy divided
by o, ®—the conjugate phase, which is just the product of —o
and time, ! —orbital momentum, and y— the phase conjugated to .
The phase { is the angle between the major axis of the ellipse and
the external field. This map is found by integrating the exact Ha-
miltonian equations of motion over an orbital period. While doing
so, we substituted unperturbed motion in the field dependent terms
and we kept only the resonant term of the perturbation.

 As a result, we found that the generating function of the map
leading to the new values (N, @, {, ) is:

G(N,®,I,p)=NP+Ip—2n(—20N)""*—

— k(1 —aNI? cos® cosp—1.090'* sin® sinp], (3)
where k=0822ne/0*®. In deriving (3), we also assumed
1/3
t'*::(-:i) and on®>1. This ensures that the Fourier components
)

of the perturbation decay according to a power law. In order to
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simplify the map, it is convenient to go over to new canonical vari-
ables (N, 0, /1, x) [5, 6]:

B
tgx= g tgy, O=P+y,

I
I+N=S
. 0

A=1—Nlfe, B=1.09e'"l.

ABdl'
A? sin’y+ B? cos’y’

In these new variables the map is given by:

aH
— cos b,

I=I+k -

;E:x—k—qﬁ_ cos B,

al
N=N—FkH sin#, (5)
0=0—2nw(—20N) 3% — AL cos 9,
anN

where H%(N,J,y)=A%os*p+ B*sin®y. Under appropriate conditions
o be specified below, it is possible to neglect the dependence of H
on N, and to use a continuous time approximation for (/,y) equa-

tions. Then, introducing a new time o defined by %=k cos B (f is

the number of iterations) the (J,x) continuous-time dynamics will
be ruled by the Hainiltonian H, which is a constant of the motion.
In this case, the (N,8) motion will be strictly 1-dimensional. For
approximately 1-dimensional states ({<n, y<1), Ha~1 and the
(N,08) equations coincide with the I-dimensional equations [4].
Anyway, even for more general states, we shall obtain a 1d situa-
tion in the (N,0) equations (5), with kH in place of k. As to the
(/,%) dynamics, in the new time o it will not depend on the (N,0)
motion.

Consider a case in which a regular (N, 0) motion is taking place

with A=cos0s£0, then o=FkA{. This may happen also above the
chaotic threshold inside a stable region [3]. For extended states the
Hamiltonian H can be approximately written, in the old variables,
as:
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=1+ 4(5)

with n constant. The_ motion described by (6) is unstable, with a
characteristic instability time o,=n or trmﬁ. as was pointed out
in [6]. Nevertheless, the long-term motion is certainly periodic, with

a period T,~2{,A and A~ In—~. Thus, one condition for the conti-

ne
5/3
nuous-time approximation to hold is £, =~ s > 1. In the opposite
JLDE
case of a completely chaotic (N,08) motion, o(f) is a random func-
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tion with o(f)=0, o*(1 )_r*-%—- Then the average of the exponent o/n
in the solution of (6) is given by (—) == '— Whence we see that

2
the characteristic time of the motion is now i,;;.=2(%) > t,. This

2N;

time can be compared with the ionization time t,m-éi—, where

No= — —r—, finding that fu/t, ~ 403> 1.
2ny @
If the Hamiltonian (6) is written in the variables N, [, ¥

(

condition under which the 11f"."-dnt':pqlendtianm-': of H can be neglected
takes the form: mfgﬁﬂg(—i—) &1

is gotten, and a

In the quantum case, in this approximation of constant H, we

get the usual I-dimensiﬂnal localization for the N-motion with the
2

localization length .52""-"—;"1!’2 % independently of the (/,¥)

dynamics. This explains the behaviour observed in the above descri-
bed numerical results (Figs 1—3). In these results, the ne-motion
has a regular character in spite of the chaotic (N,8) motion. On the
one hand, the chaotic time scale ts=wolx~10* for the parameter
values of Figs 1 —3, so that the diffusion in ns could not be detec-
ted in the actual time of observation. On the other hand, for the
used value of e, stable regions in the (N,0) motion are known to
exist, which are apparently responsible for the observed regular be-
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haviour of n,. Using the explicit solution for the motion described
by (6), and the relation

ny—n £
2 =7\/1— = cos¥y,
n n

X 2
which approximately gives n;~ -i-(j— +m|:'2) , we get
n

(%) + sntne 1 (2)]

Here vno is the initial value of the phase conjugated to ns, which
must be assumed to be uniformly distributed in (0,2n) in order to
reproduce the initial quantum state. From (7), by phase averaging,
we find the dependence of the first two moments of ns on the time o:

p1=<n2—nm>=n2u(ch%" —1) ,

pa= ((m— (ma)fy =2 sh?22. (8)

For -—-cﬁ(l the ratio £2 ~n,,, which reasonably agrees with numeri-
B

cal data (Fig. 1,6). From the comparison of (8) with numerical da-

ta we cah calculate the regular characteristic time: t,22800 in the

classical case and t,~3600 in the quantum case. Then we can also

find the corresponding values of the factor A which relates the va-

lues of the times t and o : A=~0.04 and A=~0.03. These relatively

small values of A=cos0 may be related to the fact that the value
of wo=2.5 lies just between two main resonances, so that the stable
region is relatively small for the chosen initial conditions. Hence the
instability in the no,-motion is very slow [3]. We think that the diffe-
rence between the quantum and the classical values of A can be ex-
plained by the fact that, due to interference, the small regular com-
ponent of the motion has, in the quantum case, a different interac-
tion with the chaotic one.

The next important question is what would be the impact of a
small change in H on the (N,8) dynamics and whether, in particu-
lar, it could lead to 2-dimensional delocalization. We think that the
latter could not happen, unless {, becomes comparable with the lo-
calization time ~¢. Indeed, the (/,4) motion would just broaden
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the lines in the discrete spectrum of the (N,0) motion, up to the
width ~1/¢x. In order to provide delocalization it is at least neces-
sary (but perhaps not yet sufficient) that £,'> #~' (the average
spacing in the discrete spectrum), or &> f4. This cannot happen
below the I|-dimensional delocalization border because the ratio
ton] Z ~(&” Jeo)'@y 1. Another way to put it is that the slow (/,v)
motion acts as an adiabatic perturbation on the (N,8) motion,
which cannot produce any additional transitions in the latter. The
ultimate origin of this adiabaticity is the Coulomb degeneracy.

Therefore it appears that in order any truly 2-dimensional delo-
calization may occur the approximate conservation of H must be
destroyed, and a sufficiently short time scale for the (/) motion
must be provided. This is why our previous estimate (2) failed: in-
deed, in deriving it both these conditions were implicitly assumed.
We conjecture, and are currently investigating, that 2-dimensional
delocalization can be achieved by introducing a relatively strong
static field. Without static field the localization of diffusive excita-
tion appears as typical a phenomenon in the 2-dimensional case as
it was found to be in the 1-dimensional case.
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Fig. 1. Time dependence, in the quantum (@) and classical (C).2-dimensional mo-

dels, of the second moment ps for n (a); of po for ns (lines—left scale) and of the

ratio pa/minzo, where p; is the first moment for n; (dots and circles—right scale)

(b); and of the probability excitation W, above n=1.5n¢-(quantum values are mul-

tiplied by 100) (c). The parameter values are: ng==66, wy=2.5, £0=0.04, naga=15;
t is the number of field periods.
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Fig. 2. An example of the full distribution F(n, ns) for the same parameter values as
in Figs 1, 3
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