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ABSTRACT

The report presents analytical and numerical study of
nonlinear resonances, arising in the beam-beam inter-
action when the cross-section of a strong beam is an
ellipse with a large aspect ratio (x=o0,/0.>1). The
influence of isolated resonances in the beam-beam in-
duced degradation of luminosity and lifetime of the
beam is investigated. Some aspects of the role of mo-
dulational effects, synchrotron damping and macuine
nonlinearity are considered.
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1. INTRODUCTION

Although a large amount of papers have been written, de-
scribing simulations of the beam-beam effect in electron-positron
storage rings, the problem of maximizing luminosity in a given
machine is far from being solved. The difficulties arise not only
from the development of the simulation itself, but from the large
amount of parameters in optimization problem. To the present mo-
ment mostly one-dimensional models were studied, where only one
transverse direction is taken into account. Such models can be used
for description of round or very flat beams (see, for example,
review papers [l1—3]). The motion of particles in this case is
governed by one-dimensional nonlinear resonances. These perturb
the equilibrium particle distribution, resulting in a deterioration of
the beams lifetime and Iuminosity.

The behaviour of simulations based on one-dimensional models
of the beam-beam interaction are now well understood. Unfortuna-
tely, such models do not adequately represent most real machines
which typically operate with elliptical beams. With elliptical beams,
the beam-beam interaction necessarily involves both transverse di-
mensions and two-dimensional «coupling» resonances must be taken
into account. Systematic studies of two-dimensional models have
only recently begin to appear (see, for example, [4—6]). The pre-
sent report investigates, using approximate analytic models of the
beam-beam force, the dynamics of particles interacting with an el-
liptical beam with large aspect ratio (x=0./0.>>1). Most of the
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study is devoted to investigating the influence of isolated nonlinear
resonances on the luminosity and lifetime of elliptical beams.

2. THE DESCRIPTION OF ISOLATED NONLINEAR RESONANCES
FOR ELLIPTICAL BEAMS

We consider the two-dimensional transverse oscillations of a sto-
rage ring particle which «collides» periodically with bunches of the
opposing beam. Using a thin lens approximation for the beam-beam
impulse imported by the period collisions, the Hamiltonian has the
familiar form

H=Ivo+1, v+ V(x, 2)§¢(s),
8(s)= Biﬁ{s——n?‘}, | (2.1)

where the transverse coordinates x, z in the potential V(x,2z) can be
expressed in terms of the action-angle variables of the linear
(single beam) system:

x=\2I1,p; cosB,, z= I.p, cos®,, (2.2)

and v, v, are the unperturbed tunes. The longitudinal coordinate s
is assumed to be proportional to time.
The actions /., /. can be introduced as functions of the trans-

verse coordinates x, 2 and the velocities x' = -d—{, 2= d—z:
- ds ds
r2 2 r2 2
Lipen e A Lisole e 2.3
o P+ 28, ' 9 B+ 28. g

In equations (2.2) — (2.3) the quantities B,, B. are beta-functions at
mg interaction points [1]. For (2.1), the period T between interac-
tions is T=2n/my. The normalized amplitudes A,, A, of the beta-
tron oscillation are defined to be

Ae=VX4+ P2, A,=~/724pP? (2.4)

where the dimensionless variables X, Z, P,, P. are determined by
the expressions

X=ir zzim Prmi x = & z
0y Lo X ﬁ P O; ﬁ . (2‘5;'
so that
AL V218, P v‘éhf;ﬁ_ (26)

L1 O;

The quantities o, and o, are the r.m.s. values of the beam width
and height respectively.

The most important characteristic of a nonlinear oscillator is the
dependence of its frequency on amplitude. Since the unperturbed
Hamiltonian in our case is linear in /, and [,, the principal nonline-
arity is determined by the zero harmonic of the potential
2n
i vix,2) a0, ao., (2.7)

0

I
(2)°

Voo=

where the quantities x, z are given by the expressions (2.2). The
nonlinear tune shifts per interaction Av, , are

Vi == Vel + -&vx{"q.r- AEJI V: =V + &v«’- (‘41‘ Ai')’

my @Voo
ﬂ""':'Jc,.'etg E"‘+ {28:!

We now introduce the dimensionless «forcess ol

— 1 B 9Vix,2), oo P GVER2)
.lfx :-;nr L dx : fz gz O, oz i (2'911

Here the quantities &,, &, are the linear tune shifts for one interac-
tion point (Av, ,=meE, ., when A,, A,~0). The forces [x, [:, determi-
ned in this way, satisfy the following normalization condition [7]:

c=4nX: f,=4nZ for |X],|Z|l<1. (2.10)

To express the tune-shifts in terms of these forces, we substitute the

expression (2.7) into the formula (2.8) and interchange the order of
integration and differentiation. Taking into account (2.9), the result is
n

{§ @6, a8, -}, .(A, cos6,, A, cos6,)cos 6. il
0

mUEI. z

8;;3.4“

Av, ==

The functions Av, (A, , A,) determine the position of an arbitrary
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resonance in the amplitude space through the expression
Ivi+mv.+n=0, (2.12)
where the values of v, v, should be taken from (2.8)
To calculate a resonances width using the «moderate nonlinea-

rity approximation» (see [8]), we first introduce the dimensionless
nonlinearity

=

2 2
Lo

2 2
- m 3 Ho 4 28 ”“}1. L (213)

LT ar

Here Hy defined by Hy= ﬂl&.g and the factor o%/EB, is included to

make the quantity dimensmnless The dimensionless nonlinearity
can be expressed in terms of the amplitude dependent tune shifts

A, , by

_ P aAv) | 2mi 3(Av,) mﬂx(az)za(m
=R T antar Tag\n) (2.14)

where x=o0,/0.. The normalized Fourier coefficient L’}'mn:ilﬂm

.0}

uf the potential V(x(/L,8,), 2(/,8.)) transformed with respect to 6, and
0. is defined by

2n

Ay » 55 d8,db; sin0; sin {0, cos m0,-f(A.cos b, A,cos0,)
[(2n)°

V.Elmn = ] {215}

’?2 ; SS d0, 0, sin 6, sin m, cos 0, -[.(A, cos 0, A, cos 0,)
0

where the upper expression in (2.15) is applicable for /=40, and the
lower for m=0. The two expressions coincide for {, m==0. Since
Vi~ doesn’t depend on n, we shall omit the index n in the follo-
wing. It should also be noted that since the potential V(x,z) is
symmetric with respect to changes in sign of e:ther X, 2 or both,
only the even harmonics /, m are non-zero. With V}, and «, we can
find via the formulas derived in [8], the width of the resonance /,
m, n in the amphtude space

g o
A e 1»;,,, . VT N 5—-\/& By 51(248)
KA:: Ex o 2n

The corresponding small amplitude phase frequency is given by

iy

Q,="\/72 & Va V. (2.17)

An example of the graphic representation of a nonlinear resonance
in amplitude space is given in Fig. 1, where the resonance
4vy—2v.=n is shown for several different values of the machine
tunes. The quantities AA,, and Av, ,, which were used in construc-
ting this plot, were computed by numerically integrating the formu-
las V,,, Av,, given by (2.11), 2.15) and then making use of (2.14)
and (2.16). -
The positions of the resonance lines in amplitude space are de-

termined by specific natures of the amplitude dependent tune shifts

A A,) [6]. In particular, il x=0./6,.3>1, the resonance lines
are strongly stretched along the z axis, as is seen in Fig. | where
#»=100. The same figure also shows that for moderate values of 4.,
the oscillations induced by the resonance are almost vertical. AS
was shown in [9], this is a consequence of the particular nature of
the force field f,, f. in the limit »—oo. More specifically, the force f,
in this limit doesn’t depend on Z , while f. is a product of two fun-
ctions which depend separately on X and Z. The exact forms for
these asymptotics are

Fe=4n\2 Fp (X/2\/2 )
fo=2x\2ne 72 erf (2/~f2 ) (2.18)

where X and Z are normalized to the beam width and height, res-
pectively, F,(y) is a Dawson function (see [10]), and erf (y) is an
error integral. The asymptotic formulas (2.18) were given earlier in
the work [11]. First-order corrections to the expressions (2.18) and
their phenomenological generalizations were considered in [9]. It
was also shown in [9] that the model (2.18) can be used to analy-
tically describe nonlinear resonances in a limited region of the am-

plitude plane defined by A.« i B x_fl: and A,< . In this regi-
e ;

on, the resonant oscillations are nearly vertical (see Fig. 1) and the
first two terms in the nonlinearity « (2.14) can be neglected. The
nonlinearity a then assumes a «one-dimensional» value (see [9]):

o~

”’2“-(5 " odv). (2.19)

AENE ] oA
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Fig. I. Possible locations of the resonance 4v.—2v.=n in the plane A,., A. lor diffe-

. 2V —v,
rent detunings 8= =0T

-

£./E-=4, while the quantity 8 assumes the values 8=0.1k ,where k is an integer.

. The quantities =, E./E, have the values x==100,

In addition, in the region A,< % , we can use the approximate force
f- in (2.18) to calculate Av,, & and V}, which determine the values
of AA, and Q,. The situation corresponds to one-sided coupling of
the vertical and horizontal oscillations; the vertical motion depends
on the horizontal coordinate while the horizontal motion doesn’t de-
pend on the vertical coordinate. Thus, the horizontal coordinate ap-
pears as an externally-determined time-dependent parameter in the
Hamiltonian for the vertical motion. This «one-and-a-halfs dimensio-
nal approximation is acceptable as long as g« 1, where g is a di-
mensionless parameter associated with a particular resonance
ve+mv.4+n=0 (see [9]):

i - -
Be= — ;% (2.20)
-4

m

For typical accelerator parameters the condition g« is usually

fulfilled, so that in the region A,< A.//g the width of the vertical
resonant oscillation for the resonance iv,+ mv,4+n=0 is given by

AA" =~\[Fn(A:) VGi(A)), (2.21)
where G,(A,) is .
lys (A /4)
Gi(A)= "2Vl 2.22
A= & i

and the function F.(A.) can be represented in the equivalent forms:

: .{..H,E_J(f;i)fan1}+2fm(’1—3)—cm~~mmm.(’j—f) -

b (B -5
i el (2.23)
e &) '

the functions /,(y) in the expressions (2.22), (2.23) are the modified
Bessel functions of v-th order. Plots of the functions VFm(A:) and

Gi(As) are shown in Figs 2—3. It’s clear that for /=0 the quan-
tity AA. doesn’t depend on A,, whereas for [0, AA. tends to zero
as A0. The specific case |m|=2 (see Fig. 3) is unusual in that
remains nonzero when A,—0. This can be explained by the fact that
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both the zero harmonic Vyo and the resonance harmonics V, are
proportional to A7 when A,~0. This is because they both originate
from the quadratic term in the power series expansion (with respect
to Z=A.cos0;) of the potential V(x,2).

The vertical amplitude-dependent shift Av,, which enters into the
expression for & (2.14), can be calculated via the force (2.18) from

(see [9])
e e —“E“f(‘qﬂ) [f{.( )—{—h( )] — Al (2.24)

The tune shift Av, in the model (2.18) can’t be expressed, how-
ever, in an explicit form. A simple expression for Av, can be derived
for another model [9] which is also fairly accurate. In this second
model, the force [, is given by

dn X

s (1 +X?/5.11) =ty
and the resulting horizontal tune shift Av, is
Ry i L0 B (2.26)

(1A /5.1

The resonant oscillation frequency Q, for the model (2.18) is
Q= moE, Bi(Ay)- Du(A.), (2.27)
the function B;(A,) is defined to be

Bi(A)= e~ \[I(A2/4) 1, (A%/4)  (2.8)

and the function Dn(A.) can be represented in one of the equivalent
forms by

—Aij

s V;:iimz—l) 5
< ien () )()()
X\/*‘ﬂ . s Lx
|m|(m*—1)
A& )+fm,.f2(f)+—'f-{—z-;—”m(f)]- am
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From equations (2.21) and (2.27), it can be seen that the quan-
tity AA" is independent of the aspect ratio % and linear tune shifts
Ex, &2, whereas the oscillation frequency Q, is proportional to &, and
is independent of % and &,. It should be noted that the independence
of AAY™ on the current in the opposite beam (that is, on the quanti-
ties &x, &, for a fixed ratio E,/E,) and the analogous property of Q,
is a general property of «niearly linear» oscillations (see [1]). On
the other hand the independence of both AA™ and Q, on S:J/C. 18 &
consequence of the <one-dimensional nonlinearity» assumption

(2.19) and the condition A_zcgl—a—' _&Ei-\/; A, which is valid only in

a finite amplitude region.

.. 1] |m|

For large amplitudes, A, > o A.> e making use of the
asymptotics of the Bessel functions. we get
Q= SMMe & 4 gim (2.30)

FL A A3

It is now possible to find a condition delining those regions of am-
plitude space in which the damping time is large compared to a lib-
ration period. In these regions, synchrotron damping cannot sup-
press the eifect of the resonance and its influence on the equilibrium
distribution function is significant. The required condition can be de-
rived from (2.30) and the observation that a resonance can only ap-
preciably ‘perturb the distribution function if it has a large enough
width AA">1. For a resonance to have a significant effect, we
must have

Al A, >4mE T, ' (2.31)

where T, is the damping time expressed in the units of the collision
period.

The estimate (2.31) shows that, for most operating machines,
the resonances aren’t destroyed by damping over a rather large
region of amplitude space (Ae, A:). " With  VEPP-4 parameters,
for example (7, 2~ 3000, E:~0.05), we get for the resonance
vi—2v.=15 (i. e. m=2) the conditicn A24. < 1000.

The applicability limits of the expressions (2.21) — (2.23) were

thoroughly analyzed in [9]. It was found that for typical eTe™ sto-
rage ring parameters, there exists a wide range of amplitudes

12

(A:<<5—10) in which these expressions are accurate to within
20—30%.

The most important feature of the above case (x>1) is the ne-
arly vertical nature of the resonant oscillation for A:, A.~1. This
can lead to an enlargement of the transverse heam size in the Z di-
rection, leaving the size in the X direction essentially unperiurbed.
At times, however, it may be necessary to consider a situation
where the resonant oscillation vectors have 2 substantial inclination
in the A,, A, plane for A,, A,~1. In this case, the vertical and hori-
zontal oscillations will be strongly coupled and one can expect a
substantial decrease of the vertical «blowup». This situation is fun-
damentally two-dimensional, in contrast to the previous case. The
condition for «one-dimensional nonlinearity» g< 1 is no longer valid
and one must take into account the previously neglected terms in
the expression (2.14) for the nonlinearity a.

It was shown in [9] that, for the general case, the resonance
width AA]" for A, A.~1 (and arbitrary E., E., I, m) can be .esti-
mated by

ﬂA!m Frd I'j.:q::;i

z wm.

where AAY is the «zero approximations resonance width calculated
from the «one-dimensional nnnlinearit?’» approximation (2.21) —
(2.23). The two quantities AA"™ and AA, are related by «dimensio-
nality parameter» g (2.20) and C, is of the order of unity (depen-
ding only on A,, A,). Thus, the expression (2.32) shows that there
is a possibility of suppressing the effect of a resonance by enlarging
the quantity g. It should be noted that to obtain a large value of g,

it is preferable to have E-<<E, rather than the more typical situation

E.=Ex.

(2.32)

3. THE INFLUENCE OF NONLI NEAR RESONANCES ON
THE LUMINOSITY OF ELECTRON-POSITRON RINGS

In beam-beam systems, there is always the possibility that sto-
chasticity is present, due to the overlap of two or more resonances.
A detailed analysis of phase trajectories has established, however,
that for the parameters of VEPP-2M and VEPP-4 in the absence of
synchrotron modulations, there should be no strong stochasticity
even for the tune shifts as ‘high as £~0.15. This is illustrated in
Fig. 4 where, for the parameters of VEPP-2M, all resonances up to
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Fig. 4. Nonlinear resonances in A, A. plane for the parameters of VEPP-2M:
Vo =3.06, v,=3.08; §,=0.07, E,=0.14, x=0,/0.=20. All the resonances of the
order |m| 4 |{| <12 are shown.
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12th order are shown in the amplitude space (note that the linear
tune shifts in VEPP-2M can have very high values; &, =~ 07,
§:~ .14). This plot was obtained numerically in a fashion similar

to that of Fig. 1. It is clear that all of the resonances, except the
resonance (2, —2), are very small so that large scale stochasticity
cannot form. Direct observations of trajectories in a simulation have
confirmed this. Since there is no stochasticity in this case, those
beam-beam efiects that do appear must result from the influence of
isolated resonances (rather than from several overlapping reso-
nances).

To determine which isolated resonances are most likely to influ-
ence the luminosity (or average beam size), we can use the expres-
sions for the resonance characteristics given in section 2. To get a
quantitative estimate, we assume that a resonance cannot substanti-
ally increase the vertical beam size if the magnitude of its separat-
rix oscillations are less than AA™ < 5 for small amplitudes,
A+ Ai<< R*=4. Using the data shown in Figs 2 and 3, we see that
only resonances of order k= |m|+ |{]| <6 can seriously effect the
average vertical size of the beam. It should be noted that an increa-
se of R?* to 8 doesn’t change this result. This condition determining
the maximum order of the influential resonances agrees fairly well
with the results of numerical simulation [4, 5, 12].

Thus, in the absence of synchrotron modulation and machine
«imperfections», only isolated resonances of the order £<C6 can ei-
fect the luminosity. In order to see how an isolated resonance can
effect luminosity, we consider, as an example, the resonance
4v,—2v,=15 which is close to the operating tune of VEPP-4. Since
in VEPP-4 there is only one interaction point, errors in phase ad-
vance are absent while dispersion and spurious beam separation are
very small. These effects therefore have little influence on the lumi-
nosity, in contrast to the cases considered in [4, 5].

A simulation of the beam-beam system was run to observe the
effect of the 4v,—2v,=15 resonance on particle motion. The depen-
dencies of the specific luminosity and average vertical beam size on
horizontal tune in the vicinity of the resonance (I, m)= (4, —2) are
shown in Fig. 5. Fig. 5,a refers to case where both synchrotron mo-
dulation and machine nonlinearities are absent. In Fig. 5,6
synchrotron modulation of the vertical tune and tune shift (charac-
teristic of VEPP-4) have been added, but apparently fail to signifi-
cantly afiect the luminosity. It should be noted that increasing the
damping time in the modulation (with a corresponding reduction in
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Fig. 5. Specific luminosity Ls, (upper curve) and averaged beam size |z| (lower
curve) for variable horizontal tune v,. The parameters correspond m, UEPE-4:
8c==0.01, £:=0.03, x=30, v, =9.592, damping time N=3-10% number of interaction
pﬂin[s mo=1. The case (a) refers to a zero machine nonlinearity in the absen-:? of
synchrotron modulation, the case (&) to the presence of a synchrotron modulations
Gi the tune v, with an amplitude 8v.=0.015 and of the linear tune :s,hift E- ':.-.rith an
amplitude 8E./E.=0.03. The modulation frequency is v.=0.02. Machine ﬂQnIlI‘tEfiF‘lt}’
is absent. (c)—negative machine nonlinearity in the ahse‘nce of mluduiatmns.
(d) —positive machine nonlinearity in the absence of modulations. A thin octuFﬂle
lens is inserted (in simulation) in the interaction point, and is uniquely characterized
by the tune shifts Avi=425-10"% at A.=0, A,=1, and Av,= +25.10"" at Ay={,
Ay =0
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quantum fluctuations to conserve beam size), lailed to affect signifi-
cantly the curves of Figs 5,a,6. Thus, these curves represent the in-
finite damping-time limit, which is the basis for theory [13], and
which agrees well with one dimensional estimates of [14]. In other
works [5, 15], a strong dependence of the luminosity on damping
time was found. In our opinion, this was related to the existence of
stochastic regions resulting from the large number of machine im-
perfections present in the cited works.

Figs 5,c and 5,d show the luminesity dependence without modu-
lation but with negative and positive octupole nonlinearity respecti-
vely. These different machine nonlinearities cause small displace-
ments (in opposite directions) of the minimum luminosity peak, but
don’t significantly change the height of the peak.

To understand the mechanism via which this resonance reduced
the luminosity, the trajectories of individual particles were «tra-
cked» for the specific cases shown in Figs 5. By taking two-dimen-
sional cross-sections in the four-dimensional phase space (see
[L7]), the resonance location and its maximal separatrix width
were plotted. The results are shown in Figs 6 —8. We would like to
stress that this representation of the separatrix oscillations is more
relevant than the «envelopes» used in the work (18], which give
only indirect information about the separatrix. The importance of
the phase space regions «inside» the separatrix is shown in the
work [13] where it is seen that, for the one-dimensional case, the
equilibrium distribution function is most strongly perturbed in this
interior region.

From a comparison of Figs 5 and 6—8 we see that the greatest
influence of the resonance on the luminosity and average beam size
occurs when the resonance passes through the region of moderate
amplitudes (A., A.~1.5). The decrease in the resonances influence
which appears at smaller amplitudes, where the particle density is
larger, can be explained by the rapid decrease of the resonance
width AA. with decreasing amplitude (see Figs 2—3).

4. THE INFLUENCE OF NONLINEAR RESONANCES ON .
THE LIFETIME OF ELECTRON-POSITRON BEAMS

Measurements were recently made (see [19, 20]) of VEPP-4s
luminosity and lifetime over a wide range of working tunes. It was
found that behaviour of the beam was affected by certain nonlinear
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Fig. 8. The same as Fig. 6, but for the parameters of Fig. 5,d. The cases a, b, ¢. d reier to

Vo =8.545, 8.546, 8.547, 8.548.
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resonances, though the resonances that affect luminosity are clearly
different from those that afiect lifetime. Thus, the measurements of
lifetime showed the influence of a large number of isolated resonan-
ces of rather high order (~10, 12), which don’t manifest themselves
in the luminosity measurements. In addition, lifetime measurements
turned out to be very sensitive to readjustements oi the machine op-
tics, which are assumed to have afiected the machme octupole nonli-
nearity of the magnet lattice.

To understand these results, a number of computer simulations
were run in the vicinity of the resonance 10v.==96. The particles
were given initial conditions with A.=05, and their trajectories were
«tracked », until A, dropped to A.,=3. It was clearly observed that
for the case of positive machine nonlinearity (see below) many par-
ticles ascended to large vertical amplitudes along the resonance
(0,10). Examples of such trajectories are shown in Fig. 9,6 (to-
gether with the location of the resonance (0,10) —see below). It
should be noted, that in the absence of synchrotron modulations the
number of such particles drastically decreased.

To observe the location, width and oscillation direction of the re-
sonance, surface-of-section plots were made, analogous to those in
Figs 6—8. The results of these «tracking» studies are shown in
Figs 9,a,b,c. The three cases correspond to zero, positive and negati-
ve nonlinearity, respectively. All three were calculated at v.=9.599,
vy==8.509, §:=0.03, £E,=0.0l1. The magnitude of the octupole-in-
duced tune shifts were Avy,=4+25-10"° at A,=0, A.,=1 and
Av,=42.5-10"" at A,=1, A.=0.

In the case ol zero nonlinearity (no octupole lens) the resonance
spans the distance from about A.=20 to A.=40 at A.=0. The pe-
riod of resonant oscillation is about 209% of the damping time. The
direction ol resonant oscillation is vertical, so that vertical damping
is eliminated inside the resonance. It is therefore expected that at
small A, amplitudes, the density of particles between A4.=20 and
A:=40 is approximately constant. However, the aperture in our
case is alt about 80, and without additional resonances, it is very
difficult for a particle to overcome the very strong damping between
40 and 80. The situation changes dramatically (as shown in Ref.
[19]) when positive nonlinearity is added (Fig. 9,6). On a certain
line in ampliitude space, the beam-beam induced nonlinearity is can-
celled by the octupole induced nonlinearity. Where the resonance
crosses this line, it folds back on itself and a region of very wide
oscillation appears. Since a sufficiently small vertical damping is
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Fig. 9. The resonance 10v,=96 in the plane A., A. for the cases: a—zero machine

nonlinearity, & — positive nonlinearity, ¢— negative nonlinearity. Betatron tunes are

Vo =8.065, v,, =9.599, tune shifts are £,=0.01, £,=0.03. Machine tune shifts are the
same in Fig. 5.
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completely cancelled inside the resonance, the particle distribution
here is dependent only on A,. At A,=1.5, the resonance spans the
entire: distance from A.=15 to A,=70. The lower edge oi resonance
can be considered a nonlinear dynamic aperture. Thus, the coupling
of the beam-beam interaction to thin octupole lens can seriously af-
fect the rate of particle loss when the lens nonlinearity is positive.

The case of negative nonlinearity is shown in Fig. 9,c. Here
there is no line ol zero z-nonlinearity, and the effect of the octupole
is to simply bend the resonance upwards as A, increases. Since ver-
tical damping is still cancelled inside the resonance, even this situa-
tion should be detrimental to beam lifetime. Particles entering the
resonance at its bottom edge should be able to diffuse (from quan-
tum-induced fluctuations of A,) up the resonance to the aperture.
However, since the area covered by the resonance is much smaller
here than in the previous case, the reduction in lifetime is also ex-
pected to be smaller. It is interesting to note that the resonance
(4, —2), shown at Figs 6—8, doesn’t show up in the lifetime mea-
surements. This implies that the influence of the resonance on beam
lifetime depends not only on its width (and, possibly, not so much
on its width), but on the location of the resonance line as well.
Thus, the negative inclination of the resonance line, generic (for ze-
ro machine nonlinearity) for sum resonances (and present as well
at Fig. 9) makes possible a «streaming» ol particles along the reso-
nance (see [21]), which can lead to a decrease of the beam life-
time. i

Finally, we would like to express our sincere gratitude to
A.A. Zholents, A.B. Temnykh, and G.M. Tumaikin for fruitfull dis-
cussions and helpfull comments.
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