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ABSTRACT

The structure of quasi-energy functions and spectrum
of quasi-energies of two interacting nonlinear resonan-
ces are investigated. Main attention is devoted to the
properties of a quantum system in the case when stoc-
hastic motion appears in the classical limit due to
overlapping of nonlinear resonances. The role of quan-
tum efiects under the conditions of classical chaes is
discussed.
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INTRODUCTION

Recently considerable attention is devoted to the study of inte-
raction of highly-excited atoms and molecules (Rydberg states)
with external monochromatic radiation (see, e. g. [1, 2]). Since we
discuss the quasi-classical region of occupation of system levels
where the constant of anharmonicity is small, sufficiently strong ex-
citation involves a large number of levels in dynamics. Thereby a
particular form of excitation analogous to classical stochastic diffu-
sion can appear. Mechanism of such diffusion in classical mechanics
is studied quite well and is based on the phenomenon of overlap-
ping of nonlinear resonances [3—5]. Dynamics of a quantum
system at the interaction of a large number of nonlinear resonances
has been considered both for simple models (see, e . g. [4, 6, 7])
and ones similar to real systems [8—10]. In these examples stoc-
hasticity appears in a large region of phase space and may lead to
global instability. At the same time there are systems in which stoc-
hasticity is limited by relatively small region of phase space. The
typical example is interaction of two nonlinear resonances which des-
cribes, for instance, motion of electron in the field of two plasma
waves [11].

In the quantum case dynamics of interaction of two nonlinear
resonances was studied in Refs [12, 13], where it has been shown
particularly that at overlapping of nonlinear resonances and suffici-
ently large value of quasi-classical parameter behavior of the quan-
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tum system at finite times is analogous to stochastic behavior of the
corresponding classical system. With time increasing, however,
quantum effects occur resulting in suppressing dynamical chaos
[4, 6, 12, 13]. ;

Note that while studying behavior of nonautonomous quantum
system two approaches may be used: study of system dynamics
(diffusion, time correlations etc.) and analysis of spectral characte-
ristics (spectrum of quasi-energies and struclure of quasi-energy
eigenfunctions [14, 15]). When the first approach is comparatively
. well developed, properties of quasi-energy spectrum and, in particu-
lar, structure of eigenfunctions for quantum systems which are stoc-
hastic in the classical limit are less studied. However, in real expe-
riments on exciting atoms and molecules in periodic fields spectral
approach in some cases is more natural. From this point of view
theoretical study of quasi-energy spectrum characteristics of quan-
tum systems with chaotic behaviour seems to us very important.

In the present paper the resulls of investigation of spectral pro-
perties in quantum systems of two interacting nonlinear resonances
are given. Description of the model and methods of numerical inves-
tigation of quasi-energy spectrum and quasi-energy eigenfunctions
are given in Section 2. The case of critical values of perturbation
parameter corresponding in the classical limit to the contact of pri-
mary resonances is considered in Section 3. Also the structure ol
eigenfunctions depending on perturbation parameter is analized.
Statistical properties of quasi-energy eigenfunctions in the region of
quantum chaos are investigated in Section 4. Statistics of spacings
between neighbouring levels of quasi-energies in dependence on se-
lection of eigenfunctions according to parameter of their localization
is studied in Section 5. In conclusion the main results of the work
are briefly summerized.

2. DESCRIPTION OF THE MODEL

As a model convenient for study of interaction of two nonlinear
resonances we choose a quantum rotator in the field of two waves
[12, 13]:

ﬁ:-—--,rﬁﬂt—;%-k Vi cos (04vit)+ Vacos (B0 —vi). (2-1)

Hamiltonian (2.1) arises, for example, by analysis of dipole interac-
tion of the external field (containing two Irequencies resonant to
difierent levels of unperturbed spectrum) with nonlinear quantum
system in the region of quasi-classical occupation. In such an
example y is the parameter of nonlinearity of unperturbed spectrum,
v is the difference of the resonant frequencies of the external field;
V,, are the amplitudes of the external fields [12, 13].
In the classical limit Hamiltonian (2.1) takes the form:

H=vi*4+V, cos (B4+vi)+4 Vocos (0 —vi) (2.2)

where [ is the classical action of the system. Hamiltonian (2.2) des-
cribes interaction of two nonlinear resonanses which position is de-
termined by the equations:

oll\)=2yv,=—v; wll)=2yl=v (2.3)

where /[,, are the resonant values of action. Ii V=0 (or V,=0)
put into (2.2) the system is reduced to an isolated nonlinear reso-
nance that is exactly integrated and characterized by the following
parameters: Af is the width of action and Q is the frequency of
phase oscillations in the vicinity of resonance

(A2 =2 /2";'-2; Qs =27V, . (2.4)

For the description of interaction of two nonlinear resonances
the parameter of their overlapping is introduced [3]:

K BD1/2+Be/2 2+/2yV (2.5)

fz—fa ¥

where V,=V,=V. It is easy to show that the parameter K (2.5) is
the only dimensionless parameter determining completely dynamics
of classical system.

At K< 1 each of nonlinear resonances is well isolated, and a
particle cannot pass from the region of one resonance into the regi-
on of another. In this case motion in large part of phase space is
regular (for the exception of narrow regions in the vicinity of sepa-
ratrices of resonances). Qualitatively new effect comes at K>1,
when the interaction of resonances becomes essential. In the latter
case chaotic motion becomes global in the sense that stochastic tra-
jectory does not occupied only the vicinity of one resonance but can
go from one resonance to another.
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Analysis of the system dynamics (2.2) and the structure of
phase space is given in [3, 16, 17]. For illustration we present here I
the structure of phase plane of the system (2.2) at different values H{-
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Note of considerable property of the system (2.2): with further
increase of parameter K comparatively large stable region arise
again. This phenomenon is connected with partial matching of nonli-
near resonances; as a result the region of phase space with stochas-
tic behaviour decreases [5]. Such behaviour of the system (2.2) in
the region of large K>>1 makes it considerably different from stan-
dart mapping [3], in which increase of K results in growing the re-
gion of phase space occupied by stochastic component and impro-
ving statistical properties of motion.

Pass on to the description of numerical experiment for a quan-
tum model of two interacting nonlinear resonances. Introduce di-
mensionless parameters characterizing behaviour of the system
(2.1). Classical parameter K (2.5) independent on A may be chosen
as one of them. The second parameter is purely quantum and has
the form:

t = yhT. (2.6)

Physical sence of the parameter (2.6) consists in the following
[18]. Because of nonlinearity of the system (2.2) the cells of phase
space (/, 0) with size in action of the order A/~h spread over phase
0 by the value of the order A8~ (dw/dl) TAI~yhT=%§ for a period of
an external field T=2xn/v. On f{ulfilling conditions AO=1, quantum
effects connected with interference become essential already for one
period of motion. In the opposite case E<« 1 quantum effects are
small and, therefore this condition is one of quasi-classical approxi-
mation. Besides, for quasi-classical approximation an additional
condition én>>1 must be fulfilled, where 8n is characteristic number
of levels participating in the dynamics of the system (2.1) [12, 19].
Explicit expression for n may be introduced as a number of levels
being in the potential well of an isolated nonlinear resonances and
may be obtained in quasi-classical approximation for V,=V, Vo=0:

I

: 2.7
nkh Y ( )

Thus, behaviour of the quantum system in contrast to classical one
is determined by three dimentionless parameters: K, &, 6. . Choosing
K and &, for example, as independent parameters, value 6n may be
represented in the form:

dn=4K/E. (2.8)
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Further we will consider both conditions of quasi-classical approxi-
mation as fulfilled:

n>1(K>»§); E<I (2.9)

and put Vi=Vo=V; k=1,
Since the Hamiltonian (2.1) is periodic in time:

At+D=HA1t); T=2a/v (2.10)

the discription of the system may be carried out by means of transi-
tion to quasi-energy functions [14, 15]:

"F.J.,(ﬁ, f) = E_M(P:-.(ﬂ, a‘f) ¥
o0, {4 T) = @u(0,1). (2.11)

In (2.11) value A is quasi-energy of the system. Introduce the evo-
lution operator 8§ of wave function for a period of external field:

W0, i+ T)=S¥(, 1)
Let W, (0, t) is the cigenfunction of the evolution operator $:
S0, )—e W0, ) (2.12)

where e=AT, and later on for convenience we also will call the va-
lue & as quasi-energy.

Thus, the problem is reduced to the construction of the evolution
operator S for the period of the external field T with the subsequent
finding of its eigeniunctions and eigenvalues.

Divide the interval T (Fig. 2) into M equal parts t=7T/M, and
substitute operator A in (2.1) by the following one:

2 M
P -;? + Y o8(t—t)cos®; v;=2Vz cos vi; (2.13)
ja=1

where 8(f—1{;) is a delta-function, {j=jr. It may be shown that
such approximation (2.13) of the initial Hamiltonian (2.1) is equi-
valent to the fact that in perturbation besides the basic harmonic
cos vt high harmonics with frequences Mv, (M+1)v, (M+2)v..
are present. For large 'values M>>1 such harmonics are nonreso-
nant and their contribution appears to be small. Accuracy of compu-
tations in this approach is checked by increasing parameter M.
Usually M=100 was chosen in numerical experiments.
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As a result the evolution operator §=§,=u may be represented

in the following form:

S8 . 8.8 <4 (2.14)
where
L™V ai r 2
.§;=exp(-—z£2:‘-5{?) exp (—iv;cos ﬁ)exp(—il;w%) ; (2.15)

Since_ the initial Hamiltonian is invariant in respect to the change of
the sign 0, the quasi-energy eigenfunctions may be classified by pa-

Veosyt
4

Y E*i E3 1

Fig. 2. Approximation (2.13) of the potential of the initial system (2.1).

rity_, Furthgr to simplify computations we will consider only
antfsymmetrlc functions W.(—0, ) = —W,(0, ¢). Choose as a basis
antisymmetric functions of unperturbed operator:

|r1}=?}_;— sinnd; (n=1,2,..). (2.16)

In the representation (2.16) matrix elements of the operator .§j— have
the form:
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 Sumli)= (1| §lm) =exp (;: “’;2) B eXp (.-T ""’:2) | (2.17)

where

1 Mitl 2nl 2nl
Bnm= [ N =g ]
IN+1 ;5 e M}2N+1 cos (1 1) 2N4-1 %

)

I ) “
Fhr 1)V ML N (2.18)

X exp ( —iv;Ccos
In (2.18) parameter N is equal to the fotal number of states (2.16)
in numerical experiment. The criterium ol the choice of the value N
was a weak change of the eigenfunctions and eigenvalues in the in-
vestigated region of phase space of interacting resonances with N
increasing (usually N=89; 151 was chosen).
Note that matrices S,.(j) (2.17) are symmetric and unitary. As
a result the finite matrix S,» resulting from multiplication of matri-
ces (2.17) has the same properties of symmetry. The symmetry of
the unitary matrix S.. testifies to conservation of invariance in the
model with the finite number of levels in respect to time reversal
(in accordance with the properties of the initial system (2.1)). Thus,
numerical analysis is reduced to determination of quasi-energy spec-
trum and quasi-energy eigenfunctions of symmetric matrix Sun:

Sin=""%" Sum(1)Spm; (2) ... Sm,ym (M). (2.19)
My My

3. THE STRUCTURE OF QUASI-ENERGY FUNCTIONS
IN THE CRITICAL REGION (K~1)

First of all dwell on the properties of eigenfunctions of an isola-
ted nonlinear resonance that may be obtained from (2.1) assuming,
for example, that V,=V; V,=0. In this case the Hamiltonian of an
isolated resonance takes the form [12, 13]:

2
ﬁ:—vhﬂa%g—l—l«"cosﬂ" _ (3.1)

where 9=0+4+vt, and transition to a new wave function @ (9, {) is
made:
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(0, f)=exp [i([,0—yRi,1)] W(D, 1) (3.2)

in (3.2) ! denotes the number of resonant level satisiying to the
condition (see left equality in (2.3)):

2vhli= —~v. (3.3)

The problem of determining eigenfunctions of the Hamiltonian (3.1)
is reduced to the solution of Mathieu equation:
diq—-‘e{:ﬂ'}

YR 4 (e — V cos 9) gi(8)=0;

Pe(0 + 2n) = (). (3.4)
Solution of the equation (3.4) are periodic Mathieu functions Fouri-
er series of which have in general case sufficiently complicated
structure. Therefore determination of the form of these functions
was carried out numerically. Fig. 3 shows quasi-energy eigentunc-
tions ¢.(#) of coupled states in unperturbed basis (I/-'\;’Qn)e:{p (ind).
It is clear that the number of eigenstates in the potential well
Vecos® agrees well with quasi-classical estimate (2.7): §nx36. As
numerical data show for 8n>> 1 the structure of eigenfunctions near
separatrix (edges of the well) becomes considerably more complica-
ted. It is natural to expect with perturbation such eigenfunctions are
subjected to stronger change with possible appearance of irregula-
rity in their structure (see Sec. 4). Above the separatrix e> V
quasi-energy functions suificiently quickly approximate to asympto-
tic expressions sin (/#) and cos ({8); in Fig. 3 it would correspond
to two peaks (Fourier-amplitudes) A_ .

For quantitative characteristic of the structure of eigenfunctions
corresponding to energy levels for ¢ V it is convenient to introdu-
ce the following values [20]:

o0 172 oo
£=2[ y (n_ﬁ)ﬂmnuﬂ] . A= Y A (3.5)
eI gy A= — oo

In (3.5) A, are coefficients of expansion of the eigenfunction ¢.(®)

into functions (i/\/i;:;)exp (in®). The value n determines «center of
ravity» of the function q.(®); ! is its mean-square width
EZIAM?:l). Fig. 4 shows the dependence of [ on the number of

n

the eigenstate n.. As it is seen from Fig. 4 the efiective width / of
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8
t_zlsfl—l—lr—l—o—l—zg—l n

Fig. 3. Quasi-energy [unctions of an isolated resonance in the basis of unperturbed

(Vi=V;y=0) states. Fourier-amplitudes C, of all eigenfunctions of the coupled states

(e<<V) of the system (3.4) with parameters V=0.2: ¥Y=5-107" h=1 are shown.

Value n, corresponds to the number of the eigenfunction n, are reading from the
bottom of the potential well.
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the eigenfunction increases with approaching separatrix (edge of the
well), and for quasi-energy functions in the region of separatrix
[s~8n (see (2.7)).

Such a «delocalization» of quasi-energy functions when the le-
vels approach the edge of the well is characteristic property for any
undestroyed resonance (including secondary and higher resonances

{

n —

l
2l
e e T T S e

e f ~ i n Ng

Fig. 4. Dependence of mean-square width [ (see (3.5)) of the eigenfunction on n. for
parameters in Fig. 3.

of the s¥stem (2.1)). Therefore an approximate estimation takes
place: ™ ~8n(V.) where V, is the depth of the potential well of
m-th resonance. In the classical case the structure of the phase
space is self-similar when one goes from large to small scales
[16 —17], therefore certain properties of renormalization for the va-
lue £ [21] also take place.

Now pass on to the description of the structure of qua-~i-energy
functions in the system (2.1) of two interacting resonances in the
transition region K= K., where according to [16] the value K. is
given by the estimate K. ~0.71 and corresponds to the destruction
of the last invariant curve of rotation lying between classical reso-

14

nances in (2.2). As it was mentioned above we confined ourselves
only to the analysis of odd quasi-energy functions of the system
(2.1) with V,=V;=V, h=1 (here and further dependence on time
in the function W.(0, {) is omitted):

W(—0)=—W(0)=—= ) Chsinnd (3.6)

where W¥.(0) =W.(0, 0). Therefore instead of expressions (3.5) in-
troduce the following: -

= 1/2 .
=2[ Y e—afiC] s A=) niCal? (3.7)
L

A=

with normalization )| C,| 2=1.

Fig. 5,a,b,c shows the dependence of n on [ for three values of
parameter K; a) K~0.57<<K. is a weak interaction of resonances
(resonances in the  classical system - do not overlap);
b) K~1.33> K.; ¢c) K~4.45 is the case of strong interaction (pri-
mary resonances are destroyed in the classical limit). Further in-
crease of K> 4.5, as it has been already mentioned, results in mat-
ching primary resonances and decreasing stochastic component.
Every point in Fig. 5 corresponds to odd quasi-energy eigenfunc-
tions W.(0). For comparison with the classical picture of phase
space (Fig. 1) Fig. 5 must be supplemented with symmetric lower
part n<<0 in respect to straight line n=0 (such symmetric picture
corresponds to expansion of function W,(8) into functions
exp (in0)). Then two symmetric points on the diagram (n, /) would
determine one and the same quasi-energy function ¥,.(0), and in the
classical limit they would correspond to the motion in two parts of
phase space with /= 0 and /<C0.

From Fig. 5,a it is seen that points corresponding to diiferent
¥.(6) lie mainly on three branches; further we will call this picture
«a beak». The upper part of the beak corresponds to functions
¥.(0) lying above the edges ol potential wells of primary resonan-
ces (classical trajectories of «untrapped» particles correspond to
tkem). Eigenfunctions of the levels being inside the potential wells
of the primary resonances correspond to the points on the horizontal
branch of the beak. The lower branch of the beak in Fig. 5,a corres-
ponds to functions W.(0) situated on the diagram (n, {) between
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Fig. 5. «Centre of gravitys dependence m of the eigenfunction on its mean-square width / for

the system (2.1) with parameters V,

nances do not overlap, K

=().45.

5.-107% 8n~25.5. Fig. 5,a—classical reso-
weak overlapping ol resonances, K=~ 1.33,

i

g==1)

~0.57, v~3.5; Fig. 5,b—
v=1.5; Fig. 5,c—strong overlapping of resonances, K= 44, v

primary resonances and half-integer resonance (vicinity of n0, in
Fig. 1,a—vicinity /=~0). Note two circumstances: 1) the points on
the horizontal branch with small [ correspond to eigenfunctions
lying near the bottom of the potential wells of primary resonances,
and such functions are, in this sense, well localized; 2) the lower
branch of the beak in Fig. 5 includes some points of the upper
branch of the beak of half-integer resonance (small «splash» in the
neighbourhood n=a0 on the lower part of Fig. 5,a). The most delo-
calized eigeniunctions corresponding to the vicinity of separatrices
of primary resonances are situated at the top of the big beak.

Ol great importance is the fact that each undestroyed resonance
with number m corresponds to its m-th beak having main peculiari-
ties of Fig. 5,a but on a smaller scale, since the depth of its poten-
tial well decreases with m increase. With regard of the chosen in
Fig. 5,a parameters, estimates show that the number of odd eigen-
functions connected with hali-integer resonance is approximately 5.
It means, according to (2.9), that quasi-classical condition is not
weil satisiied. Correspondingly, the beak of this resonance not com-
pletely destroyed.

In the other limiting case of strong interaction (Fig. 5) the main
and hali-integer resonances are destroyed and correspondingly the
horizontal branch of the large beak and the whole lower branch are
destroyed as well. Only the upper branch of the beak corresponding
to high-lying states remained undestroyed. We should note the irre-
gular character of eigenfunctions belonging to the top of the large
destroyed beak in Fig. 5,c. They are not only delocalized (large
{>1) but, as it is seen from Fig. b,c, points corresponding to them
are situated on the diagram (n, /) irregularly. It means that in the
structure of these states itself there must be a certain portion of ir-
regular component. This problem will be discussed later.

Now dwell on characteristic pecularities of destruction of the lo-
wer branch in Fig. 5,a. This problem presents a particular interest
since destruction of this branch is connected with the destruction of
hali-integer resonance lying in the region na~0. In other words, we
are interested in the character of destruction of eigenfunctions near
the separatrix of half-integer resonance that in the classical limit
corresponds to the destruction of the last invariant curve between
primary resonances. Fig. 6,a shows the destruction of the lower
branch with increase of the overlap parameter K (the upper branch
in Fig. 6 i$ not given). As it is clear from Fig. 6 this destruction
takes place because of the destruction of half-integer resonance and
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besides in irregular manner (low points in Fig. 6,b,c). The primary
resonances thereby do not destroy (points on the horizontal branch
remain). With destructing eigenfunctions of the lower branch rear-
range —delocalize (/ increases) and are displaced on the diagram
(n, 1) into the region of the top of the beak of primary resonances
where they are also irregularly disposed (the latter is connected
with the destruction of separatrices of primary resonances). Such ir-
regular character of delocalization of quasi-energy functions is the
quantum manifestation of classical chaos. More detailed peculia-
rities of the character of destruction of the lower branch require ad-
ditional investigations including increase of matrices demension
used in the procedure of numerical diagonalization of the evolution
operator S.

4. QUASI-ENERGY FUNCTIONS IN THE REGION
OF MAXIMUM CHAOS

Now pass on to the problem of statistical properties of quasi-
energy functions in the region of maximum chaos when primary re-
sonances are completely destroyed. For this purpose consider qua-
si-energy functions belonging to the top of destroyed beak.
Figs 7,a,b show Fourier-expansion of two typical quasi-energy fun-
ctions with different regions of their localization. It is naturally to
assume that eigenfunctions of the type shuown in Fig. 7,@ being in
the region of stochasticity formed by overlapping of two basic reso-
nances of classical system will have the most statistical properties.
Points on the diagram (n, /) corresponding to these eigenfunctions
arrange in irregular manner and refer to the lowermost, distroyed
part of the beak (see Fig. 5,c). It may be expected that such states
in the restricted region |<<n<Cn. possess not only the property of
ergodicity [22] but also the distribution similar to Gaussian one
[23, 24] (see also [25]).

Statistical analysis of eigenfunctions was carried out by the fol-
lowing manner. According to numerical data value n. =48 is cho-
sen in such a way that the localization length of the chosen eigen-
functions would be more than n.,. Then the region along n is divi-
ded into four equal parts and for each of them histogram of distri-
butions of the value x,=ReC, in respect to the average value
(Xn) =0 is constructed. To improve statistics histograms for diffe-
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Fig. 6. Destruction of the lower branch of <the beaks with increase of the overlap

parameter

K:

6n =51,

V=20,

! 1=2.5-10"%
Fig. 6,b — K=08, v=25:; Fig. 6,c — K=1.0, v=2; Fig. 6,d — K=1.1786,

Fig. 6,a — K—0.625,
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Fig. 7. An example of two quasi-energy eigenfunctions in the basis of unperturbed

states with strong overlapping of primary resonances of the classical system (2.2):

Vi=Vs=20; y=25-10"% K=45, v~0.44, dn=5l. Fig. 7.a —eigenfunctions from

the region ol destroyed part of the beak, L~36, i~ 23: Fig. 7,6 —eigenfunction from
the transition region of the upper branch of the beak, i~ 24, n~46.
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rent values of the overlap parameter K have been summed up. As a
result the total number of N, realizations for each histogram is
N1=1956 (see Fig. 8). Smooth curves in Fig. 8 correspond to Ga-
ussian distribution with numerically determined by histograms va-
lues (x> and o:

Pix)= — exp(— {"—‘ig‘i}_) : (4.1)

2na 20

Data represented in Fig. 8 evidently show considerable deviation
of distribution Pj(x) from Gaussian one. Apparently it means the
presence of a regular component in the distribution of Fourier-amp-
litudes C, even for the states with a large length of localization
{>1. It is interesting to note that the distribution Ps(x) does not
practically depend on the interval according to which the summing
up is made (Fig. 8,a—d). It seems somewhat unexpected since it is
natural to assume that for small n corresponding to the most des-
troyed region at overlapping of resonances in the classical model
correlations must be less than at the edge of localization of the
eigenfunction n<<n,<</[. All numerical data can be interpreted in
such a way that the limitation (in action) of the region with stoc-
hastic behaviour leads to considerable correlations between amplitu-
des in the whole region of localization of eigenfunctions. As a result
such correlations increase quantum limitation of classical chaos
(which is not strongly developed for the considered model).

5. STATISTICS OF QUASI-ENERGY SPECTRUM

[t is known that specific statistical properties of energy spectrum
of the quantum system are related with the chaotic motion of auto-
nomous classical system (see, e. g. [4, 26]). For the quantitative
description different statistical tests [27] are used, particularly, dis-
tribution P(s) of distances between neighbouring levels of energy in
the spectrum of the system. In statistical description of complicated
quantum systems such as heavy nuclei and atoms the dependence
P(s) is one of the most important characteristics in the Wig-
ner — Dyson theory [28 —29]. In the simplest case P(s)-dependence
has the form:

P(s) = AsPe™5¢ (5.1)
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where s is the distance between the nearest levels, 4, B are norma-
lization constants, B is the parameter determining the degree of re-
pulsion of neighbouring levels. As it follows from Rel. [29] the va-
lue of the parameter p=1: 2; 4 is connected with the symmetry of
the initial system.

In Refs [30—31] it has been shown that Wigner — Dyson distri-
bution takes also place for nonautomonous systems (with perturba-
tion periodically dependent on time) which are stochastic in the
classical limit (see also [32]). In this case dependence P(s) descri-
bes distribution of distances between neighbouring levels of
quasi-energy reduced to interval 2n/T, where T is a period of per-
turbation.

For our system (2.1) distribution P(s) for all quasi-energies g,
in the case of maximum chaos K=4.4 has the form represented in
Fig. 9,a. Here, as well as earlier, to improve statistics the ensemble
consisting of several systems (2.1) with different values of stochas.
ticity parameter K has been used. For comparison Poisson distribu-
tion is represented in Fig. 9,q:

Pls)=Ste ™/ (5.2)

which can sufficiently well describe distribution P(s) for the
systems which are integrable in the classical limit (see [33], as
well as discussion in [34]). From Fig 9,a it is clear that numerical
data for P(s) are much closer to the dependence (5.2) than to Wig-
ner — Dyson distributions (c.1). Note that owing (o invariance in
respect to time reversal both for the initial system (2.1) and for the
model (2.13—2.19) only value f=1 should be considered [31]. In
spite of not bad qualitative agreement of dependence P(s) in
Fig. 9, with Poisson distribution slight deviation in the region of
small s A is noticeable. Proximity of distribution P(s) to Poisson
one is not suprising since statistical treatment was carried out with
all eigenvalues, the most part of which corresponds to strongly lo-
calized states. The latter include also the states corresponding to
stable classical motion out of resonance (rotation). Therefore it is
natural to consider statistics of eigenvalues of those quasi-energy
states that have large width />>1 and to a certain extent are irre-
gular. j

Fig. 9,6 shows distribution P(s) for those eigenvalues which
correspond to the most delocalized eigenfunctions of quasi-energies

S BRI VR

Fig. 8. Histogram ol distribution of the value x,=Re C_',, for eigenfunctions ::rihzna

big length of localization (31 at strong overlapping ol remgancesd jaml

vy=25-10"% 8nabl, Ni=1956, n.,,=48. The Dver]a‘p p.arafneter K ¢ ang‘ef wd‘ﬂg‘

the limits 4.5<C K<C5.1. Smooth curve — Gaussian distribution (4.1). Data ;r 12:

rent sections ol unperturbed states are given: a) 1<n<12; b) ]Sr&niitﬁ

c) 26<<n=<_36; d) 37T<n=<48. A sel:uar:ate ﬂp;ak shows the number of wvalues
|x|>0.2.
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fig. 9. Distribution P(s) of distances between neighbouring values of quasi-energy

for V=20, y=2.5-10"% 8na5!. Value A corresponds to mean distance between le-

vels: A=2n/N. Smooth curve— Poisson distribution (5.2). Fig. 9,a —distribution

P(s) for all eigenvalues: N,=2047, 4.31 << K<4.52; 0.44 <v<<0.46. Fig. 9,06 — distri-

bution P(s) for the most delocalized and irregular staies, N;=778; 31 << K<{4.46;
0.45 <v<<0.46. :
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{see Sec. 4 and Fig. 8). In comparison with Fig. 9,a in the region
of small s diviation from the dependence (5.2) became stronger.
Particularly, the appearance oi repulsion between close levels of
quasi-energies is noticeable. In the whole, however, even for such
states distribution P(s) is rather far from Wigner —Dyson one
(5.1) with p=1. It means considerable correlations in quasi-energy
states and agrees with mentioned in Sec. 4 nongaussian character
of Tfluctuations of components of eigenfunctions. In this case
distributions P(s) appears to be intermediate between Poisson dis-
tribution and Wigner — Dyson one. Such situation is typical for au-
tonomous gquantum systems which phase space in the classical limit
is divided into regions with stable motion and ones where the moti-
on is stochastic (see, e. g. [35]).

6. CONCLUSION

While considering nonlinear quantum systems with an external
pericdic in time flield an adequate method of discription is one of
quasi-energy representation. On the diagram (n, [) (n is «center ol
gravitys of quasi-energy functions, [ is its effective width) quasi-
energy functions at large quasi-classical parameter form characte-
ristic structure which we call «a beak». Since in the classical limit a
potential well with amplitude V, corresponds to some isolated reso-
nance and certain renormalization of phase space takes place owing
to high resonances [16, 17], in the quantum case on the diagram
(n, [} analogous renormalization arises for «the beaks» of undest-
royed resonances. In this picture, however there is a quantum limit
connected with the existance of high resonances for which the num-
ber of trapped levels is small [21].

It is known that in the classical system the distruction of reso-
nances is accompanied by the appearance of regions with chaotic
component. In the first turn these regions appear in the vicinity of
separatrices of interacting resonances. In the quantum case an ana-
log of classical stochasticity in terms of quasi-energy eigenfunctions
is their reconstruction with appearance of irregularity on the diag-
ram (n, /) and with their delocalization. The latter means consider-
able reconstruction of quasi-energy function owing to the increase

of the number of harmonics of unperturbed spectrum containing in
it (see Fig. 7).

25



Analysis of distributions of delocalized quasi-energy functions
corresponding to destroyed resonances and distribution of distances
between the nearest levels of quasi-energies shows the presence of

considerable correlations. The latter are related both with the res-

triction of chaotic area in the phase space of the classical system
and with the quantum effects leading to the limitation of classical
chaos.

We are greatly indebted to B.V. Chirikov for the constant atten-
tion to this work and useful comments and to A.R. Kolovsky and
D.L. Shepelyansky for discussions.
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