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ABSTRACT

£7 Parity non-conserving (PNC) El-amplitudes for
Tl are calculated. In units of 107'. (il el a3 Q. / — N)

(Qy is the weak charge of the nucleus, N is the num-
ber of the neutrons)

| 1
(6Ps2 5| De 6py o o) = —2.70- (1£0.03),

1
(P21 D-A6py %) — —0.81- (1£0.06).

Using the developed technique we recalculate the PNC
El-amplitude for '**Cs with high accuracy:

1 |
(75| Dol 655 ) =0.089- (10.02).
We calculate also the PNC El-amplitude for ®*Rb:
| I
(65| D.| 55— =0.0138- (1:0.02).

For calculation we use time-dependent Hartree—Fock
method as the first approximation and then take into
account all the correlation corrections of second order
in residual Coulomb interaction.

© Hucruryr sdepnoii ¢uauku CO AH CCCP

1. INTRODUCTION

For the thallium atom parity non-conservation (PNC) in for-
bidden MI-transition 6p, 4 —7p,,, has been measured in Refs [1—5].
There are many calculations of PNC El-amplitude for this transiti-
on [6—12]. In Refs [6, 7] the calculation was done by semiempiri-
cal method. The authors of Ref. [8] used the method of effective po-
tential. The relativistic many-body perturbation theory was used in
Refs [9—12]. The PNC in transition 6p, o —6pyo is n0t investigated
experimentally yet. The previous calculations were carried out in
Refs [13—15, 8]. This transition is similar to the MI-transitions in
Bi for which the PNC has been measured. It is well known that for
Bi there is essential disagreement between results of different calcu-
lations of PNC effect. We think that high presision calculation of
PNC effect for 6p,,,—6p,, transition in thallium is a good experi-
ence for Bl

In the present work the calculations of PNC El-amplitudes are
carried out by the methods of relativistic many-body perturbation
theory:

1. As zero approximation we use the wave-functions of Wim
relativistic Hartree-Fock (RHF) method.

9 At the second step we take into account the polarization of
closed atomic shells by PNC weak interaction and by the external
electromagnetic wave. For this we use time-dependent Hartree-Fock
(TDHF) method which is equivalent to the random phase approxi-
mation (RPA).




3. The final and most complicated step is the calculation of all
the correlation corrections of the second order in residual Coulomb
interaction.

This way of calculation is similar to way used by us for calcula-
tion of PNC 6s—7s El-amplitude for Cs [16]. However the tech-
nique of the present work has the important distinctions from that
of Ref. [16]. First, the electromagnetic polarization is taken into
account here in all the orders in residual Coulomb interaction (in
Ref. [16] in the first order only). Second and most important dis-
tinction is the calculation of all the second order correlation correc-
tions. In Ref. [16] only the dominating correlation diagrams which
correspond to renormalization of wave-functions, were taken into
account. Besides the calculation for 2°°TI we use the developed
technique to calculate all the small second order contributions to
PNC El-amplitude for '**Cs which were not taken into account in
Ref. [16]. This allows us to decrease the theoretical uncertainty of
calculation. We calculate as well the PNC El-amplitude for 5s—6s

transition in **Rb.
In Refs [I11, 12] the PNC E1(6p,,—7p, ) -amplitude for 205T]
has been calculated by the TDHF-method. Our corresponding value

(the points 1 and 2 of the above program) is in agreement with the
results of Refs [I11, 12].

2. TIME-DEPENDENT HARTREE-FOCK CALCULATION (TDHF)

Let us remind the reader the scheme of V¥~ .approximation for
the atoms with one unpaired electron. To find the wave-functions
one should solve in self-consistent way the Hartree-Fock equations
for the closed shells

(Ho—ee) pe=0, (1)
Hy=a 5+ (p—1)m— 2 L y¥=1), (2)

N—1 y
V= 3 LTt () witr) i) dir,—

1

—
Il

{0 () w(r) Sty ). (3)

Here @ and B are Dirac matrices, Z is the nucleus charge, N is the
number of electrons, N—1 is the number of core electrons, and £k,
Y are the energies and wave-functions of core orbitals. The orbitals
of unpaired electron are generated by eqs (1, 2) in the potential of
the frozen core. ’

The solution of eqs (1—3) gives the wave-functions of zero
approximation. The exact Hamiltonian of an atom is of the form

H= 2 Hy(ri)+U, - (4)
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The correlation corrections to the zero approximation we will find
using the perturbation theory in residual Coulomb interaction U.
Parity non-conserving weak interaction of an electron with the
nucleus looks as follows
G

hPNCZ_E_‘F??'—‘Q(r:' Qw ¥s, L (6)

where G is the Fermi constant, y. is the Dirac matrix and o(r) is
the nucleus density normalized by condition §g(r) d®r=1. We use
the standard parametrization [17, 18]
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Here ry=1.105A4"% fm, D=0.57 fm, A is the mass number of the
nucleus, Qy is the weak charge of the nucleus. In the Weinberg—
Salam theory Qp =— [N+ Z (4sin?0,—1)], N is the number of neut-
rons, and Z is the number of protons. With the radiative correction
taken into account [19]

Qw=—1[0.974 N+ Z(3.908 sin®0y, (M) —0.974)], (8)

where sin®0y, (My,) is normalized at M.

The Hamiltonian hyy. is one electron operator. Therefore it is
convenient to insert it into Hartree—Fock equations. To do this one
should replace in eqs (1—3) the orbital ¢ with fixed parity to the
orbital ¢ with mixed parity, and change the Hamiltonian
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Hy () = A, () =H, () + hpye- (9)

Let us expand the § in the form {=vy+&p, where &y is the admix-
ture with the same angular momentum but of the opposite parity.
The equations for &y can be derived from eqs (1—3)

(Hy—ek) 8ps=—hpnc Ye—8Vpyc Ve, (10)
B Vo=V (s ool =V b (11)

These equations should be solved in self-consistent way for the orbi-
tals of the closed shells. The functions 6y for the states of unpaired
electron are the solutions of eq. (10) at frozen core field V"~",
8 Vonc-

Similar to the weak interaction the interaction with the external
electromagnetic wave is the one electron operator. Therefore it is
convenient to include it into Hartree —Fock equations as well. More
precisely it is time-dependent Hartree—Fock (TDHF) method. Let
us remind the reader the idea of this method. Let H;, be the Hamil-
tonian of the interaction of the electron with the external wave

Hig=fe ' 4 fre™. (12)

Let also A be the exact Hamiltonian of an atom

H=H+ NEhch{rf)- . (13)

i=1

Total TDHF function of an atom ® is the Slatter determinant con-
structed from the single-particle orbitals @ 4ep
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The tilde above the letters shows that the parity violation in corres-
ponding functions is taken into account: p=y+8&yp, yx=x+0%,
j=y+6y. The equations for %, § can be derived from condition

S¢D| H + Hine| D) =0 (15)

when varing in 1, s
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Similar to the stationary case these equations should be solved
self-consistently only for the N—1 core electrons (V'*~"-approxima-
tion). The wave-function of the external electron then can be found
in frozen core field. ThIS way allows us to find complete ortonormal
set of the orbitals @’ with quasienergy e,. At the first step we
should solve the eqs (16, 17) for the quantities y, y without parity
violation. At the second step we can find the corrections 8y, 8y in-
duced by the weak interaction. The equations for 8y, 8y can be ob-
tained by decomposition of eqs (16, 17) in &8y, oy, d¢, 6H,, 6V;. We
do not present them here because the derivation is straightforward
but the equations are combersome.

Let us consider transition of the external electron from the state
|a) to state |B) induced by the electric field (12). Expression for
the transition amplitude Mg, can be obtained comparing the expres-
sion (14) with the formula of time-dependent perturbation theory
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We keep here only the resonant term supposing that w~Ez—E.,.
From the other hand we see from eq. (16) that

~ (a) . (el f+ OVl Pad  —iwt
{ﬁjﬂ Prime dep ) = (sl K e ) = B LR € . (19)

Comparing the equations (18) and (19) we get
Mll-u <¢ﬁ|f“"ﬁ'vf|q’a> {20}

This formula corresponds to the well known random phase approxi-
mation (see e. g. Ref. [20]).

The Hamiltonian of interaction of an electron with electromagne-
tic wave depends on the gauge. Let ¢ be the scalar potential and A
be the vector one. The conventional «length» form of interaction
correspods to the choice



¢ =—2E,Fcos (0l —kF).
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Here E is a wave vector. We neglect the corrections ~kr and the
magnetic interaction. Interaction in the «velocity» form corresponds to

p=0, ;i:—ﬁ sin (of—kF),

L
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The gauge (22) can be obtained from (21) by means of gauge
transformation
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It is well known that in TDHF calculations amplitude (20) is
gauge invariant [20, 21]. This statement is completely evident. The
gauge transformation transfers single-determinant TDHF wave-
-function to the single-determinant one

& =@ exp( kza(rk]). (24)

Therefore if @ is the solution of eq. (15) in fixed gauge then ®” is
the solution of the same equation in other gauge. The relation bet-
ween solutions of eqs (16) in different gauges can be found from
formulae (23, 24). In linear approximation in external field

e o] el FE,

P,
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These relations has been obtained in Ref. [22]. Gauge invariance
of the amplitude immediately follows from (25). According to (19)
the amplitude equals to the residue of overlapping (Pplxa) at
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Hartree—Fock frequency (o=Es—E.), but gauge term in (25) has
no pole.

Thus in TDHF the control of identity of the amplitudes in /- and
v-form is only the control of numerical accuracy. The results of
TDHF calculation of PNC El-amplitudes for 6p,,—>7p iz and
6p, o —6py, transitions in *°TI and for 6s—7s transition in '**Cs
are presented in Table 1. The result for Cs coincides with our previ-
ous calculation [16] and with the result of Ref. [22]. (When com-
paring the amplitudes in v-form one should bear in mind that in
Ref. [16] the calculation is carried out at experimental frequency
but not at the Hartree—Fock one.) The TDHF-amplitude for
6p, . > 7p, 2 transition practically precisely coincides with the results
of Refs [11, 12].

3, CORRELATION CORRECTIONS TO PNC EI-AMPLITUDES

Let us consider the correlation corrections to TDHF amplitudes.
There are the corrections of two types. Correction of the first type is
given by the graphs with the photon radiation from the external line
(Fig. 1). The dotted line corresponds to the photon, the circle—to
the seli-energy operator. The diagrams for the self-energy are ‘pre-
sented at the Fig. 2. The wave line denotes the matrix element of
the residual Coulomb interaction (5). The second type correlation
correction corresponds to the photon radiation from the wvertex
(structural radiation). It is shown schematically at the Fig. 3. The
photon attached :o the circle means that it should be attached to the
each internal electron line of the self-energy operator.

We begin from the consideration of the correction of the first
type which is most important. The amplitude corresponding to the
Fig. 1,a equals to

Z BIf+8V1 7y ¢HIZlay _ Z (BIF+ VAT (7121 &) — (il 51 @) (26)
8a—Ey Ep—Ey— W :
G0 : Fi

We suppose that eg>eq, (©=8p—8a). Let us stress that the external
field f we write down here with the accounting of shielding correc-
tion 6¥;. The sum in formula (26) is carried out over the states
y==a and therefore the correction s should satisfy the condition
(gl @) =0. With this additional condition the eqs (16) can be resol-
ved despite of resonant frequency. At the same way one can write

9
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down the correction corresponding to the Fig. 1,b. Let us denote the
total correction corresponding to Fig. 1 by A..(Z), then

Acorr (£) = (G ()1 E@) + (Bl El Ful@) ), (27)
where functions gy and j. satisfy the conditions
(Go(0) @) =Bl ful@)) =0, w=gj—tq. (28)

If we expand all the functions in linear approximation in weak inte-
raction: §=y+8y, Z=Z+08%, ..., then we can represent the A, (X)
in the following form

Acorr(2) =Acorr (2) +Acorr (8), _ (29)
where

Acorr (2) = (Bl 2| 8y + (81 Zxud + <Oyl El @) + (ypl 2l 8a), (30)

Acorr (8X) = {ypl 62| @) + (Bl 8Z] %) - (31)

Let us repeat once more that the functions yu, . and PNC correcti-
ons Oys Oy. are the solutions of eqs (16) at additional conditions
which follow from (28)

(Oyul a) + {ypl da) =0,
(Bl Oxuy + (OB 3 =0. (32)

It is useful to estimate the relative contributions of different
terms into the correlation correction before to present the results of
numerical calculations. The quantity As. () corresponds to the ra-
diation from the external line. Therefore due to the small excitation
energy of an external electron (the denominator in formula (26))
this contribution is enhanced by a factor AEin/AE.: in comparison
with the structural radiation (Fig. 3). Here AEi, is the typical exci-
tation energy of the electrons from closed shells (denominator for
the diagrams at the Fig. 3), AE. is the typical excitation energy
of the external electron. Inside the correction Ae, (E) the term
Acorr(2) (formula(30)) is due to the weak interactign at the exter-
nal line, the term Au/(6Z) (formula(31)) is due to the weak inter-
action inside the seli-energy operator. Therefore here we have the

same situation, the value of A, (%) is enhanced by a factor
AEini/AE..; in comparison with the A, (6Z). We have used this hie-
rarchy in Cs [16] where we have calculated only the dominating

11




contribution (30) using the method of Brueckner orbitals. For TI
the parameter AEi.u/AE.. is not so large as for Cs and therefore
here we take into account all the second order correlation correc-
tions.

The results of the [-form calculation of the contributions into the
correlation correction A (S) (see egs (30, 31)) are presented in
the Table 2. The results of the calculation in the v-form are presen-
ted in the Table 3. We want to remind the reader that we suppose
that transition goes from state |a) to state |B), and e;>e. The
self-energy operator we calculate by direct summation over the in-
termediate states (see Ref. [16]).

In v-form the operator [ depends on frequency (see eq. (22)),
and the correlations shift the frequency

0 =g3—€s—> 0+ A,
Ao = (Bl Z|p) —{al Z|a). (33)
So the transition amplitude

[a
w4+ Aw

la) =

(Bl —=2 1@y —~ (Bl —
~ B -2 1@ — 2P a) ~
~ {El—i:: |&>—%ﬂ‘£<ﬁma>+ (34)

Thus due to dependence of f, on frequency in v-form the additional
correlation correction arises

— 22 (BIF1ay = — Z2[(8BI71 @) +(BITI60)]. (35)

The numerical values of this correction are given in the last line of
the Table 3. In the formula (35) we write down the matrix element
(Bl 7Fla) without the polarization correction. The polarization effect
in correlation correction is at least the third order term of perturba-
tion theory. Therefore strictly speaking from derivation (34) we can
not conclude should we take into account the polarization in formu-
la (35) or we should not. However we want to claim the gauge in-
variance of correlation correction. Then transforming the formulae
(27) and (28) from [- to v-form by means of (25) it is easy to ve-
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rify that precisely the formula (35) without accounting of polariza-
tion is correct.

In accordance with our preliminary estimation in [-form the va-
lue of A, (8X) is suppressed in comparison with the A, (Z) but
for the transition 6p,,,—6p,,, in the Tl this is suppression only by a
factor 2 (see Table 2). As far as the correlations in the v-form are
concerned the real suppression takes place only for the transition
6s—7s in Cs (see Table 3). One can easily understand this fact.
The matrix elements of electromagnetic interaction in v-form are
large for high frequency virtual transitions and therefore the para-
meter AEin/AEey for Tl is of the order of unit. From the Table 3 we
see that for the transition 6p,,, —6ps, in Tl the contributions to the
correlation correction in the v-form are of the same order as the
main Hartree—Fock amplitude (Table 1). Due to this fact the cal-
culation in v-form is rather unstable. We will return to this questi-
on after the discussion of the structural radiation.

Structural radiation has two parts. In the first one the weak in-
teraction is included into the external lines and the electromagnetic

f /
f i

oL P o B
2

Fig. 4. Fig. &,

vertex itself is parity conserving (Fig. 4). In the second part the
weak interaction is included into the electromagnetic vertex
(Fig. 5). Let us discuss at first the electromagnetic interaction in
the [-form. In this case the structural radiation is small and we can
limit ourselves by very rough numerical calculation. The results of
this calculation for diagram Fig. 4 are presented in first column of
Table 4.

The amplitude corresponding to Fig. 5 for 6p,, —7p,,, transition
in Tl and for 6s—7s transition in Cs is very small and therefore we
estimate it only for the transition 6p,,,—6ps,, in Tl. The estimation
is very simple. Here the diagrams with the intermediate 6s- and
6p-states dominates. An example of such diagram is presented at
Fig. 6. The cross denotes the PNC weak interaction. The number of
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these graphs is rather large, but it is not so complicated to calcula-
te all of them. The result is given in the second column of Table 4.
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Fig. 6.

In the v-form the structural radiation is not small and therefore
we need more accurate calculation than for the [-form. The reason
of enhancement of structural radiation in v-form is evident. The
operator of electromagnetic interaction in v-form is proportional to
I/ (eq. (22)). Therefore the factor of enhancement with respect to
the [-form is of the order of AEin/w. (We remind that AE; is the
typical excitation energy of the electrons from the closed shells.)
For the transition 6p,, —6p;,, in Tl AEin/w~30.

The straightforward calculation of amplitudes Fig. 4, 5 is very
cumbersome. Fortunately we can avoid it. Using the gauge trans-
formation of wave-function (25) we can derive the kind of Ward
identity which relates the structural radiation ‘in v-form with that in
[-form

(BITe 1 &) = (Bl Tup | @) + — (Bl Z(ep) F—7E(ea) 1) (36)
Here I's,=1(Fig. 4) +I'(Fig. 5). One can separates the eq. (36)
into the parts corresponding Fig. 4 and Fig. 5.

(BITHg 4l @) = (BI Thip.a @) + — (Bl Z(ep) F—FZ(ea) 1),
(B T¥g sl @) = (Bl Tig sl @) + = (B 63 (e) F—T 02 (ea) | 0. (37)

Using this formulae we can easy calculate the structural radiation
in v-form. The results of calculation are presented in Table 4.
[n the second order of perturbation theory in residual interaction

14
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there is one else term which is due to the decrease of normalization
of the single particle orbitals ju), |p) because of the admixture of
the many-particle states. It has the form

5 BUi+o71@ [¢p1 1)+ (ol | (38)

IﬁlJ':llr.tnﬂ'l =

This correction is proportional to the TDHF amplitude (flf+8Va)
and therefore it is gauge invariant by itself. The values of this cor-
rection are given in the last column of Table 4.

Thus we have calculated all the corrections of the second order
in residual Coulomb interaction. In the [-form the final result for
the PNC El-amplitude looks as follows

(n

<Ei Ez' &> — {§| Ez| &>TDHF +ﬂ¢{;}"{z] +3§ér‘r{62} + Psa‘r +auurm ' (39}
The same amplitude in the v-form
(Bl Exl @) = (Bl E+| @) rpnr —
— 29 (Bler.l @) + AL (2) +AS) (82) + 185 +Muorm - (40)
)]
Of course the total. physical amplitude is gauge invariant:

(BIE.l @)= (Bl|E:la). All the contributions are presented in Tables
| —4. Summing them we get

0.81 Bp”g _P?pl,-"ﬂ i
(BIE-lay =—107"(ilel agQy/—N) | 2.65 6p12—>6pe  PTL (41)
—0.0897 6s—T7s g

This is the result of consistent calculation. In the next section we
will slightly correct these values basing on experimental data on
energy levels, oscillator strengths, hyperfine structure, and on the
theoretical estimation of the third order correlation correction.

In conclusion of this section we would like to comment on the
v-form calculation. As stated above for 6p,,—6p, ), transition in Ti
in the v-form the contributions to the correlation correction (Tables
3, 4) were of the same order of magnitude as the main TDHF-am-
plitude (Table 1). Only due to strong numerical compensations the
total correlation correction is small. The reason of compensation
was pointed above. In v-form each contribution into correlation cor-

5]
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rection is proportional to 1/w and therefore it is large at small .
At the same time the total correction is independent of w. Thus the
calculation in the u-form is unstable.

4. THE FINAL RESULTS.
ANALYSIS OF ACCURACY OF CALCULATION

The most reliable way to estimate the theoretical accuracy is
calculation of the quantities which are known from experiment. In
Ref. [23] we have calculated the energy levels, hyperfine constants
and the amplitudes of the allowed El-transitions. All these values
are very important for the semiempirical calculation of the PNC
El-amplitudes. The results obtained in Ref. [23] are as follow. The
energy level (ionization potential) is reproduced with accuracy:

7, M 1R R R S

The accuracy of fine structure calculation is:
6p — 2%, Tp — —2.5%.

The calculation of hyperfine structure of s and p,, states controls
the electron wave-functions at the nucleus. Here we have the accu-
racy:

ﬁpl;? T —2‘4%! ?plfﬂ P (“4i3}%: ?S Sy _015%

The uncertainty in the value for 7p-level is due to the experimental
error.

In the Ref. [23] for allowed El-transitions we estimated only
the dominating diagram in the structural radiation. In the present
work we recalculate this radiation taking into account all the se-
cond order diagrams. The new results for El-amplitudes are presen-
ted in the Table 5. Of course they almost precisely coincide with the
old results of Reif. [23]. In the semiempirical calculation of the
PNC in 6p,,,—~6p,,, transition [13] the 6p,,,—7s El-amplitude is
the most important. For it we have the accuracy:

In semiempirical calculation of PNC El-amplitude for
6p, o —06p;,, transition all the intermediate states contribute with the
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positive sign [13]. Since there is no compensation we think that the
relative accuracy of our calculation of this amplitude is the same as
the accuracy of calculation of the quantities considered above, na-
mely 3%. The position of the central point in the final result can be
refined basing on following observation. Usually we slightly overes-
timate the magnitude of the correlation correction. It means that the
diagrams of higher orders compensate the part of the second order
contribution. To take this fact into account we can multiply the se-
cond order correlation correction by a factor whieh is less than unit.
I we introduce the common factor 0.85 then we have the accuracy:

energy of 6p,,, — 0.3%,

energy of 7s — —0.5%,

fine structure of 6p — 0.69%,
hyperfine structure of 6p,, — —2.1%,
hyperiine structure of 7s — —2.9%,

E1(6p,/;—7s) amplitude — (—0.8+2.1) %.

We can go further, namely we can introduce the different factors
for different waves (0.95 for 2; and 0.8 for 2, ,)- In this case the
agreement with experiment for every quantity is better than 1%.

For the PNC El(6p,,—6p,) amplitude the both ways (com-
mon factor and different factors) give the result

I 1 ‘ A .
(6p3/2— | E2 6pyjp ) =—2.70-107"°- (i el a3Qy/ — N).-

Besides the comparison with experiment we have pure theoretical
estimation of accuracy from the analysis of higher orders contribu-
tion. First of all we have taken into account the iterations of self
energy correction by the method of Brueckner orbitals, i. e. we have
introduced the Z into the equations for orbitals (see e. g.
Ref. [16]). In linear approximation in ¥ the «Brueckner» calcula-
tion is identical to the «straightiorward» one. Due to the nonlinear
in £ terms the «Brueckner» result is slightly larger then the «stra-
igtiorward» one (2.74 instead of 2.65). However the «Brueckners
value exceeds the refine one (2.70) only by a 1.5%. From our view
important diagrams of the third order in residual interaction corres-
pond to accounting of self energy corrections in the core polarizati-
on effect (including the shift of the transition frequency). Our esti-
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mation for the contribution of these diagrams lies in the range
0.4—2.0%.

The error which is due to inaccuracy of neutron and proton dis-
tributions in the nucleus is less then 1%.

Thus we have two ways for estimation of accuracy of our calcu-
lation. The first one is the comparison with experiment of the quan-
tities which are known from experiment. The second way is the esti-
mation of higher order corrections of perturbation theory. The both
these ways give the value of the theoretical error =<3%. The final
result for the PNC El-amplitude of transition 6p,,,—6p;,, in 2Tl is

{BpaHE%IEriﬁplﬂ-;—}z—-Q,?U-{110.03}-1[}_'“*[ilelaBQw/'—-N}. (42)

The calculation of PNC for the transition 6p,,—7p,, is less
stable. In semiempirical calculation there are strong compensations
between contributions of different intermediate states. Therefore the
inaccuracy can be larger then in the calculation of the energy le-
vels, ‘hyperfine structure and the allowed El-amplitudes. For the
6p, o =7p,;; the result is more sensitive to the high order perturba-
tion theory contributions. Accounting of nonlinear in ¥ corrections
by the Brueckner orbitals method increases the PNC-amplitude by
5%. From the other hand accounting of self-energy corrections in
the core polarization effect decreases the result by 4%. In this silu-
ation we think that the value 6% is the reasonahle estimation of ac-
curacy. The final result looks as follows:

| l W ;
(Tpij2— | Eel6p1jg ) =—0.81- (1£0.06) - 107 (i | el a3 Qy/—N).  (43)

Let us note that the sensitivity of this amplitude to the self-energy
correction in the core polarization is due to the closeness of
6p, o =>7p,,, transition frequency to the frequency of 6s—6p core ex-
citation. Configurations corresponding to these excitations are
6s*7p,,, and 6s6p>. The mixing of these configurations by the PNC
weak interaction together with the residual Coulomb interaction
gives contribution to the PNC El-amplitude. The experimental inter-
val between the level 6s°7p,,, and the lowest level of configuration
6s6p* is only 11060 cm™'. It is very complicated to reproduce in
calculation so small splitting. This splitting and hence the corres-
ponding contribution to the PNC El-amplitude are sensitive to any
correction.
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In conclusion we consider the 6s—7s transition in Caesium.
Here the accuracy of calculation of energy levels [24], fine and
hyperfine intervals [25], and allowed El-amplitudes [16] is rather
high. Therefore the introduction of correction factor for correlations
does not influence practically on the PNC El-amplitude. Accounting
of nonlinear in ¥ corrections by the Brueckner orbitals method dec-
reases the result by 2%. Accounting of self-energy corrections in
the core polarization effect changes the result less then by 19%. The
final value of PNC El-amplitude for '*3Cs

I :
(7s 5| E:| 6s—) =0.89- (1£0.02) - 10" (i | e] a3 Qyy /— N) (44)

In analogy with Cs we have calculated the PNC El-amplitude
for 5s—6s transition in 8Rb

1
(65| Ezlﬁs—;-} —0.138-107""- (i | el ay Qy /— N) . (45)

For the Rubidium we have not calculated the hyperfine structure
and the allowed El-amplitudes. Therefore we have no the detailed
analysis of accuracy. However we think that the accuracy for Rb is
the same as for Cs, i. e. 2%.

Now we can compare our results for PNC El-amplitudes with
the experimental data and with the results of other calculations. In
the Tables 6—8 these amplitudes are presented. Experimental data
are recalculated for sin®@y, =0.22. Let us note that the results of
present work are very close to that obtained by the semiempirical
method [7, 13, 26]. The reason of this fact is evident. In the effecti-
ve potential method one fits the self-energy correlation correction by
fitting the energy levels. We have seen in present work that preci-
sely the seli-energy correction is most important for PNC El-ampli-
tude. As far as the electromagnetic core polarization is concerned it
is taken into account in semiempirical method by using the experi-
mental El-amplitudes.

We would like to thank I.B. Khriplovich for the interest to the
present work.

19

e




hom i MLl Ll b

| 18
13.

14.
15.
16.

17.

18.
19.
20.

21.
22.
23.

24.
25.
26.
27.
28.
29.
30.
31.

32,
33.
34.

35

REFERENCES

S. Chu, E.D. Commins and R. Conti, Phys. Lett. 60A, 96 (1977).

P.H. Bucksbaum, E.D. Commins and L.R. Hunter, Phys. Rev. D24, 1134 (1981).
P.S. Drell and E.D. Commins, Phys. Rev. Lett. 53, 968 (1984).

P.S. Drell and E.D. Commins, Phys. Rev. A32, 2196 (1985).

C.E. Tanner and E.D. Commins, Phys. Rev. Lett. 56, 332 (1986).

M.A. Bouchiat and C.C. Bouchiat, J. Physique 36, 493 (1975).

O.P. Sushkov, V.V. Flambaum and 1.B. Khriplovich, JETP Lett. 24, 461 (1976).
D.V. Neuffer and E.D. Commins, Phys. Rev. Al6, 844 (1977).

B.P. Das, J]. Andriessen, M. Vajed-Samii, S.N. Ray and T.P. Das, Phys. Rev.
Lett. 49, 32 (1982).

E.P. Plummer and I.P. Grant, J. Phys. B: At. Mol. Phys. 18, L315 (1985).

W.R. Johnson, D.S. Guo, M. Idrees and I. Sapirstein, University of Notre Dame
Preprint (1983).

A.-M. Martensson-Pendrill, Chalmers University Preprint (1985).

V.N. Novikov, O.P. Sushkov and [.B. Khriplovich, Sov. Phys. JETP 44, 872
(1976).

E. Henley and L. Wilets, Phys. Rev. Al4, 1411 (1976).

E. Henley, M. Klapish and L. Wilets, Phys. Rev. Lett. 39, 994 (1977).

V.A. Dzuba, V.V. Flambaum, P.G. Silvestrov and O.P. Sushkov, Phys. Lett.
A103, 265 (1984); J. Phys. B18, 597 (1985).

Y.N. Kim, Mesic Atoms and Nuclear Structure, North-Holland Publishing Com-
pany, Amsterdam (1971).

G.D. Alkhazov et.al., Yad. Fiz. 26, 673 (1977).

W.J. Marciano and A. Sirlin, Phys. Rev. D27, 552 (1983).

M.Ya. Amusia and N.A. Cherepkov, Case Studies in Atomic Physics 5, 47—179
(1975).

D.H. Kobe, Phys. Rev. Al9. 1876 (1979).

A.-M. Martensson-Pendrill, J. Physique 46, 1949 (1985).

V.A. Dzuba, V.V. Flambaum, P.G. Silvestrov and O.P. Sushkov, Preprint INP
86-116. Novosibirsk, 1986.

V.A. Dzuba, V.V. Flambaum and O.P. Sushkov, J. Phys. 16B, 715 (1983).

V.A. Dzuba, V.V. Flambaum and O.P. Sushkov, J. Phys. 17B, 1953 (1984).

C. Bouchiat and C.A. Piketty, Preprint Ecole Normale (1986).

A. Gallager and A. Lurio, Phys. Rev. 136, A87 (1964).

C.E. Loving and P.G.H. Sandars, J. Phys. B8, L336 (1975).

D.V. Neuffer and E.D. Commins, Phys. Rev. A6, 1760 (1977).

C. Bouchiat, C.A. Piketty and D. Pignon, Nucl. Phys. B221, 68 (1983). ]
M.Yu. Kuchiev, S.A. Sheinerman and V.L. Yachontov, Proc. Conl. on Atomic
Theory (Tbilisy Politechnic Institute) p.143 (1981).

B.P. Das et.al., Preprint State University of New York (1981).

M.A. Bouchiat, I. Guena, L. Pottier and L. Hunler, J. Physique, October 1986.
S.L. Gilbert, M.C. Noecker, R.N. Watts and C.E. Wieman, Phys. Rev. Lett. 55,
2680 (1985).

A. Schafer, B. Muller and W. Greiner, Z. Phys. A322, 539 (1985).

20

g
i

o

Table 1

The PNC El1-Amplitudes in [ and v-forms
(Units 10~'°(il el ag Qw/—N))

HF + Weak
e HF + Weak Polarization+
Jrangitkn HF Polarization +Electrum:agnetic

Polarization

i | L | 06685 <0901 —0.965

(TP g El6pye 5> | v | —0.937 [ —0.754 | ~ —0.965
il | I SRS T T —3.034
(603 ;—iEzlﬁp”g %) v 1.937 | —3.873 —3.034
2cs / 0.0742 0.0922 0.0887
(7sLIEI6st) | o | 0059 | 0.0826 0.0887

The first column corresponds to simple Hartree-Fock calculation. The second one is
the calculation with the weak interaction included into the HF equations. The third

column corresponds to the calculation with the both weak and electromagnetic inte-
raction included into the HF equations.

Table 2

The Contributions in the [-form into the Correlation Correction
Acorr (2) =Acore () + Aore (6 2) Corresponding to Fig. 2.
(Units 107'°(il el ag Qw/ — N))

2057 EEIE‘” 133
(Tp1j2 51 E:l 6p1y2 5 (6p32y) Exl 6p1/2 ) (Ts51E;|6s3)
(Bl Xl bxa) —0.029 0.144 0.0064
CLIDYES —0.037 0.022 0.0182
{Bypl X a) 0.364 0.239 - —0.0090
{ypl Xl Ba) —0.131 0337 —0.0149
A ( 2) 0.167 0.742 0.0007
{ypl 63| a) —0.012 —0.231 —0.0006
GIEDIES) 0.010 —0.100 0.0012
Acorr (63) —0.002 —0.331 0.0006
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Table 3

The Contributions in the v-form into the Correlation Correction

‘imrr {2) =‘ﬁcnrr {Z} + Doy {62) Cnrrespunding to Fig' 2

(Units 107'%(i| el ag Qy/ — N))

The Structural Radiation in [ and v-forms: I, =TI (Fig. 4), I;=T(Fig. 5)

Table 4 ,

I-form p-form
Tgtr = Tgr= Brarm [
T, Ty =fl'4.+r5 Iig Ky =rr,+r,, .
EﬂﬁTl
(TP tIEIBR, by |—002 | 0. |—002 [ 0185|0123 | 0062 0.013
21:!5-1-]
(6ps2 LI E16pp L) |—0.06 | —003 |—0.09 |—1.712| 2727 | 1015} 0.06
133(35 r
(TsLE|6sL) 0.0003| 0. 0.0003| —0.001 | 0.0007|—0.0003|—0.0006 |

205T) 205) 18Cs
(Tpij25) Exl6p1/2 5) (6p325| Exl6p1/2 3 (TshIExl6s))

(Bl B Sy 0.034 0.759 0.0173
(6Bl 2 ) —0.255 0.201 0.0081
(bygl Xl a) 0.238 —3.547 0.0209
(ypl 2l Sa) —0.253 4.618 —0.0286
K LX) —0.236 2.031 0.0177
(ypl 63 @) 0.043 —1.335 —0.0009
(Bl 8 2l %) 0.078 —1.753 0.0008
A (8] 0.121 —3.088 —0.0001
Aw | = -

g (Bl r,la) 0.198 0.363 —0.0157

22

In the last line the values of correction induced by the frequency shift

are presented.

In the last column the normalization contribution is presented. Units

107"(il el a5 Qu /— N}

Table 5

The Radial Integrals Rp. for Allowed El-Amplitudes in Tl

(Bl E:zl ) =eag Rya (Bl rz/1l @)

Transition TDHF +;?::E ::ii_nns E;EE ﬂ{r;?,r]'t
6y j2—+T75 2.32 2.11 2.23(6)
6,075 3.13 9.75 2.83(6)
6y ;o —8s 0.75 0.67 0.67(3)
6p; /285 0.70 0.67 -
6pa—>6dy | —2.15 —2.07 —1.99(8)
Bpyp—>6dyy | —2.94 —2.70 —2.64(13)
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Table 6

The Amplitude {?p”E;—IEz!ﬁp”g _,[:-} for “*TI in Units 10-"°(i| e| a3 Qy/— N)

Experiment ?ﬂri:ﬁf"ﬂdﬂfizﬁnsﬂi . —0.75(10.19)
Bouchiat and Bouchiat [6] —0.66
Sushkov et al. [7] —0.80
Neufier and Commins [8] —0.83(1=+0.22)
! Das et al. [9] —0.683 (10.05)
Calelasion Plummer and Grant [10] —0.998
Johnson et al. [11] —0.971
Martensson-Pendrill [12] —0.956
Present work —0.81(1=0.06)

The Amplitude {?s;-IEzlﬁsé—} for "™ Cs in Units 107°(i] ¢| a; Qy / — N)

Table 8

0.88(1%0.11)

Table 7

The Amplitude {ﬁpafgé—lEzlﬁpm f‘!_> for **TI in Units 10~'°(i| e| az Qy/ — N)

Erieriment Bouchiat et al. [33]
Gilbert et al. [34] 0.96(1+0.08)
Bouchiat and Bouchiat [6] 1.33
Loving and Sandars [28] 1.15
Neuffer and Commins [29] 1.00
Bouchiat et al. [30] 0.97x0.1
Kuchiev et al. [31] 0.75

: Das et al. [32] 1.06

Gejedlation Dzuba et ai[. (16] 0.88-:0.03
Martensson-Pendrill [22] 0.886
Johnson et al. [11] 0.890
Schafer et al. [35] 0.92
Bouchiat and Piketty [26] 0.935+0.02+0.03
Present work 0.89(1£0.02)

Novikov et al.[13] —2.87(1+0.2)
Henley and Wilets[14] —3.87
Calculation Henley et al.[15] -—2.55
Neuffer and Commins [8] —3.8
Present work —2.70(1=x=0.03)
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