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ABSTRACT

The problem of FLR eiiect on plasma equilibrium in
mirror geometry is studied. The equation is dfaveii::pped
which governs equilibrium pressure distribu‘tmln in the
trap. We find that qualitatively new equilibria occur
not only for large Larmor radius plasma but even in
the case of small FLR effect. For small Larmor radi-
us, an analytic solution is found that describes MI—_I[}
equilibrium perturbed by a small scale vortex-like
structures.
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1. INTRODUCTION

In many modern mirror machines plasmas with relatively large
Larmor radius are confined in a magnetic field with small curvatu-
re of the lines of force. It has long been known that for such plas-
mas finite Larmor radius effect (FLR) significantly influences cha-
racteristics of the MHD oscillations and, in particular, stabilizes the
interchange instability [1]. In the limit of strong FLR effect, when

TR (1)
a

where o; is the ion Larmor radius, a is the plasma radius, = is the
magnetic field line curvature, all the interchange modes are stable
except for m=1 mode corresponding to the rigid displacement of
the plasma.

Considerably less attention was paid to the FLR eifect on plas-
ma equilibrium, although, as it was noted in Ref. [2], this eflect is
also very important for the equilibrium problem when inequality (1)
holds. Only in a few papers [3—5] the effect of FLR was studied
in connection with distortion of the equilibrium flux surfaces caused
by the parallel current in a long nonaxisymmetric tandem mirrors
[6] .

In this paper we consider finite Larmor radius plasma equilibri-
um in a paraxial (in general, nonaxisymmetric) mirror trap. The re-
quirement of paraxiality means that the plasma radius a is small
compared with the vacuum magnetic field scale length L, a< L.
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An important small parameter in the problem is the ratio of the
ion Larmor radius to the plasma radius:

£=£<§I.
a

Together with finite value of this ratio we allow ifor the azimuthal
plasma rotation caused by the radial electric field E in the plasma.
This field is assumed to be not very large, E<W:/ae, where W, is
the ion energy. In what follows, in «FLR efiects» we also include
the effects of plasma rotation having the same order of magnitude
as «trues ion finite Larmor radius eflects. :

The paper is organized as follows. In Sec. 2 the equations are
derived governing equilibrium of a collisionless anisotropic FLR
plasma in a paraxial trap. The FLR terms in these equations are
derived in Sec. 3. in the case of the magnetic field with straight
lield lines. In Sce. 4, plasma equilibrium in a quadrupole mirror
cell is considered and, in Sec. 5, the main results are discussed.

2. EQUILIBRIUM EQUATIONS

Our starting point is the force balance equation which for colli-
sionless plasma reads

i ecken bii ), (2)

wher fis the current density, B is the magnetic field and p stands
for the plasma pressure tensor ((VP)u=0p.;/0xs). The eq. (2) is
an exact consequence of the steady state kinetic equations for elect-
rons and ions ii the tensor p.; is understood as the density of the
momenfum flux:

Pup = Em S Uy Up.f' d*v , (3)
i

where [=f(F, 7) is the distribution function of a plasma species.
Neglecting FLR effects, the tensor g, as is well known, takes the
jorm (see, for example, [2]):

i :
Bup = F:Iﬁ:l =[N hu.hﬁ + PL {huﬁ e hr:hﬁ]v {4}

where p, and p _-are pressures along and perpendicular to the mag-
4

netic field and fi=B/B. Formally, one can derive the expression (4)
from (3) neglecting the difference between a particle’s position and
that of its guiding centre and identifying particle distribution func-
tion f with the guiding centre distribution function [,.. The latter
does not depend on the gyrophase, f,. =f,. (o, v,,7) and putting it
to (3) yields (4). Allowing for the difference between f and f,. gi-

ves a correction to ply which we denote by pap:

ﬁaa =P¢EE} +P;ﬁ+ (5)

In general, the tensor pg has nonzero oifdiagonal terms'. The
: iy : (0)
magnitude of pgp is small compared with p,’; one can show that
T 2 (0) 7
p'—‘ﬁ € pnﬁ [ ] =
From eq. (2), one can find current density j. which is perpendi-
cular to the magnetic field

i = =B, vA]. (6)

The parallel component of j is determined by the charge balance
equation
d

divﬂ]=BETE-=—divﬂ : (7)

where d/ds is «along the field line» derivative, 8/ds=h< . Putting
(6) and (b) into (7) after considerable algebra one can cast (7)
into the following form

a {j PL =P i 4 e
,é;(%[lqr&}n——gl]) =—Fh[-4, V(P +pI|]] =R

20 = — ; L .= A
— SR [E VPT+ g5 h ot v, (8)

where # is the curvature of the field line. In the limit p’—0, eq. (8)
reduces to the well known equation for j, (see, e. g., [8]) which
says that the parallel current in plasma is due to the nonzero cur-
vature of the field lines. Now, allowing for finite p°, an important
fact is that the last term on the right hand side of eq. (8) does not

D Strictly speaking, the partition of the tensor pss on piY and pis is not unique
since a part of the tensor pgs having the structure (4) can be put into piY. For what
follows, this is not important.
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contain curvature. For that reason, in spite of the smallness of the
tensor p’ compared with p, and p,, in a paraxial system with small
curvature, parallel current generation caused by the FLR effects
may compare with and even dominate the contribution to j, coming
from the zero Larmor radius magnetohydrodvnamics.

We shall henceforth neglect the second term on the right hand
side of eq. (8) since it is proportional to the product of two small
quantities » and p”.

We assume that plasma coniined in a mirror trap is isolated
from the end plates by a vacuum region where j vanishes. Integrat-
ing eq. (8) along a field line over the plasma region and making
use ol the boundary condition j =0 at the ends of the integration
interval, we find

S %‘% R{E YV (pL+p)] S % h rot Vi’ =0, (9)

This is the main equation governing the plasma equilibrium in the
mirror trap. In the small B limit, one can neglect distortions oi the
magnetic field by the plasma pressure and use the vacuum magne-
tic field for evaluating integrals in (9). eq. (9) then delermines
possible pressure distributions in the given magnetic field. It p~1,
then the mirror magnetic field should be seliconsistently found
taking into account the currents flowing in the plasma.

3. PLASMA EQUILIBRIUM IN A UNIDIRECTIONAL MAGNETIC FIELD

Since FLR effects, as it follows from eq. (8). survive even In
the limit x—0 we consider first the simplest case of a plasma equi-
librium in the magnetic field having straight field lines [9]. This
problem is a zero approximation for studying more complex equilib-
ria in curvilinear magnetic fields.

Let magnetic field be directed along the z axis, h=e., and all of
the pertinant quantities depend on x and y only. eqgs (2) and (4)
then reduce to :

R :
v(p, + H_) =5 (10)

n

where we neglected small FLR corrections. As it follows from (10),
the functions p, (x,y) and B(x,y) have the same lines ol constant
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value in x, y plane and introducing a new function \(x,y) which is
constant along these lines we can put p, =p, (). eq. (10) reduces
then to :

|
¢+ — BB, =0,
pry+ - BBy =0 (11)

where the subscript § denotes differentiation with respect to 1.
In the case under consideration, eq. (8) takes the form

e: rot Vp’'=0. (12)

The tensor A’ in this equation is derived in Appendix | basing on
the kinetic treatment of the problem similar to Newcomb’s approach
[10]. In this derivation we use the following statement [I1]: not
only p, but also the ion and electron distribution functions (and, as
a consequence, all their moments) are constant on the lines
| =const.?’ This is also valid for plasma potential ¢, ¢=¢(p).
Having calculated f’, eq. (12) can be written in the following form
9. 11]

LD S A (%, (V) _

£ Ay 13

i axy) 2 ¥ alxy) I
with ‘1=A4(y) given by

mc?[en 2 | m :

A= " [F‘Fﬂ:“‘?F'FHp[P;BJtp"'mBmp%} {14}

where m and e are the ion mass and charge and

dgla. ). da ab da ab

a(x,y) ~ax 9y dy 9x

In (14) a=n(y) is the plasma density and g=gq(\}) is the forth
moment of the ion distribution function:

1
g=—5m S vt | d%.

As it follows from eq.(14), there are two independent sources of
the FLR effects which contribute to A. In a small p§ plasma, when
one can put B, =0 the parameter A is determined by the radial

2 In Ref. [10] this property was referred to as isorrhopy.
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electric field only. The last term in (14) which is proportional to the
magnetic field gradient becomes essential at p~~1.

We shall not discuss here the equilibria governed by eq.(13) be-
cause this equation was studied in Ref. [9] where the limit p<1
has been considered. Finite p adds to A only the last term in (14)
but does not alter eq. (13). Hence, the results of Ref. [9] are also
valid in the general case of finite p.

-

4. PLASMA EQUILIBRIUM [N PARAXIAL MIRRORS

For a given mirror magnetic field we employ the flux coordina-
tes p, v defined so that B=[vp, Vv]. The functions p(7) and v(r)
are constant along every field line. As a third coordinate we use al-
so the arclength s counted along a field line from the mirror central
plane.

As it was noted in the previous section, in the unidirectional
magnetic field all the pertinant quantities (p,,n, ¢, B) depend on x
and y through the function y. Looking for equilibria in a paraxial
mirror we assume that such dependance on ¥ persist but, on the
other hand, all of the aformentioned quantities vary along field li-
nes being functions of the magnetic field modulus B:

piy=p.,; (¥, B),
o=9(y, B), (19)
n=n(y, B),

where =1y (p,v). This assumption, as it was shown in Ref. [2], re-
sults from the fact that particle’s drift trajectories in a quadrupole
mirror lie on the surfaces y=const. We, however, do not give a de-
rivation of egs (15) from kinetic theory, but take them as a con-
straint on a class of equilibria under consideration. Note that this
assumption is also used in Refs [3—5].

Since the last term in eq. (8) is small in parameter e*, we do
not take into account the effect of finite curvature in this term and
use for firot v’ the expression (13) from the planar problem. The
¢ derivative in (13) now is to be understood as partial and the
gradient and Laplacian in (13) should be changed by Vv, and A, ,
respectively, acting on x and y coordinates only (we assume that
the axis of the trap points to z-direction).

8

In order to transform eq. (8) to coordinates u, v we employ the
relation

d(mv) _p
d(x, y)

which is valid in paraxial approximation [2]. This casts eq. (8) to

@ (j PL—P i 8 s
a(_g—[}-}—tin—léz—-"-])'#—yh[ﬂmvllﬂ (PLy+Piy) +

-|--E—[A a(p, A p) (16)

1, 00 (V%))
; +gA ]

a(p,v) HloEE T

and eq. (9) takes the form

ds ...
| SR V] (Pry + 1) —

_ng_[Aa(wrsxm) L, 96, (Vuw)* ]

—A
B d(p,v) » g% v

(17)

To proceed further analytically we constraint ourselves by the li-
miting case B« and consider a quadrupole mirror cell having
Ing-Yang symmetry. Using the conventional representation of the
magnetic field of such a mirror (see, e. g., [8]) one can perform
integration along field lines in (17) and obtain an equation for the
function ¢ (see the derivation in Appendix 2)

0y _ 70(0.A%) 1 7 3% (VW)
D —A e - e
%) 56 et T aew

(18)

Here v is supposed to be a function of field line coordinates in the
central plane of the mirror E, n (rectangular coordinates) or r, 0
(polar coordinates in this plane); A, and ¥, are two dimensional
Laplacian and gradient, respectivly. The function D(y) is given by
(2.10) and the bar over A means an averaging determined by
eq. (2.8). Note that in our limiting case <1 one can neglect the
last term in eq. (14):

mc

tfen o |
=22 (B )

The first term in (18) describes MHD equilibria in pure MHD
approximation without FLR. It vanishes when y=1(r), i. e. when
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the cross section of the surfaces y=const constitute a set oi con-
centric circles. We shall refer to the case y=vy(r) as the MHD so-
lution. Note that this is also a solution of eq. (18) since both Jaco-
bians in (18) vanish when ¢ =1y (r). However, as we shall show la-
ter eq.(18) has also other solutions different irom MHD ones.

Let us examine the relative order of different terms in eq. (18).
Taking as a rough estimate dy/dn~dyp/dE~y/a and assuming
ep~ W, one can find that the ratio of any of the last two terms in
(18) to the first one in this equation is equal to® the parameter
0?/na® which determines the role of FLR effects in the interchange
oscillations (see (1)). In the case of>>xa® one can neglect, in zero
approximation, the first term in eq.(18).It then reduces to eq. (13)
in which A should be changed by the averaged quantity A. In this
limit the curvature effects completly come out from the equations.

In the other limiting case, of<na® when the last two terms are
small compared with the first one, at a first glance, one can neglect

these terms and retain only
r[,l MHD contribution. However,
the situation is more subtle,
since there is highest (forth
order) derivative in the se-
cond term of the equation, so
neglecting this term decreases
the order of the equation
which, in general, results in
To loosing solutions.
We present now an
+ example which shows that
§_ eq. (18) does have solutions
different from y=1(r) even
in the limit o?/xa®—0. These
solutions describe small scale
structures localized on the
MHD solution background with a scale length [ small compared
with the plasma radius a (but large compared with the ion Larmor
radius g:): '
~ Given a MHD-solution Vv=W(r) with corresponding functions
A(p), D(y), we choose a local coordinate system X, y so that the
axis gy points in 0 direction (see Fig. 1).

Fig. I. Local coordinate system X, i.

3 If one assumes ep< W, then this ratio is equal to feq/W;xa®.
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In this local system, 8/00=r,0/dy where r, is the radius of the
origin of the coordinate system. Since the radial length scale of the
functions A and D is equal to the plasma radius a, these functions
can be considered to be constant in the vicinity of the origin of the
local system, the constants being the values of A and D at the point
r=r,. For constant A and D, in ¥, j coordinates eq. (18) comes to

ap  a(yp, Ayp)

;s —— =0, (19)
ay a(x, i)

where
et D{(W(ry)) ,‘a{__: a* a*
TNy S AR o

The boundary condition for eq.(19) reads: $—Xxd¥/ar| _, at
P4 §%—>oo. It means that at large distances the function  fits the
MHD-solution which locally looks like a linear profile.

Using a method proposed in Ref. [12] one can find a class of
localized solutions of eq. (19). These solutions exist only if y/¥’'<0
and have a form

i
| F PO | ][‘.05{1, =i
P [9 K0 1 () e
1 y :
w-—?[—fﬁ— ) .f,(k@]] cos o, o<h; (20)
where
0=AX+i°, u=arctg—f’j—,
X

and parameter k is defined by

where K, and K, are McDonald functions, J, and J, are Bessel
functions and A is an arbitrary parameter. The characteristic length

scale of the solution (20) is: fmqm?/xa. Figure 2 shows the equipo-
tential lines of the solution (20) and ¢ vs. x at y=0.

The structure of the equilibrium corresponding to MHD-solution
with a perturbation given by eq. (20) is illustrated by Fig. 3 which
shows that the perturbation consists of two vortices immersed in the
background axisymmetric equilibrium configuration. Note that, in
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Fig. 2. The lines of constant ¢ (a) and ¢ vs. ¥ at §=0 (b) given by eqs (20) for
A=5 (k=0,88).

e — ™

addition to arbitrary parameter A, the position of the vortices in the
E, n plane is also arbitrary. Due to small scale of the vortices
(compared with the plasma radius) it is evident that the equilibrium
equations exhibit also solutions corresponding to many nonoverlap-
ping pairs of vortices.

nt

ury ¥

Sl

Fig. 3. The global picture of
the lines of constant ¥ in the
mirror midplane for MHD
equilibrium with FLR local
perturbation (20).

Concluding this section, we note a close relation between our so-
lution (20) and flute solitons studied in the Ref. [I3] (see also
[14]).Y This relation becomes clear if one transiorm to a frame
moving with the soliton velocity; in this frame the soliton is at rest
and it can be considered as an equilibrium configuration.

5. CONCLUSION

The most remarcable feature of the equilibria governed by the
FLR effects is a breaking of the initial symmetry of the MHD-solu-
tions. These solutions, as it follows from the results of the previous
sections, are axisymmetric in a sence that the lines of constant pres-
sure in the mirror midplane are concentric circles. Vortices arising

*) This relation was pointed out to the author by V.P. Pastukhov.
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in the limit o?<a®x clearly have not this symmetry. One should em-
phasize that although we have concentrated on the quadrupole mir-
ror geometry above our results are also applicable to axisymmetric
mirrors that correspond to the limit when quadrupole component of
the magnetic field vanishes. The symmetry breaking in equilibrium
may result in an increasing of transverce transport due to neoclas-
sical mechanism of losses [15].

Another important point is that allowing for FLR effects makes
the equilibrium problem nonunique: the equations now have many
solutions corresponding to different equilibria in the same vacuum
magnetic field. The question of which equilibrium is established in a
real situation appears to be related to stability analysis that lies
beyond the scope of the present paper.

APPENDIX 1

The calculation of &.rotVp’ becomes much more easy if one
uses complex notation. Let us define particle’s position in x, y plane
by a complex number w:

W =x—iy, (1.1)
and particle’s velocity by
W=Ux—ily, (1.2)
We introduce also «complex pressures P instead of the tensor p gi-
ven by eq. (3)
P=m §@?fd®v=m § (vi—0v}—2iv,0,) [ d°0 =prx—puy—2ipsy. (1.3)
where [ is the ion distribution function. In eq. (3) the electron con-

tribution is neglected since FLR effects are due to the ion species
only. Defining complex diiferentiation

izi(i+'gﬁ_ ; jfji(f__fi), (1.4)
dw 2 \iox ay dw 2 \ax ay
one finds that

a?p

& rot Vp=—2 Im—. (1.5)

dw

Before proceeding to the cal¢ulation of the cumplejlx pressure P
we should derive the ion drift equations within the order &* (to the

14

b

first order in e these equations are given by the standard driit

theory).
The ion equation of motion in the complex form can be written as

S @—iw=¢eE, (1.6)
Q
w here
eB 5 A c oy
—_ — I:',= i E; _IE =_'“2__" ¥
= mc’ B o 2 B dw

¢ is electrostatic potential, the dot denotes differentiation with res-
pect to time and & is a formal smallness parameter which has to be
equated to unity in the final result.

In accordance with the general theory of drift motion [16], the
solution of eqg. (1.6) is written as an asymptotic series:

- 24 —i 3i
w=w,+ew, e +elw,e +elw_je " +ewe +o(e’), (1.7)

where wy (k=0, £1,...) are smooth functions of time and fast oscil-
lations with Larmor frequency are described by the phase multi-
pliers exp (ikt). The phase change rate is determined by the frequ-
ency Q at the particle’s guiding center position:

TELE B T (1.8)
£ e

where x, and y, are connected with the first term in the series
(1.7):

ol (Wy—0 5} - (1.9)

Wo+ 1w, ,
(Wy+ w ) T

i

0o | —

}:D:

The amplitudes w, with £>1 and k<0 should be expressed through
w, w, and their derivatives at the guiding centre position as
asymptotic series in nonnegative powers of e. The time evolution of
w, and w, is given by the following equation:

E&'nzﬁfqﬂ.—l_u (EE] y

@, =eA,+o(e?), (1.10)

where A, and A, depend on x,, Y, Rew,, Imw,. The problem now
consists of calculation of A, A, and also w,, w,, w,; in (1.7).
Putting the series (1.7) in eq. (1.6) and making Taylor expan-
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sion of the functions Q@ and E with respect to the diiference w—w,
to the second order in parameter &, one finds

i 19,

Ag=iE—i|w,|?

aw
w? g0
Wy = —— ——, L1
7 29 dw ki)
1 w i ey i PR . DO R
W =—ww —=|—] ——ww, s o Tl s
4 @\ dw 4 dw 2 9Q dw

We do not give here expressions for A, and w, since we shall not
need them in what follows. The functions E and Q on the right
hand side of eqs (1.11) are computed at the guiding centre position.
Let us now introduce real variables u and y so that
W, = — 27,
2,

(1.12)

We shall characterize the guiding centre position by parameters x,,
Yo, 4 and 8 = t47.

In order to calculate P, we utilize guiding centre distribution
function [, which, in steady state, depends on x, y, and u [9].
With this function, the number dN of the guiding centres in the infi-
nitesimel area dx,dy, having values u, 0 in the intervals du, df is
equal to

dN=[g. (Xq, Yo, u) dxydy, ududo. (1.13)

[t is easy to see that P is given by the following formula
P(x',y)=m § dx,dy, ududd f,. @*(x—x')8(y—y’), (1.14)

where the §-function accounts for the difference between a particle’s
position in x, y plane and that of its guiding centre. We recall that
x and y coordinates in (1.14) are functions of xg, y,, «, 0 given by
eq. (1.7) in the complex form. We find the complex velocity @ to
the order of &’ by differentiating (1.7) with respect to time and
using (1.8) and (1.10):

{E-':_'I leﬂ EII+EAE'+2I Egﬂw? EEH’

—ie?Quw_, e " +3eiw, Qye™ +0(e?). (1.15)

Now, it is useful to come from the real quantities x, y, x’, ¥', x,,
B

Yo in eq. (1.14) to the complex variables w, w’, w, using an identity
dx,dy, 8 (x—x") 8(y—y’) =dw,dw, b (w—w’) §(w' —w” ), (1.16)
so that
Pw,w”)=m § dw,dwyududd fo. #*8(w'—w)d(w"—w’). (LI7)

Finally, putting (1.15) and (1.7) into (L.17), expanding §-function
in the Taylor series according to

e Lggs & 1.18
6{w+sz}=6(w}+sz~{a—wﬁ[w}+ 5 g w awzﬁ{w]—k.,. ( )

and integrating over w,, @, and 0, we find

pg o4t 8 s, % B 402\
P(w,w')=¢ [E-ﬂ?m,w?gz} > oo (0,2
—2 === (AQ1w|% A+ 2w o@D ], (1.19)
w
where (...) denotes an averaging
{..)=2nm S udu fge (0,0, u) ... (1.20)

Defining the moments of the function [,
n=2mn Sudu fge s |
py=nm §udu fe. _ (1.21)

g=nm S adu fo. ,

we rewrite (1.19) as f_{)lluws _

2p, OE a -Bp: E 0Q
S 2 4Py 4 A
i e [ it Q ﬁw'+ dw’ Q L Q? dw
2 20— |
_ii_i_:g_a,(i_‘?ﬂ_)_i(iﬁ) _.ﬂ‘?_ag_ﬂ]‘ (1.22)
dw'? Q2 dw' \Q* dw’ Q4 \ dw Q Jw

Now, let us use the isorrhopy condition supposing that

p=n($), pL=pPL(¥), §=9(¥), ?=0(¥), (1.23)

and the function, ¢ depends on w and w’. Taking into account
(1.23) one easily finds that eq. (1.22) takes the form:
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2 ;
P=2(¥) (53) + =2 n(¥) o, (1.24)

i

where & and y are real functions and

: 4mc? i P, I g, B)
h=_— e o R R . B e ’ 9
. (32+53{p*}+4 e B £159)

The prime in (1.25) denotes differentiation with respect to . Acting
by the operator Imad?/dw? on (1.24) we vanish the second term and
the Tirst term gives

a2 3 3 LR ’
d P it (2;& a 13; 1}7 S ul.i,’ d (aq. ﬂli?.)) "
dw? dw dw’odw "dw dw \dw dw

B dbEae L @w,{wﬁl) .
—(» oY) oA TD )y (1.26)

Im

This result, together with (1.25) and (1.5) is equivalent to (13),
(14).

APPENDIX 2

In paraxial approximation, the vacuum magnetic field of a quad-
rupole mirror is given by the magnetic potential +:

= § B(L) dt — B/ (< +41) =B~ (2.1)

where B=wv7y, x, y and z are cartezian coordinates with z-axis di-
rected along the mirror axis. In eq. (2.1) B=B(z) is the magnetic
field strength on the mirror axis. b=b(z) determines the quadru-
pole component of the field and the prime denotes difierentiation
with respect to 2. So called Ing-Yang symmetry means that the
functions B and b are even. \*lacrnetlc field line Cnrnlng irom the po-
int with coordinates x=23, y=n in the mirror midplanc¢ is given by
the following equations [8]:

x—-—E v —flT.U
y=n '\/-%“l e (2.2)

18

where By=B(0) and
z 1__ .
Bish =4 S :{i’;J dt. .
B(L)
a
’ From (2.2) one finds how & and n depend on x. y, 2.
ptiarerms A LR
I:3[!-
W=nti, 2) = y’\/ﬂE f'_m"'.g. (2.3)
B,
One can identily the flux coordinates p and v with ¥B,& and
VB, n. respectively, so that

difg) _ 1 a(.g)

alu,v) B, (. n)

Let us now calculate A, ¢ and (W, )? considering  as a fun-
ction of £ and n and taking into account linear dependence g on x
and y on n:

2
a*y A%y m(;g){ a?lp(.ai)
&), o ax® % dy? s az? \dx . an? \dy/
2 i 2 e o 2 2
b ) b i} ) 7 i
i B AR T 24
; x ay at dx an ay
& Using (2.4) we lind Jacobian in (17)
ag, A p) L[ﬂ{m, r?”qa;fag'_ﬂ_(ﬁ)2+ a8 (. @%p/on?) (_ﬂ-‘ﬂ)g]
dlp,v) 3x Eﬂ a(E, n) - ax ad(z, n) ay i
d(p (V W)?*) _
d(p, v)
L[r?l'tlx (dp/9%)°) (ﬁ)2+ d (p, (3p/dn)’) (ﬂ_n)"] (2.5)
B,L  aEn) dx a(&n) oy

Note, that according to (15) A is a function of § and B. Since, with
required accuracy, B= B(z) and B{,.f} is an even function, 4 is an
odd function of z. Taking ds~dz and using (2.5) we find
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Sd_s[ﬂﬂw,a—_.wb pall &{111,{'?4-4:'1*}]:

B a (. v) s SR TR
_7000AY) , 17 3% (Veb)T) (2.6)
. dEy 1Y otk
where
_ 0% % 2 (%)’ (EEE2 9.7
ﬂu‘i’*—-{g‘f'a—y'gv (Vo) _(ﬂx) e 5_1;)' (2.7)
and the bar denotes averaging
Rivige ( dz4e®. (2.8)
B}

In deriving (2.6) we took into account that @ is an odd function of

i
As far as the first integral in (17) is concerned, it is, in fact,
calculated in Appendix 1 of [8]. Here we give only the final result

-

d d
{ S0 V] (s +p1w) =D 5 (29)

where

_ (4B'5—2Bb’) sh m] : (2.10)
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