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ABSTRACT

Coronal heating connected with electric currents gene-
rated by cellular convective flows on the photosphere
is discussed. These current systems represent a poten-
tial source of free energy which may be released by
the complex reconnection processes. The latter may be
treated phenomenologically (Heyvaerts and Priest,
1984) as the relaxation to the minimum energy state
in a time scale t,. The relaxed state is determined by
the constraint of global magnetic helicity conservation
in highly conductive plasmas (Taylor, 1974). The mo-
del of an array of closely packed flux tubes (Parker,
1983); Browning et al., 1986) is considered, and the
coronal heating rate is obtained for an arbitrary qua-
si-static photospheric motions. It is also shown that
discontinuities in the magnetic field (current sheets)
cannot arise under a fluent velocity field at the pho-
tospheric boundary. This suggests that the coronal
field can simply adjust to the slowly changing photo-
spheric displacements. Thereiore, it gives rise to doubt
about the «topological dissipation» of magnetic energy
(Parker, 1972, 1983).

© Hnucruryr sdepnoii ¢pusuku CO AH CCCP

1. INTRODUCTION

In recent years it has become clear that the heating of the solar
corona is related to the presence of magnetic fields, with the kinetic
energy of photospheric pulsations as an energy SOUrce. Such a mag-
netic heating is provided by motions of the photospheric footpoints
of the coronal field that permanently build up coronal electric cur-
rents. The present understanding of this process is described in re-
views by, for example, Kuperus et al. (1981), Priest (1982].

The physical mechanisms of coronal magnetic heating are rather
different for high-frequency and low-irequency driving photospheric
pulsations. Ii the frequency of photospheric perturbations 0=v, /L,
where v, is the Aliven velocity and L—the length-scale of magnetic
structure, hydromagnetic waves are excited, whose damping may
supply heat (lonson, [978: Priest, 1982; Heyvaerts and Priest,
1983). For slow enough motions, when w<uv, /L, the coronal confi-
guration may be regarded as being in a state of quasistatic evolu-
tion through a series of equilibria. It is this latter case that we are
concerned in this paper.

For solar coronal conditions the plasma thermal pressure is
small compared with a magnetic one. Therefore during such a qua-
si-static evolution magnetic field remains to be almost force free,
and generated electric currents Ilow along the coronal magnetic
field lines from one photospheric footpoint to another. The main dif-
ficulty in the problem of coronal magnetic heating is that simple
Ohmic dissipation, acting over global length-scales of the coronal
field. is completely inadequate to balance the radiative and conduc-
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tive losses of the plasma. This is due to the fact that the electrical
conductivity of the coronal plasma is very high, and required dissi-
pation can be attained only if the magnetic field varies on a scale
that is much smaller than the length scales of granulation, which
are responsible for inducing the currents (Rosner et al., 1978).

Thus, to explain coronal heating in term of Joule dissipation, the
electric current density must somehow be enhanced. Parker (1972)
proposed that electric currents may be concentrated into thin sheets
as a result of «dvnamical nonequilibrium» of the magnetic field. He
suggests that a field whose footpoints are being shuifled by com-
plex photospheric motions cannot, in general, remain in equilibrium,
so that current sheets are inevitably formed. However, some doubt
has been raised about Parker’s analysis (Van Ballegooijen, 1985).
We reconsider in this paper a simplified model of a closed coronal
loop, an array of closely-packed flux tubes, which have been twisted
by photospheric motions (Parker, 1983; Browning et al., 1986). It is
shown that discontinuities in the magnetic field (current sheets)
arise only if the velocity field at the photospheric boundary is itself
a discontinuous function of position (at least, in linear approximati-
on). This suggests that the coronal field can simply adjust to the
slowly changing boundary conditions in the .photosphere, and the so
called «topological dissipation» of the winding patterns (Parker,
1972; 1983) does not take place. It is worth noting here that there
is one other way to produce current sheets: the presence of an
X-type neutral point within the magnetic configuration can lead to
the development of a current sheet, even if the motions at the pho-
tosphere are continuous (Syrovatskii, 1971). But we do not consider
such a case in this paper.

Other solution of the problem of coronal heating is magnetic re-
connection, which provides a convincing mechanism for eificiently
dissipating magnetic energy (Priest, 1982). It is well known that as
non-potential field is generated by the footpoint motions, resistive
instabilities are triggered, which can lead to the formation of thin
current sheets (see, for instance, tearing-mode instability in coronal
loops (Galeev et al., 1981). As a result permanent reconnection and
release of the excess magnetic energy occur (e. g. Steinolson and
Van Hoven, 1984). The consistent calculation of corresponding dis-
sipation rate is rather complicated problem concerned to the nonli-
near dynamics of a plasma turbulence. An important approach to
the problem has been proposed by Heyvaerts and Priest (1984). The
idea is to consider complex magnetic reconnection processes pheno-
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menologically as the relaxation to the minimum magnetic energy
state in highly conductive plasmas. The latter is determined by the
extension (Heyvaerts and Priest, 1984) of the Taylor’s hypothesis
well known in fusion plasma physics (Taylor, 1974), which sug-
gests that the global magnetic helicity of the configuration is con-

served during the relaxation.

The aim of this paper is to analyse such a relaxation plasma
heating in an array of closely-packed flux tubes (Parker, 1972,
1983). In the recent paper (Browning et al., 1986) this model has
been also considered, but only for the very slow photospheric moti-
ons, in the sense that w~uv/l<t ', where v is the photospheric pul-
sation velocity, /—the length scale of a convective cell and t,—the
characteristic relaxation time. Our results are valid for an arbitrary
sub-alfvenic fluid motions and express the coronal heating rate for

any given photospheric velocity field.

2. MODEL AND BASIC EQUATIONS

Let us consider a simplified model of a closed coronal ‘]{:_u_p
(Parker, 1972, 1983). Neglecting the curvature of the loop, the initi-
al magnetic field was taken to be uniform:

B, =B (1)

extending between two flat parallel plates by, Whit?l regresent
the photosphere at the ends of the loop (Fig. 1). Tl?e field is then
perturbed by prescribed motions of the footpoints in buth. of the
boundary plates. We assume photospheric pulsations to be incomp-
ressible and represent them in the form:

Vi sn=V4+=[ VD4 Xe:], |
Ve p=v_=[VO_Xe] (2)

with the given stream functions @4 (x, y, 1) and ®_(x, y, {) in the
planes z==h. Since the photospheric motions may be represented
as a number of convective cells, we restrict our analysis only to one
isolated cell, bounded by the closed curve S in the plane (x, y)
(Fig. 2). It is possible to consider now that @, _ (,_r, g, B) =0
Furthermore, without loss of generality we choose at first only one

— il

harmonic of the photospheric motions, so that @, _ooe
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Fig...l, The_ simple model of a coronal loop: uniform magnetic field B, extending
from z=—h to z= +A.

F=+/4

Fig. 2. A sketch of the perturbed magnetic confi.guration.
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In what follows we consider photospheric perturbations to be
rather small, so that coronal magnetic field B=B,+ B, with B,<8,,
and find B, in linear approximation. As it was mentioned above the
processes of interest occur in time scale which is small in compari-
son with the diffusion time for a magnetic field t4, determined by fi-
nite resistivity of a plasma o(ts=4mnol*/c®). Therelore the resistive
term can be omitted from the equations and the processes of mag-
netic reconnection in narrow current sheets may be described as re-
laxation of the magnetic field to the minimum energy state with
some characteristic relaxation time v, (Vekstein, 1986):

3(B—B™)/ot=—(B—B"") /x.. (3)

Here B™ is the force-free magnetic field obtained from the perfect
MHD equation for the given velocity fields in the planes z==%#,
and B —the relaxed field which provides the magnetic energy mi-
nimum for the same photospheric motions and with the constraints
resulting from high conductivity of a plasma (see later). Obviously
the relaxation time in (3) t,<ts. The value of 1, may be roughly
estimated as the tearing-mode instability growth time (Furth et al.,
1963). For a given frequency of the photospheric pulsation it fol-
lows from (3) that perturbation of the field

R iwt, (B — B!‘m Y B +m2'rf BL[M: (4
AT | +’C i )

So we need to know the fields B and B\”.
In perfect MHD [imit

dB/dt=rot [vXB] , (5)
so in a linear approximation we have B* =B+ B"™ with

BM — L rot[vxB,]. (6)
i

Here v is the velocity of a plasma flow between the planes z= *#,
which is fitted in such a way that the field B retaines to bhe force
free and v is equal to v, _ at 2= =*h. For incompressible photosphe-
ric motions (2) we can put v=[V®d(x, y, z) Xe;], so that

[vXB,] =—B,V®+e.B, d0/dz. It follows now that the vector po-.

(M)
1

tential perturbation A;"' may be taken in the form:




AiM =EEBG-£- iﬂ_}; B™M = tot Al = ui‘['ﬁ? e Xez]- (7)

w 0z ) 0z

Since in this case

1 %M
rot B{MJ Bt
ﬂ a 022

B (8)
1]

such a field would be force free, i. e. rot B\* |B,, if 82®/dz%=0.
Taking into account the boundary conditions ®|,_.,=®, , it is
easy to find that

(D'f' I:x, y} +M_ I:x, y)
.

D(x,y,2) = + —;; (Dy —@_). (9)

Putting this expression for @ in (7) we obtain, that perturbation of
a magnetic field is determined by the difierence of footpoints veloci-
ties in the planes z==*h. Denoting ¥(x, y) = (D4 —D_)/2h, we
have now:

A =e.B,—W; B =B [V¥Xe.]. (10)

A sketch of the perturbed magnetic configuration is shown in Fig. 2.

The important conclusion following from (10) is that for an ar-
bitrary continuous velocity field in the photosphere plane the corres-
ponding equilibrium solution of perfect MHD equation exist which
has not the magnetic discontinuities like current sheets. Hence, the
coronal field can simply adjust to the slowly changing footpoints
displacements. Although this result has been obtained here only in
linear approximation, it gives rise to doubt about «topological dissi-
pation» of magnetic energy proposed by Parker (e. g. Van Ballego-
oijen, 1985).

Let us consider now the relaxed field B", which corresponds to
the minimum energy state. It is well known that potential magnetic
field possesses the minimum of magnetic energy. However the relea-
se of all the magnetic energy above potential take place over the
diffusion time 14, which is unacceptably large in a highly conductive
coronal plasma. So we are interested in some intermediate minimum

energy state that takes into account constraints resulting from high

conductivity. The answer is well known in fusion plasma physics
(Taylor, 1974, 1985) and tells that during the local magnetic recon-
nections in narrow sheets the global magnetic helicity of a configu-
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ration K=§ A-B dV is conserved, where A—vector potential, and
integration extends over the whole volume of a system. The physical
grounds for this rule, known as Taylor’s hypothesis, can be explai-
ned as follows. Let us write the equations for the evolution of mag-
netic field B and vector potential A, taking into account the finite
resistivity of a plasma o:

dB/at= rot ;”[vxm_—cj;a} : (11)
dA/ot=[vXB] —cj/o+ Vag/ot , : (12)
where g is a gauge function. Using (11) and (12), we get for the

magnetic energy of a system W, =§ dV-B?/8n and global helicity
K=§A-B dV:

W 2By [ O 4y L i[vXBldV+

dt 4 dt a

+~]-—S B [dSX[vxB]], (13)
dK (oA a8 i i-B [AX]]

e ={ = — ndv+g AT dV =2 S Tdv+cg dSteid g
+§{A-v}{B-a‘S}—S{A-B]{v-dS}+S(B-dS} dg/ot. (14)

It is seen now ifrom (13) that the enhanced dissipation rate of the
magnetic energy is possible if narrow current sheets are formed
with the thickness 6« /. In this case the current density in a sheet

j-=f£mt B~ cB/4nd, so that dissipation power

Q =_S _iﬁ dVv ZBEEE 2
d ~C /16n°ad

(1]
and the magnetic energy dissipate in a time scale

BE
rw.~a£3/Qd~rd-a/£@:rd, (15)

where ty~4ncl*/c? is the diffusion time. On the other hand, as it
follows from (14), the current sheet formation has not drastic influ-
ence on the global helicity evolution rate since

2g272 =ik
et i e dt) b (16)

LSyt o 1
dEHQSUdF

dno
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So in a highly conductive plasma, when magnetic reconnetions oc-
cur in narrow current sheets, the magnetic energy and global heli-
city change in rather different time scales, so that 1, <t,. That is
why we have to consider the minimum of a magnetic energy with
the constraint of global helicity conservation.

Solving the corresponding variation problem we have:

5 (Wy—uK) = cw{ ri“ —ZMB} 6A+S(-EI--1LA) [dS X 6A] (17)

(here u is a Lagrange multiplier). Let us assume now that the rela-
xation of a magnetic configuration occurs independently in every
cell. It means that the normal component of a magnetic field does
not change at the boundary of a cell: §B./g=0. So the suriace in-
tegral in (17) is equal to zero and the relaxed magnetic field satis-
fies the equation (Taylor, 1974):

rot B” =aB'’; @ =const. (18)

Since initial magnetic field B, is a potential one, the constant a is,
in general case, proportional to the photospheric velocit amplitud{frf}.
Thus in the linear approximation we can write that B ' =B, + B,
with

rot Bl ~ aB,=aBge.. (19)

Introducing the vector potential perturbation A{” by B(” = rot A"

we have from (19):
AA!" =—aBge:. (20)

It means that A" may be chosen in the form: A" =e.-aByp(x,y)
with

Al (21)

and the perturbation of a magnetic field

B{” =aB,[ Vo Xxe:]. (22)
The boundary condition for ¢ has to be so that the normal compo-
nent of a magnetic field retaines fo be equal to zero on S:

(B .n)|¢=0. As it follows from (22) it needs that ¢|s=const. We
assume here ¢l =0. It is useful to note that the solution of eq. (21)

10

with such the boundary condition represents at the same time the
electrostatic potential of a uniformly and positively charged cylin-
drical cavity with a cross-section S (Fig. 2) surrounded by conduc-
tor. It makes it clear at once that ¢>0 inside the cell (this fact will
be used later).

The constant « that appears in eqs (18—22) has to be obtained
from the global helicity evolution resulting from photospheric foot-
points displacements (Heyvaerts and Priest, 1984; Browning et al.,
1986; Vekstein, 1986). Omitting in eq. (14) all the terms connected
with a finite conductivity of a plasma (they are not essential here,
as it was mentioned above) and taking into account that the normal

velocity of a plasma vanishes on the boundary of a cell, (v-dS) =0,
we have:

%’}:S (A-v) (B-dS) +§ (B-dS) ag/ot. (23)

So the effect of the motions of the photospheric footpoints is to-in-
ject helicity into the system. In a linear approximation

iB,

L1

8K ==L | dS{Ay(v+ —v_)}+B,{ dS (g4 —g), (24)

where g, are the gauge function values in the planes z=+#h.
Taking a vector potential A, of the initial field B, in the form

AE,=—;J—~ [B,Xr], we obtain for the first integral in (24):

goe! ¢ .
Zo [ ds— {Aum—v_)}:% [4S [Byxr]-26[ VW xe.] =

- 2B (45 (v¥ur) = 2B (wgs. ~ (25)

0]

The gauge function values g, _ can be found from eq. (12) for the
vector potential evolution (resistive term is irrelevant as before).
After integration of (12) over time in the planes z= =/ we obtain:

[v,  XBJ+Va, . (26)

i
®

In our gauge only the z-component of a vector potential is changed
(see eq. (10)), thus it follows from (26) that

]
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Vg = —— [V, - XBgl = —[Bo X[V, _ Xe]l =BV, . (27)
A S 4 B,®», _ (an additive constant cancels in the final re-
- ;
sults). Putting these quantities into eq. (24) we get
: . o n?
oK =25 (wys. | | (28)
L1

From other hand, in our gauge the global helicity of the initial field
K,=0, since A,-B,=0, and the helicity of the relaxed state B in
linear approximation is:

K" =§ dVv{A,-B” +A{" -Bj}=

—2n §dS {%[Buxr]-uﬂu[vtpxh]+ aB2g}=4aB2h § 9dS. (29)

Since 6K =K" —K,=K", we obtain finally that

a=;;glvd3/§q;.ds. (30)

Now when we know the fields B™ and B”, it is possible to find
from eq. (4) the magnetic field established in a plasma and thus to
obtain the dissipation power in such a system. '

3. CALCULATION OF THE HEATING

For the configuration under discussion here the power of a plas-
ma heating is determined by the time averaged Poynting flux from
“the photospheric planes z=+h (Fig. 2):

Q=S dS{(P:Ylse—k—<(P:)lzesn}; P =-—[EXB]. (31)

The electric field E at the photosphere planes that arise due to the
fluid motion is:

1 1
E-+ =—*-C—[\F+~_><Bu] =?anm+p_. {32)

19
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So taking into account the expressions obtained above for the mag-
netic field perturbation we have:

B[E, ht,

ry 2 R 2
4:.”“_[Hﬂg.rh{S{vtl:n ds—(§ wds)?/§ @ds}. (33)

Q=

It is seen now that Q represents as a difference of two positive
terms (we would remind that ¢>0 inside the cell). At the same
time it is obvious from the physical sense that dissipating power Q
cannot be negative. Thus we have to check at first that Q=0 for an
arbitrary stream function W(x, y) (the only restiction is that
¥, =0). Let us consider the following functional:

1(¥)=§ (vw)2ds/(§ wds)?. (34)

From its definition it is clear that the upper limit for J(¥) is infi-
nity, so we would be interested in its minimum. Since /(W) is not
changed after W being multiplied by a constant, we may find the
minimum of J with the restriction that the integral in the denomina-
tor of (34) is fixed: { WdS=const. Solving the corresponding vari-
ation problem, we obtain:

§{§ (V¥)2dS—u§ wdsS}= dS 2v¥ve¥—psV) =
=—{ dS (2A¥ +p)8¥ (35)

(we use here the condition that 6W|g=0). Thus J gets its extremum
(it is easy to see that it is a minimum) under ¥W=W,, if
AW, =const. It means that such a stream function W, (x, y) is pro-
portional to the function ¢(x, y) obtained above from eq. (21), i. e.
W, =v¢. Therefore § (VW,)2dS=—§ ¥, AW, dS=y%{ ¢dS and, as
it is seen now from (33), the dissipation power Q=0 when W =Y,,.
So we prove that Q>0 for every stream function W==%¥, and Q=0
for W=WY,. The physical sense of this distinguished stream function
is rather simple. In this case (¥ =Wa.), as it follows from egs (10)
and (22), the perturbation of a magnetic field B{*’, obtained from
the perfect MHD equations, becomes equal to the field B,”, that
corresponds to the minimum energy state. So there is no relaxation

~and resulting heating of a plasma in this case.

The general formula (33) for dissipation power shows that a ne-
gative contribution to Q is connected with the currents that produce
the relaxed field B{”. From the physical point of view it means that
under the relaxation process considered here not the whole free
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energy of a nonpotential magnetic field may be released. The dissi-
pated portion in general case is, roughly speaking, one half of the
excess energy, but some times it may be almost the whole one.
To see it let us rewrite the expression (33) for Q in terms of
velocity field v(x, y)=vi—v_=2h[V¥Xxe,]. Since {¥ dS=

TGS ;_ { dS (VW¥-r), eq. (33) may be transformed as following:

2
Tr
Q= Bﬂ 9 4
165k (1 + 0’7

] (§ (v)2ds— (Yas [rxv])?/4§ ¢ds}. (36)

Introducing now the angular velocity Q(x, y) by

v(x, y)=[Qe;Xr]

the integral in the second term in (36) becomes
S dS [er]zezS Qrl dS.

So the relaxed magnetic field B,” is proportional to a weighted ave-
rage of Q(x, y) inside the cell. Therefore the negative contribution
to dissipation power would be relatively small if the photospheric
motion represents a number of vortices with opposite twists. In the
latter case the magnetic relaxation leads to damping of the electric
currents in a plasma.

The formula (36), that is obtained above for the one harmonic
of the photospheric motions, can be simply generalised for a rather
arbitrary case of pulsations. For instance, if we have a periodic mo-
tion inside the cell, the contributions to the heating from the diffe-
rent harmonics are independent, so the dissipation power is equal to
the sum of expressions like (36) over all the harmonics. Another
case of practical interest is the stationary turbulent motion. Writing
now the stream function in the form

I

Tt

W(x,y, 1) = { W, (x,p)e ™ do; ¥_,=Y, (37)

the heating power Q may be expressed over the correlation func-
tions

(VW VW) =z (7)),

(§ W.dS-\¥,.dS) _ 2n
{ @ds 4h?

(r'*), dlo+o’). (38)
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The final result becomes as follows:

Qzﬂftrg dw

8ak J |+oel

(§ (0", dS—(1?),,}. | (39)
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