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Abstract

Nonlinear evolution systems in '&Wo atial dimensions in-
tegrable by the spectral problem {9, -6 Q;J-Cﬂ,(jg) 91 +
1'“5@1(35,#)9; +‘Zf(;53))(f~_—;0are considered. It is shown' that such
systems possess the matrix commutativity representation
[T:,Tzﬂj = 0 which is equivelent to the usual "L-A-B triad®
representation of the compatibility condition. General Backlund

transformations (BTs) and general form of integrable equations
are found by the recursion operator method.

1. Nonlinear differential equations integrable by the in-
verse gspectral transform (IST) method are the competibility
condition of the-linear sysiem of equations 'TL SV = 0
where T, are certain operators EI-S]. For the first examp-
1es of integreble equations .n 1 + 2 dimensions ( {J x}l '6‘)
(Kadomtsev-Petviashvili equation, Devay-Stewartson eque.t:.on.:
and resonantly interacting waves equations) the compatibility
condition has been equivalent to the usual commutativity con-=
dition

(7, 7] <[4 u0a), 5 VOR)=0 |,

where U( 9;) and V{( o ) are differential operators over
varisble X [4] - :

Then Manekov [5] has demonstrated that the algebreic form

'of the compatibility condition which is more adequate to the

two-dimensional case is the following 1-A-B friad representati-

=

[T, T]=8T. o gz=[tA-BL @

where L = rri 7:1 = Qf -+ ﬁ and 3 is a certain opera-
tor. The examf:les of the nonlinear ,33?1:&1;154 51'_::1 1 + 2 dimen;mns,
connected with the operator T = dx —6 y + e ¥)9x +

+Q(x3) ¥ +UC :1:) end which possess the representation (2)
{ i
have been %onstmctad in [5-9]. Among these equations is the

following two-dimensional generalization of the KdV equation

' -2 -1
U= k&i@ﬁ + KUy, +3£’;{ Zﬁfz"@)@ +3 Kz{ﬂ% Zt'?)} 3)
where 9,2593 +€9¥) 9559,. ...6'93} ,{igg ) JQE% .

61- 41 and Ky, Ky are arbitrary constan s.zThe case

6 = 1 has been considered in [GJ. The case 6 = -1, K1=K3
(Veselov-Novikov equation) has been studied in [BJ. The parti-
cular cases of equation {3) have been considered in Eltﬂ. Ano-
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Tther interesting example is the two-dimensional integrable ge-
neralization of the dispersive long waves equations (BLP sys-

tem [9]){ 6= 1 O =¥, = (p) :
% I, %g +(()02)§ +°29;£Z{%§; Uy =Z(§,§ +2(Z{(p)§ )

In the present paper we will consider the nonlinear inte-
grable systems connected with the generic two-dimensional ope-
rator Ty = 0x - 6208 + Q(L9) 0 + A (x0)%y + Ulxg)
and their properties. It is shown that equations (3) and (4)
and other integrable equations connected with the operator un-
der cnnaiderﬁtian are representable not only in the form (2)
but also in the form (1) with the certain matrix operators

Z(('Jy)' and V('gx) « We will also briefly discuss the fe-
ature of the Manakov-Zakharov scheme fl1,12J in application to
equations of the type (3) and (4) and corresponding spectral
problems.

It is shown that the two-dimensional version of the recur—
sion operator method is applicable to the two-dimensional se-

cond order differential spectral problem Tj_ '{’ = 0 under con-
sideration. The general Backlund transformations (RC group) and

general form of integrable equations, in particular, the hie-
rarchies of integrable equations associated with (3) and (4),
are found, .

2. Firstly, we give the two examples of nonlinear systems
which are representable in the form (2). The firsi system is

fo = A9 +alp s ~p(5'R)), +249; g
Ue=~0U ta(ug) ~p(2%G)y,

or (P=9¢) .
9e= 89 +4Qs) - 53,)" + 2 9;‘{”5,.
Us ==0U +L(UG)s — 26 (Ugy),

4

b § 2 ;
where A":’ ol 9_% —f—,ﬁ 9.2 and o , f' are arbitrary
constants. The corresponding operators Ty, Ty , B  are

Ti=L =9%% +v9%, +u
'T'.ﬂ o 9f = A. =911 'f'p(gf{‘Fﬁg;hf--Z/é[g;ﬂz)g;z- f‘vzo{g;iz(g;
B =-24 ¢, +3ﬁ9;z{'2fz g

At P = 0 the system (5) is reduced to the system (4).
The second integrable system is

G¢ =189 + 4G)~Hn) - 29 ps +2p 9;??5'1"*)@
Pe==8p 4 4B )-289, py +24%, ?%Pz); v

where p{ and ’3 are arbitrary constants. The operators IT{ ’
Tl and B are

To=2%% + 9% +£,% _
T‘." =% + x9§+ﬁ9§m@ 9;_ i 9’1/ |
B=24(9-p) .

The systems (5) and (7) admit the r&duictiona Z{Z= 0 and
L = 0. The equation ?f = d?'.f.p{(t?}) - p@,z) '
which arises under such s reduction, is the two-dimensional Bur=
ger's equation in the term of potential £ ( Qs = %) } . An
obvious substitution ?-..—. -E’;f.f linearises this equation
3¢ Now we will discuss the problem of algebraic formulation
of the compatibility condition for integrable equations in 1 + 2

dimensions. For definiteness we firstly consider equations (3)
and (4). In the gcalar form the compatibility condition of the

(8)
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system

T.y=(% "GIDJZ o “%) p+u) = O (9a)
.T,z. qu( 9{- & A(B,S, g})) l]l/-—'-: 0 (9v)

for equations (3) and (4) is of the form (2) with B # O.
Let us represent the scalar problem (92) in the 2 x 2 mal-

rix form
('}, +6"(io?£)93 3 (fa-é ))(=-0 (10)

or, equivalently, in the form

Ty =00 U 5=y + 4035 P-4 oot

where } = (fi} }1‘)7:(% SV#.,)T .

For equation (4) the problem (9b) in the 2 x 2 matrix form
is (6= 1 o= 1)

i -ZQ:”; . 0

g b i —pG12)
T"}"{g" +@’ % 2%s, 29, s }f o

. . i
For equation (4) the operators 'T'i and 71 obey equation

(2) with 5=.z( Z?gj ‘Ss

For the common solutions of equations (11) and (12) one
has 9 j:-— f,(( 3;;)} and, therefore, one cen exclude the de-
g j . As a result instead (12) one has

rivatives QJJ ; Qt"f .
— 2 0 1
T;’j E{gf +( gg)')g — 2 (ﬂ 0)’31 +

6

a5 - ; . —p (13)
-'ZZ(;--FZ{? —-?P(.{} %-—IPE-Z{-}ZQ;Z(& ;f 0.

One can directly check that the gystem (4) is Equiva.ient ;
to th M ""'.'HJ___
o the commutativity condition. [Ti ; 771 =0

 Analogously for the Veselov-Novikov equation (equation (3)
with K, =k, = i} ﬁz.-—.—-i.}g = O, 9}-"-—"9 ) the direct
2 x 2 matrix representation of the operators Ty =92 +& ,

Ta= ¢ "(§3+ 93+3§£§a-§'+35"’93_9)_ 8] s

Tf)‘E(g; +(":?)9x + f[»f( f:))f"_ D g
Tff:":“(%"— (33«199 : 35';*&))}20 e

and for ‘Jes:;log:y&vikw equation these operators obey equation

o
(2) withf= J;H_%_ﬁfq’ 9¢-379%) . Excluding ')ﬁ.t ¥ in (15) with
the use of (14), one obtains

—’7’_”:9 __j;?:‘__(66{+6(§-'bq); 7,
b 0u) + 604) , 6+ 605 7u) It

6 Uy - 3% 9u - 35%u e

+ o e
60Ux) +3U{5‘6q59£3u)1 6Uy +3(9u-23u ‘

The Veselov-Novikov equation is equivalent to the equation
N M
So the general situation is rather simple. The direct mat-
ricezation of the scalar system 'T'_t( 9;5 9:_) Y=0.

7&{9{}9& 93)%: ¢ gives




T;Hf = (3} + {,{(9,())} = 0-, (178)
'T'ff = (9 V(% oé‘))f’: il (17b)

and integrable equation is equivalent to equation (2). On the
common solutions of (17a) and (17b) equation (17b) is equiva-
lent to the equation

(% + V(% -u(3)) =0  co

that defines the new operator T; == 9{. +V( QK) =

=2 +V{(ox, -Ul %)) . Fow the integreble equetion is
equivalent to the commutativity condition [’T’;" ’T’; = 0 i
J

Thus equations (3) and (4) (as well the systems (5) and
(7)) besides the scalar representation (2) possess also the
matrix representation of the type (1).

The existence of the matrix representation (1) for the in-
tegrable systems in 1 + 2 dimensions besides the scalar repre-
sentation (2) is the rather general situation. Indeed, let we

have the linear system 'Ti(ag.& 9,_)?: O 4 "}'&(91; 3,5 93_) lP’: 0O .

Let this system is representable in the following matrix form
Tff (93 7}’5((9x))f=' 0,
Ta ¥ =0 + V(i d))f=0

I

I

where U ( 9;() is the differential operator over X . The
algebraic form of the compatibility condition is, in general
cage, equation (2) with the certain operator B”, i.e.

[T 00 = B}

(20)

Note that {f the operator V does not comtain the operator 9}
at all, then [T;ﬂ ’}"’:J does not contain the operator 93 too
end, therefore, in this case B¥ = o.

It is well known fl:}] that the operators rE andg B a:r.:e
defined up to the transformations

T Ty =Ty +CT,, B2B'=B+[Tc] e

where (C ()’fr 9#) is an arbitrary operator.

For given operator 'T': M}fet us choose the operator C in
H‘ T
such a way that the operator T, = T, {'9]5 ?F) -f-(j(?,}-ﬂ;)(%fﬂﬂxﬂ
does not contain 9 at all. For operators f]"f which are "po-
lynomials" on 93, ,such en operator C salways exists: it is

 the "polynomial" on ,93 of the degree ( de‘gm & )g r{d?ﬁ!ﬁfVﬁ;i

and 1ts coefficients are easily calculated via the “coefficients
of V(3,5 93) and Zf . Since ’T’f is independent on

then the substitution 9-}-—‘2{(3,, gives ?”: 4 ~U(3))=
= ?:(&);i.e. ¢ ) =T {% l)

';T—:(gx) L 77:(91; 9}) 2 577: : . (22)

Thus the operator 'TL which arises from r]’f (9% %
after the exclusion of ')3 with the use of equation (1{?&.}
{ 93’ == 3{})_, is obtained from 7’; by the transformation
(21) with the special operator ( .

Multiplying the relation (22) by T from the left, then
by T} from the right, subtracting the equalities obtained and

taking into account that [ P¥ "f;']-_- © on the integrable
equation, one gets e

M M M= M ‘
[7’1,74]";-[’7’,} ale (23)
Comparing (23) with (20) we f£ind

BH'-‘-"* _[‘r.r;: EJ . .(24)




Now let us perform the transformation (21) with C KE‘-'
As a result 'TE — Tz-”'(')x) end, in virtue of (24), B = 0.

Thus the nonlinear system which is the compatibility con-

dition of the system (19) and possesses the algebraic compatibi-

lity equation {2{?) pnssaases also the commutativiiy representa~
tion [T Ta]= . The assumption that the
gcalar equa.‘i:inn Ty ( 9x 9}) (f»' o is representable in the
matrix form } = (d + Ul Qx)) f—-— (ox

(Ox 2 (9%) ) J( = 0) is casentigl, Jhis ie valid for the ope-
rators fJ7,  of the form 'T'i = %’ ’Z(m" (X g) 9},

In this case the problem *}1 =0 is equivalent to the
N x N matrix problem

g} +A9;( +

J( o (25)

where Ay = _Q{b_r'k. (rjz.-: Ly )V) and =p:,.;==c)
at ¢L}y ALl e ‘I,”.,H_). For definiteness we consider
the case ﬂﬂ”ﬁ 0. : s -

4. Hera we will discuss the application of the Manskov-Za-
kherov method [:11,12:] for the construction of apec:‘l:ral prob-

lems of the type ' (F gsznm(x g?z 9 =0, The

gtarting point in this method :fb the nonlocel Rieménn problem

%0,0= (B0 ROgpx)

where R(} )Ux is the certain function. It is assumed that
R(N); :-c) eys the equations -

o :
/ : 2
gx,' R(),)I;X) -“‘=_I:,' Q = QI: : (27)
=433
/7
where X,_ » X2 » Xz are independent variables and I,'
are some functions. Then the operators D,

ol @; -F = gx[ -f -FI} ) are introduced and
with the use of (26), (27) the set of operators 717, , which

2

10

.+
Jiiﬁi.':--"

have no singularities on )\ » is constructed. The compatibilie
ty of the linear system ?ﬂ 9'/ =0 is Equlvalent to the non-
linear equation. In the scalar case and the case .0f one marked
variable (for exemple X, ) one has T;=A , T, =7, (A) ,

T =15 (};) where T, and J3 are some polynomials,
This case has been considered in detail in  [i2].

If two variables X; and X; appear on the equal footing
end they are contained in the problem symmetrically, then one
should put T3 =Xg , 3= A2 whegg the complex pa.rameters

)\ij A2 obey the constraint % 'fun )\1 A:l'. 2
= COns+ # 0 where -ﬁzm are cﬂnafam?s. The operator T’
constructed by the methocl of the apers [11 12]

g : will be of
the form 'T'— ﬁi ‘Z{,m, (Ju K:.-.) 911. gx‘: where é’t,_ﬂ_t ﬂﬂﬁf =
_; 7 ﬂb =0 2 R E 0T 00
= Apm o For xample, in the case A\, -g ).z__ 4 one

obtains the operator 'T’—- 'EIH 29,h +IP1'%“ +¢P19;_l + Y ’
The funetions J; ( X3z=¢) are the polynomials on the variab-
les A+ = Az +6 Az and “)!1 ~6 A2 in this case., The va-
riable which parametrimes (unifarmizea) the curve

%‘ 'fmn }li A.‘l =C,Oﬂ5f! could be considered as the
pardmeter )\  in the monlocal Riemenn problem (26).

Similar situation itakes place for the multidimensional
operators 2 B For examyle, to construct the operator "J7 of
the form T = '};1 +'3' +9;, +id one ghould uunaider three
parameters )\:t 11 ,\3 which obey the constraint /\;_ -H"i_; +A, =

= 1,

9o Now we will construet an infinite-dimensionsl group of
genersl BTs (BC-group) and hierarchy of the integfable equati-
ons connected with the two-dimensional spectral problem under
conslderation. For some spectral problems linear on ')# such
results have been obtained in EI4,-1§] » Here we will demonstrate
that the recursion operator method effectively works for the
speciral problem

(9:"‘ 629; ‘f'lp{"ff}t}l)(’x 1’-6’95,) 1‘”{1};!;1‘)) Y=¢ (28)

where (f(x 3 {-) 'Z((x X, &, 1&) are scalar functions such that

end 5 = X1, Generic problem
ﬁ'ﬂ il‘f-pys‘-a oo :

11




nxz*ﬁ'zggtfﬁegrf‘l@.g _+ﬂ) Y= 0 is reduced to (28) by
the gauge trmfumaﬁian ¢=3¢ '

Pirstly we represent {Eg)+in the matrix form (10). Then.
we introduce the snlutions F;: of (10) such that Ff(;}g =
Mol D TEP (M Ax) i e AEC L Aon(19)
and A= oi‘u‘,& n® Siﬁl:i; ar to [‘-|4~16J we introduce the
scattering matri S s F;‘(,::‘r }r"—):ﬁ;{r 5‘?'5311[) S’(};A f_) -
Then we consider (see [14-16] and the review EJTJJ fne trens-
formations of q} U—> gﬂ:ﬂ" such that

SGA0—> SGA0=BGHBAITOL)

where i are diagonal metrices, An arbit-
rery matrix B  can be represented in the form 8= B 1"')1-
&

+ Bg(h;lt)( ”‘_':.A ~ where gnﬁf{)a.nd g,,(,a}f) are arbit-

rary scaler functions. Similar to [j4-16 one obtains the rela-
tion

(3{'?%))'— f’(i:,z\))u'z_ =
=-53’>‘“‘#"’$’5(5”#)\"((F?3?)-P(w)Wifi#)) .

and the fundamental relation -

Sdgdiigg) irf B%2) plyio B, 7e)-

-~ Poy8) Bﬂgj) 1’35‘(’&;9})3(-':0 ' o

which follows from (29), where P=(D

o) B -
Oy - 7
00t B ) e ($ign)ee -

| R S e
= Fen ()t} ;t) E?(X,K)' where Fi are the solutions of the
spectral problem adjoint to (10). The adjoint representation

g e

[55,17] of the problem (10) for the quantity "_‘Dm( X f?,r B{)

is of the form

VPhTy 9% sy P9 k) 2
Wy oy

(32)

ol T
tPuDPBgy) ~ Pxgw Pl g)= 0

where A = (i}f}i) o
It follows from (30) that the dynamical components of
@:(‘pi @l) are ¢)4 end D, .. We denote ‘Pn=(§).
— L @ Py '

We will consider the fungtions Bo(9y¢) and | B, (%, ¢)
entire on 9} 1 H‘,'{?#J{-):;Z @R(’f)r;; 5 & =051s The

fundamental relation (3.1), rewritten in the components of P ,

contains ?;J @_1; Q;j @, and their derivatives over Y  and ? .

It is necessary firstly to express @, , ¢ pvie @, end

‘Rf (.qji‘“' @, ) and secondly to express 93' %(Ef&x) end
Og 159;‘(,15f 7¢) via @@ g,4) « The adjoint representation

(32) allowd oné to do this., Nemély, equation (32) gives

Puls§ = UL vp-9)8, +@-2)9]
Begd=-(9-+p 00, - u'?,

and

(33)
4 A L O
05 P yy)= NGB aiy) o9

where

| L |
/-9_+ P fg:( u 1“)-—3 *‘9:(‘19’ +7-¢)

A (za=-L
A«J{#ﬁ)“aﬁ‘ I(.m,;ifz,g__fgﬂ(r T(asph '
\ + wf(wf'ﬁo)) > "'(3-;"?')(9-*‘”{@))) ¢

(35)
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e 0.8 0 20(9549,) If’”é’xp('? (o-v)

T erp(00-0) 5 ]

It follows from (34) that
ra ++F

wa U'=207), ¢'s 013F).

P ++ rC
(”;3,- y) = A(n) (3,9) (ri (36)

where /I () are calculated by the recurrent relatmn
Fl

Doy 58) = o9 Bun(79) + Ulgatis

fl = 2,3,00¢ s« For the adjom‘b operators one ha.a Ei {’ 3[_) E
/

Ay
“‘A(-f,}(ﬁf #).A@q {)(3,3‘-) “t Qﬁﬁglﬁﬁ,‘ﬂ

ﬂ"'ia

-A{n) f?, &) = (A{ﬂ( ) "';39') -A-;) (5:'#)

where

A(t)(#ij-_“

and, therefore,

(37)

. _i :
o+ ?"F(U-uﬂgu (0-t'+2", +§’W{"’)’Lﬁﬂg‘)

-1
+ =), ) (ﬂia (i d (% Tavﬂrﬁ".) .

Emphasize that Gjﬁ
tors 1 g th
Ta -A(n) ar e

Anaslogously one can show that

% Btin)= dayiy

where .A(n]'(i#) = A(n-t) (ff':?) A(i] (;‘i: 5‘) 15

14

in (37) acts only on _/1() (.‘,' y) - The ope-
recursion oparators we are’ interesting in.

+4

? (39)

04ey(y)
&

end A({]{y,gg 9# +94 - ﬁ(#}(ﬁ ¢) . For the adjoint
operators one has

V‘!’ ~ Y. s ﬁf“i‘,* 5
-Am(#,#)'f- (At,_)[gfgt}-r 6%) A(—f__} (;t!,#) (40)
2=33-- -
Uaing (33), (36), (39) we exclude the explicit dependence
on the uperatnrs 93) ~  4n (31). Then transfering to the
adjoint operators gimilar to EM- iﬂ we finally obtain from (31)
the relation

Zm' €on H)&-—z)&i;} g:) “‘jl;;} (g)} .

H=0

+2 b1 (4) ﬁ'éi)n;]%:rd)(g:)*é_&“](_g)f
" Rh=o0

A4 n+ X+ 9 i
+A-(u)(tf) SC) iCn J((Jﬂdo ﬂ'

( @la))i'u' + 9"’ )
(9—“!’- )oiu'~p- s o)

I
where C; —ﬁﬂﬂ'ﬂ and in all the quantities in (41) one

should put .

141}

Trensformetions (41) form an 3.n:fin:l.te-dimenaional abaliem
group of general BTs ( ¥ 'f’-—} 'U 'P ) for the spectral probiaum
(28). The corresponding transramatinn lew of the scattering .
matrix is given by (29).

The conaiﬂeration of (41) for the infinitesimal disvlace-
sU =pe 54, Bon=1 ,
ment in time: U = UFEUe, P'=P+5¥: .

15




gin_ e SWH(‘() ) e €= 0 gives

(‘;if) 40 _Z‘wﬂﬁ) @Gz)nz;m -G_Z;u) A)(‘g)+

~ €1 e mYs ‘ Gdﬂ-gﬁg( uy )
+Lm(cf)+§‘) Ch %)Ggﬁy-fp)%ﬁ v (9_9;%!-9-9)

24 ded A€,
where () - Afﬂj H,fﬂ' and wft {{) are arbitrary
functions. The mrreapufd evolution law of the scattering

matrix is

gfff’*) YOS -S04

(43)

where Y{%f)ﬁ 6A I.QJ(A)( :;-‘;) and ID:(A) =’§'wn[‘l"))in'

Formuls (42) gives the general form of nonlinesr evolution
systems in 1 + 2 dimensions ( % , %4 ) integrable by the spectral
problem (28). ;

The transformations (41) with the time-independent &
form an infinite-dimensional abelisn group of general auto~BTs
for equations (42). The simplest auto BT (41) with gm = 0
( ¢ =0,1, fl = 1,2,3,400) i3 of the form

g s S L
L. Wf) LA a;q) W Ra'solitsuy \]
(lf'.-.‘a ‘Fgf ‘GAﬂJ W._Pf “*?‘FﬂjﬂLW)FU‘E?‘;_ =()(44)

.ﬁ+ e
where the operator -A-(i') is given by (38) with 3{: 3( « The
group of general auto BTs’' is generated by the two elementary
BTs. The BT constructed in [9] is the particular case of BTs
(41).

- The simplest equation (42) with (Uy = 2 end (Wo= Wy =

16

= (W3 = o =0 gnd 6 = 1 is the BLP system (4).

For the functions ,f), of the form ) = JL(JI'l) the
system (42) admits the reduction = 0. A8 a result we obtain
the hierarchy of equations the simplest of which (J) = 4}51 )
is equation (3) and, in particular, the Veselov=Novikov equati-
on ( 6% = 1),

In the one-dimensional limit ¢ = ‘Z(; = 0-the BTs (41)
and integrable equations (42) are reduced to BTa and integrable
equations associated with the spectral problem

( +Q+ud)¢=A  (see [i8,19]).
' Similar results can be obtained for the spectral problem
(%-6%05 +00 + 0% +U)P=0 i « eanas, gros form and
alac;! fﬁ' the two~dimensional speciral problem < Z{ﬂm {.5 ﬁ)?'
19}( 9} 90‘_-_-0_ ( N23). hEe

In conclusion note the following. The formulas (37) and
(40) define the actions of the operators ./],‘; and xfﬂ on the
space of general bilocal functions @({5{} -f) . On the sub-
space of local functions Z(,%m{) and Z@ff} the actions
of these operators are equivalent to the folilo

Noti9)2) = (A (3 ﬂ)-f’o"’g)dZ(a'f) =(-A% a’r‘;st))nz'?/‘x)
Mg e i) B L2 t,~ ﬂha

A5 Z05)=(A0059)+%) 29)= (A'(G9) )

wsre A 9)= -07-A1(59) =% + N(5) - mo

e
ugse of the biloeal ram:raion.uperﬁtar&t A 4 %) allows ome es-
sentially compactify the formulas (41) and (42).

The recursion operators constructed in ﬁ#—ﬁ] can be re-
presented in such a form too.
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