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ABSTRACT

The new method of the mean lield type is proposed for

the density ol states calculation in the Gaussian ran-

dom potential with Gaussian correlator. It becomes
more precise when the dimension ol space increases.
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l. It has been known for a long time in the statistical physics of
lattice systems the mean field approach leads to an adequate quali-
tative picture and gives good quantitative results up to the vicinity
of a critical point [1]. Moreover, the availability and order of a
phase transition can be predicted in the framework of this approach.
Precision of the mean field description insreases with the particle
number in a sphere of interaction. In the case of the nearest neigh-
bours interaction this number increases with the space dimension D
and in the limit D— oo the mean field method becomes to be exact.

In this work tke new approach to the density of states calcula-
tion in the Gaussian random potential with the Gaussian correlator
is suggested. 1t becomes better when the space dimension increases.
Concrete calculations are presented at D=3.

2. The Green function of Schrddinger equation averaged over the
Gaussian random potential with the correlator:

(VIR V(x)) = KE—%) (1)

may be represented as a path integral [2]:
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For the density o1 states calculation it is enough to know G(0; T):
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i. e. fo integrate in (2) over the closed paths. In what follows we
will study the case when the correlator K(x) is Gaussian:

K(X) = Kexp(—x/a%). (4)

The paths in multidimensional space restricted to a lower dimen-
sional subspace have a zero measure in the integral (2). It is
reasonable to suppose that the closed paths dominating in (2) are
mainly isotropic. (More rigorous statements can be made in the
simplest cases, see [3]). For such paths the average over trajectory
(X(t)yx(¢)) has factor 1/D:

(FFf) = - #F" I

and as a consequence the last multiplier in the product:
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can be changed to 1 when D—oo. For example, we have when
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and the right hand side at |x|=|x"|=1 is equal to 1.18 just as
e " =0.37. In this case the first multiplier in (6) does determine
behaviour of the full function. I in (2) the paths with |X¥]| >a are
dominate (in other words big Iluctuations are essential) than our
approximation fails. As a matter of fact, it’s a general property of
all the methods of mean field type.

When the last multiplier in (6) is changed to 1 the calculation -

of (G(0, T)) is been reduced to the averaging over one-parametric
family of potentials:
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where G.(¥, T) is the Green function of the Schrddinger equation
with the potential aexp (—¥?/a?).

3. The completeness condition enables represent Im &G, (0, T) as
the series:

pol0)= Y 19A(0)| 80 — E) + | dk 1(0)] 25(‘“— k?) (%)
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where the summation over discrete and the integration over conti-
nue spectrum is implied. In what follows only the physical case
D=3 will be considered. The nonzero contribution in p.(w) is given
by the states with orbital momentum =0, i. e.

Walr) = xalr)/r

where £, and y.(r) are eigenvalues and eigenfunctions of the radial
Hamiltonian: ]
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(9)
and y,(0) =0. The Hamiltonian (9) does not belong to exactly dia-
gonalizable. Nevetheless we can approximate it by another one with
a rapidly decreasing potential, for example, by spherical well:

v J e, r<a
V“m—_{ 0,r=a (10)

The qualitative and rough quantitative structure of spectrum rema-
ins unchanged under this approximation. For the radial Hamiltonian
' e
; Ay :
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p.(w) can be exactly calculated. The wave functions of continue
spectrum (w>>0) in the region r<Za are equal to:

a<w: Yr=A sin kyr/r,
k=20, Rk=\20—a),
)
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The corresponding normalized wave functions in the region r=a
have a form:

Pu(r) = \/% sin(kr498'/r (14)

(see e. g. [4]). Thus when o> 0 we have:
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The asymptotic form of (15) when @— -+ co:

: i ;

gives the density of states for the free particle. When o <<0 wave
functions in the region r<Ca are equal to:

Y(r)=Asinkr/r, k:‘\fﬂ(n}—rzj = \JEEJ,
1. 2% 2
a4 1
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where o is a zero of the function kcoska-xsinka. The averaged
density of states at <0 can be written as

0 2 ¢ p—
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When @ s arbitrary the compact form for {p{w) ) exists:
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The sign of square root is defined by condition (p{w) )= 0. Note
that the function (p(w)) is continuous at w—0 since the first integ-
ral in curly brackets in (15) behaves as o~ '? and we have
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If Ka'is not large the [lirst term does dominate:

; | _;- nt :
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If Ka*>1 the summation in (20) can be changed to the integration
which results in:

(p(0)y =T (3/4)2~%*a~%12K'/*. (22)
[t coincides with the semiclassical expression (see e. g. [5]).

When ©<0, 2> K, |o| > Ka® the asymptotical expression for.
(p(w)) equals:

o= Vg o [ o+ 2] x

W { 1+O{€ - RImI:L:,-’az}}_ {23)

IT in the region w<C0, o’ > K the inequality |o| < Ka®. takes place
than the summation over all the zeros of the §-function argument
must be carried out. These zeros are:
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and density of states
: . o~ —K_.... s
{plw)) = o T v T e /2K) (25)

is also in agreement with the semiclassical result [53].
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4. The approximation (10) is not sufficient for our approach and
can be improved il necessary. E. g. the approximation proposed in
(6] for the potential e™™/ can be used, but the calculations become
more sophisticated. The factorization in (6) when D— co takes place
in the special case of Gaussian correlation function. For correlators
with a power decreasing an other approach is required.

We can estimate the contribution from the first neglected term

ol the action in (2):
T . 2
A (ge—*-'“fdz)
2a 0

It can be represented as the potential term:

—i LT (26)
i
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averaged over vectors ¢ with the weight exp (—@°/2K). The in-
duced second-order shiit of an energy level is equal to:

Y I = '—fu'rﬂ_)
aE,,=Z— - a1 =1) |2
EE; 7 | Xe | n 51

For example, in the case Ey<<0, Ey > K, | Eol > Ka® (corresponding
{plw)) is (23)) we have:

S8Ey-a*~n"* Ka*.
The multiplier in front of the dimensionless parameter Ka' contains
factor 1/D, which comes irom the fact that the sum rule:

{lezln}=Z|<nlrln’>|2

is not saturated by one fixed state |n’).

The density of states allows one to evaluate only the static cha-
racteristic as magnetic susceptibility, specific heat etc. For the kine-
tic ones the space dependence of Green function should be known;
the present method requires some modification in this case,.

The densily of states asymptolics at a— — oo, a—> o0 was calcu-
lated also in the work [7] with the help of the replica method and
saturation of functional integral by instanton configurations. Off-ex-
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ponential factor in [7] differs from that in (23) and from the se-
miclassical limit (25). It seems that this difierence is the manifesta-
tion ol imperfiection of the replica trick and instanton approximation.
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and S.L. Panfil for valuable discussions.

REFERENCES

1. Stanley H.E. Introduction to Phase Transitions and Critical Phenomena (Oxiord
University, New York, 1971).

2. Feynman R.P., Hibbs A.R. Quantum Mechanics and Path Integrals
{McCraw — Hill Book Company, New York, 1965).

3. Berezin F.A. Usp. Fiz. Nauk, v.132 (1980}, p.497.

4. Messiah A. Quantum Mechanics. Vol.I (North-Holland, Amsterdam, 1970).

5. Bonch— Bruevich V.L. at all. Electronic Theory of Disorder Semiconductors.
( Moscow, Nauka, 1981).

6. Bessis N., Bessis Y., foulakian B. J. Phys. A: v.15 (1982), p.3679.

7.

fohn 8., Stephen M. J. J. Phys. C: v.17 (1984), p.L539.



1. V. Kolokolov

Mean Field Approach to the
P_.adom Potential Problem

H.B. Koaokoaos

MpuGauikenne CpeaHero Hoas s 3a8auH
0 4acTHUe B CAyuyalHOM mOTEHUHaRe

Orpercteennblil 3a sunyck C.[.Tlonos

. . Pabora nﬂcT}'nHﬂé 14 qupaps 1987 r.
[loanucauno 8 neuyats 2.02. 1987 r. MH 08614

dopmar Gymaru 60X 90 1/16 O6bem 0,7 ned.a., 0,6 yu.-usan.a.

. Tupax 210 3x3. Becnaatvo. 3axkaz Ne 12

Hafpaso & asToMaru3uposasnoll cucreme na Hase goro-
naboproeo asromara PAI000 u 3BM «3aexkTponukas u

“ornewarano Ha poranpunte Hucruryra adepuod ghusuku
CO AH CCCP,

Hosocubupck, 630090, np. akademuxa Jlaspenrvesa, Il.

E N



