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ABSTRACT

wow-lying collective excitations of the soft spherical
nuclei are considered in the framework of nonlinear
guadrupole vibration model. The main nonlinear terms
being originated from the microscopical estimations
are included in Hamiltonian as well as in quadrupole
operator to calculate the energy spectra and collective
E2-transition probabilities and the static momenta.
Analytical expressions are obtained fjor all those
quantities.
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1. INTRODUCTION

The structure of low-lying quadrupole collective excitations in
spherical nuclei attracts attention of experimentalists as well as the-
orists. Besides the urgent necessity to understand the rapidly expan-
ding amount of exsperimental spectroscopic information, the physi-
cal interest to collective motion in soit nuclei is connected with un-
solved problems of description of finite fermi-systems with the large
shape fluctuations.

It is the boson phenomenology that is used widely last for des-
cription of energy spectra and transition probabilities in the soft
spherical nuclei [1—5]. The original hypothesis is that it is possible
to describe the collective excitations in terms of new quasiparticles,
namely, bosons, and their interactions. Then the microscopic theory
has to map fermion dynamics into the boson space and to derive the
effective boson Hamiltonian and multipole operators.

Such a method was originated from the work by Belyaev and
Zelevinsky [6, 7], where the collective bosons have been introduced
by the regular method based on the random phase approximation
(RPA) for the system of interacting fermions in upper nuclear
whells.

For the soft quadrupole mode being of greatest interest the bo-

son Hamiltonian H,. contains the harmonic part Hy= ¥d, d, and in-
n

teraction terms Hi,..

The RPA-pnonons are different in many respects from the «liqu-
id-drop» ones considered in the pioneering paper by A. Bohr [1] but
for the phenomenological consideration only the symmetry and cor-
responding quantum numbers are essential rather then the micros-
copic structure of phonons. It is the formal universality of the boson
Hamiltonian that has given rise the great amount of hypothesis con-
cerning the intrinsic structure of appropriate collective variables d,
d+. This inspires the variety of boson models because the detail of
the interaction Hi: being determined by the higher fermion correlati-
ons, by the Pauli pri~c'ple and by the coupling with the noncollecti-
ve degrees of freedomn should depend on phvsical hypothesis.
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There are two basic ways to treat interaction in the phenomeno-
logical boson Hamiltonian.

The former, called in works [8, 9] as «old phenomenclogy»
starts from the adiabaticity of the collective motion and postulated
the anharmonic corrections to the potential energy being the domi-
nating in H;,. These corrections are strong enough to lead to essen-
tial quadrupole boson number nonconservation. Such an approach
was justiiied in refs [7, 10], where the anharmonic terms of H ap-
pear as higher corrections to RPA from the fermionic loops. It is
equivalent to the calculation of anharmonic corrections from the lea-
ding terms of boson expansion (BE) of pair fermionic operators.
The method have been developed later jand successfully used for
description of the spherical and deformed nuclei in refs [5, 22, 23],
although the specific technique used by the authors was extremely
complicated and influenced by shortcomings decreasing the theoreti-
cal precision of the results [22, 3].

The second approach is the «new phenomenology» or IBM
(Interacting Boson Model) [2, 11, 18, 29]. It takes into account the
processes of boson scattering but includes additionally the new mo-
nopole s-boson, so that the total boson number N=N,+ N, is

is strictly conserved. It is possible by use of the Holstein—Prima-
koff-type representation [2] to exclude the s-boson and to obtain a

pure quadrupole Hamiltonian with Ns-nonconservation effects. The
result is equivalent to the usual Hamiltonian with anharmonic terms
in the N—oo limit only. However, such-a limit is incompatible with
the standard interpretation of IBM which treats s- and d-bosons as
images of fermion (hole) pairs in the valence shells coupled to the
total angular momenta L =0 and L=2 correspondingly. The total
boson number N for a given nuclide is fixed by the occupation of
fermion shells bein of order =10 for typical soft nuclei. Thus, the
«old phenomenology» and the IBM aren’t reducible to each other
for the standard interpretation of the IBM-bosons.

Without a dwelling on the conceptial difficulties of the IBM
(see, for example, refs [4, 5, 24]) it is likely to remark, keeping in
mind the phenomenological aspect of the IBM, that in spite of abun-
dance of fitted parameters (especially for the IBM-2 taking into ac-
count so called proton and newtron bosons separately) the IBM do-
es not provide the quantitative description of fine characteristics of
nuclear spectra [25, 26, 4]; the basic prediction of the IBM, namely,
the «cut-off» of the collective effects for Ns=N looks like an arte-
fact of the theory. The contraction of the collective space near the
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magic or nearmagic nuclei is not so sharp as it should be in IBM.
One need in that case to refuse the boson number conservation
which is the cornerstone of the IBM-concept.

Meanwhile the «old phenomenology» based on the reliable mic-
roscopic grounds allows one to describe, by use of few (and in
many cases less than that of the IBM) parameters smoothly vary-
ing from one nucleus to another, to understand a large amount of
nuclear data (energies and B(E2)-values) the quality of description
being comparable and oiten better than obtained in the IBM. The
aim ol the present paper is to prove these statements.

After the justification of the simple Hamiltonian containing the
strong quartic and weak cubic anharmonicity as well as corrections
to kinetic energy, the algorithm for obtaining its eigenvalues will be
described. The B(EZ2)-transition probabilities and quadrupole mo-
ment expectation values will be calculated.

As an example of the application of the method, we fit parame-
ters and compare the mcdel results with the exsperimental data for
the chains of Pd and Ru isotopes where the IBM-1 and IBM-2 cal-

culations are also available. In general one finds the best agree-
ment of the present model which allows us to «rehabilitate» the old
phenomenology as a perspective and «competible» approach.

The first part of the paper contains the formulation of the model
and computional expressions for observed quantities. The compari-
son with data for specific nuclei will be presented in the second
part.

2. THE MAIN ANHARMONIC TERMS

It is easy to estimate, following [7, 4], the anharmonic terms in
the Hamiltonian H.,, corresponding to the loop-graphs of type
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where the phonon ~~~ is considered to be coherently formed by
QO~A¥*s| single-particle excitations so each vertex contains the
normalization factor Q7' For the soit quadrupole mode, when
w<2E (2E is the doubled cooper pair breaking energy being the
typical single-particle excitation energy scale) the sum over the fer-
mion internal states leads to the estimate [4]

o et ], (1)

where the amplitudes d't), @' are connected with the boson creati-
on and annihilation operators d*, d and with the collective coordi-
nates « and momenta n by means ol equations

@, = l__, {d“—l-[-—l]“df,ll E—-I: dﬁ“ , ' (2a)
A/ 2w 4/ 2m
:rcu=r:\/%[du~<—n" dip=iql T (2b)

Thus, the H'¥'~w term becomes ‘le main one for the adiabatic
region where 2E/0~Q'? (which is approximately the case for real
nuclei), the cubic term H® as weil as all the graphs with the odd
number of intrinsic fermion lines are significally suppressed due to
the particle-hole symmetry with respect to the Fermi surface in nuc-
lei far from the magic ones (similarly to the Furry theorem)

A substitution of the pair of amplitudes d*’ by the momentum
combinations d'~' brings in the additional smallness w?/(2E)?, so
that the corrections to the kinetic energy are relatively small in the
adiabatic limit. However, one of those is four-phonon component
proportional to aJ2=a/(J+1) which is of independent interest cor-
responding to the virteal rotation of the mean field with the slowly
vibrating deformation. Phenomenological fit [16] gives a typical va-
lue of the coefficient & of order 1072 Finally, the collective Hamilto-
nian H.. under neglecting higher order terms can be written as fol-
lows:

1 - |I_‘a -y [
Hf e "T lﬂ'unﬁ “ % .‘:J [lplu'lu + XI.E»J Z (d[+ 'E)Epdé+j o o
= j

n g u
A ; 5
-}-*4—[dE g taf (J+1), (3)

where the symbol ( ),,, means a vector cnu(pling to an angular mo-
5 . + - . &
menium /M and the notation d,”' = (~1}“d_;} is introduced. All the
variables are choosen in eq. (3) dimensionless for a convenience.
6
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The cubic interaction coupling constant X'® later on is considered as
small one and is taken into account as a perturbation.

Note that Hamiltonian (3) coincides by its form with that of the
Bohr— Mottelson model (except of the virtual rotation term) but the
main nonlinear term H' here is not treated as a small one and the
pure nonlinear limit &<« should be considered quite seriously as
well as the harmonic one w*>A4.

It should be pointed out that the of(/+1) term in (3) is in so-
me sense conventional since this diagonal correction being origina-
ted from the averaging over the single-particle quasirotational ad-
mixtures to the collective wave functions does not vanish for all
states besides the ground state and Ilirst excited 2 which could be
choosen purely collective.

3. DIAGONALIZATION OF THE PRINCIPAL PART OF HAMILTONIAN

The most important part of eq. (3) is the quartic anharmonic Ha-
miltonian

I < w?
H:? Lﬁyifﬁ(‘i‘? Zapuﬁ—I—l(Eﬂuag)g. (4)
i 1] K

where the structure of H'"' is deermined uniquely [20]. In spite of
the arbitrary strength of the quartic interaction, H possess the [i-
ve-dimentional rotational invariance O(5) and does conserve the
corresponding Casimir operator v (v+3), where v coincides with the
seniority, the number of bosnons which aren't coupled to the angu-
lar momentum J =0:

Nie= Yd)d,=v+2n=2P,—5/2. (5)
j

The operator of «condensate» boson pair number with (those
with J/ =0), n, satisfies the ladder algebra together with the lowe-
ring and rising operators b and bt connected with the pair creation
and annihilation operators P, PT by means of equations:

pE_;_ Y dd; = Vv+bTb+5/2 b,
1

Pt=— Ndd,= bt Ao+bTb+5/2,
]

p.
2

[b,n] =b, [b*,n]=—b".




The triplet of operators P, P', P, conserving the seniority v
obeys the commutation relations of the O(2,1)-group.

The Hamiltonian (4) could be expressed in terms of the P, P,
P, only:

H=—(1+0% 2P+ % (@2—1) (P+PT)+A (2Py+ P+ PT)?, (6)

1
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which allows one to diagonalize it analytically with a good accu-
racy by means of the canonical transformation of the operators P,
P+, P, to the new ones P, P™, P, [15, 16]. The «dangerous graphs»
compensation condition [15] gives an equation to determine the fre-
quencies w,>0 corresponding to the true excitations of the system:

w3—0’w,=4 (v+7/2) A. (7)

Fig. 1 illustrates the behaviour of the solution of the eq. (7) versus
the parameters o, .

%
3k
2.
%
g
0.

10. 20. 30. 40.
Fig. 1. Solution of the equation (7) for the renormalized frequency w, (in units of
| ®|) as a function of f=4(w+-§—)h.

The Hamiltonian, after the canonical transformation, becomes to
a sum of the c-number part E,, and the operator term describing
renormalized interaction of the new excitations,

H=E, ,+©, M [4 (AP+P*h) + PP+ P*?], (8)

As a result of the transformation, the renormalized interaction is
strongly depressed, since

T e
PR S i .ﬁ__i, for &°=0. (9)
10+7/2) - 14

Av=h/@3
The dependence of %, and E,, on the parameter ®*/A%° is shown in
Fig. 2. one can see that the residual interaction contributing to the
energy in the second order of the perturbation theory in the new pa-
rameter &. can be neglected at least as soon as ®?>>0. The energy
spectrum is described with a good accuracy by the simple formula

1 o’ D = - ¥
Eon=t(300+2) (04 5) +200m{ 1473 (1) ror]}. (10

Wy

At &2/223<0 it is necessary to take into account the residual in-
teraction in (8); the similar formulae for second and third orders oi
perturbation theory are given in Appendix (Al—3).

The method used breaks down at @?/A¥3<—(6+-8), when the
residual interaction ceases to be weak. In this case the wave functi-
on is localized not in the vicinity of the origin zeroth point but near
a new minimum of the potential energy U/

Up) = +3B.  B= Do (11)

Such a situation supposedly takes place in some isotopes ol Xe,
Ba and Pt, where the level 0F from the two-phonon (riplet lies too
high in the energy scale. Then the modification of the method is ne-
cessary by introducing of an additional variational parameter taking
into account the displacement of the wave function.

For the typical soft nuclei as Ru and Pd, it is possible to adopt
2/23~0. Then the energies ol states with quantum ‘numbers v
and n are given, for the cubic interaction being neglected by the ex-
pression (10) with the rotational correction J(J+1) (see sec. 1).

E(v,n,J)=E, .+l (J+1). | (12)




v=3 n=0

o ool

v‘n. n-i

Fig. 2. a—Enhergies E,, (eq. (10)) in units of A"3, measured from the ground state

energy versus the parameter &?/A** for small v and 7. Note the crossing of the

«two-phonon» 05 level and the: level with v=3 at @’/A**< —6. b—Dependence of the
reduced coupling constant &, (eq. (9)) on the parameter &/A¥* for v=0, 1, 2, 3.
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In such a model, all calculations are extremely simple to be car-
cied out with the aid of a pocket calculator. In ref. [16] the predic-
tions of the model (12) were compared with experimental data for
the chain of ,Pd isotopes and the agreement was achieved by fit-
ting only one parameter o better than with the use of three-parame-
ter formulae of IBM. As an example, the energy levels of 'aPd
from ref. [28] as well as results of calculations by use of formulae
(12) for ®?/2¥3=5.2 and 0=0.026 are shown in Fig. 3. What is
stricking is a good agreement between the experimental values and
theoretical ones for only two parameters fitted (spectrum was nor-
malized according to requirement E(2H)w=E(2] )exp- The nuclei
10pq and '™Ru (see below) appear to be typical ones displaying
the developed boson bands; those are labelled in figure by letters Y,
X. Z, A, B according to the notions adopted in [2]. The O(5)-mul-
tiplets of states with the same v splitted by the correction of(/+1)
are well pronounced. The SU(5)-multiplets with same Ni=0v+2n

are destructed by the interaction H*; that is seen clearly in the case
of 4Ry for which the 0 and 27 -states are shifted up in the energy.
[t should be mentioned that the almost pure O(5)-symmetry with a
strong nonconservation of boson number (Hamiltonian of type (4))
is apparently realized in pure quality in some nuclei [27].

The eigeniunctions of the Hamiltonian H with quantum numbers
v, i and angular momentum (JM) can be expanded over the non-
perturbed eigenstates [v, n, M) of the harmonic approximation with
the same v but different n,

lv,/t, IM) = ZAp e lv, 0", IM). (13)

[n our approximation, the overlap factors A, (@, @) are given
by the formula [16]

AL L (@, ®) = (=" [I‘[v+n+5{2) F[U+nr+5"‘2\’]lfﬂ(h/m)”mx
' F(U‘FB}’E) ﬂ-!ﬂ.’! ——_"'m”+1m| .r
2=1¢& A4n' g
x(mr lm|) F(_n,, e e L ) e
wy+ | @] (0o— &1 )2

where F is a hypergeometric function. It is evident from the expres-
sion (12) that the superposition (13) has a large width An’ for a
strong anharmonicity ®?/2¥3<1. At the weak anharmonicity limit
&2/)%%> 1, formulas are equivalent to those of perturbation theory.
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Fig. 3. En_erg}' levels in ''°Pd: the experimental data on the left and the resulis of cal-
culations in the present model for &@?/3*®=5.2 and 0=0.026. The values of v and A
are marked above levels.
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4. QUADRUPOLE TRANSITION PROBABILITIES
AND STATIC PROPERTIES

To calculate the collective E2-transitions, one expresses usually
the phenomenological quadrupole operator expressed in terms of the
collective variables only. For the microscopical reason, one should
choose it in the form

TE™) =d ™ 4% (A1) o dP)g +9 (@F?)g +

1

£q (d )y (7)) (15)

where the new operator x(dT®),, is introduced besides the main term
d'"’ and the additional g(d™?),, +q'(d"7?),, term to describe weak
cross-over transitions and quadrupole moment expectation values. The
term »(d*?),, arises from the same fermionic loop as H® via the
boson expansion of fermion operators. According to the microscopic
estimates it should be =<0 and | x| ~0.1=-0.3, which is an agreement
with fitting results for many nuclei [16, 27]. The two main eflects
causing by the new operator are the attenuation of the enhanced
transition probabilities with [AN4 =1 (especially for transitions irom
the p-band like 0F —2F, see Fig. 4) and the enhancement of forbid-
den transitions 2 —07 with AN;=3. Such probabilities are observed

experimentally being extremely sensitive to the value of =.

One should note that it is possible to describe the beaviour of
the transition probabilities along the yrast-band in dependence on
value J in the broad range of nuclei by variation of only one para-
meter % in TE2 from 0. to_—0.40 (see Fig. 9).

In accordance with the adiabaticity the momentum amplitudes
enter into (15) by the «minimal» manner and coefficients ¢’ and &
should be rather small. This is the case as can be seen from the
results of fitting (for the most nuclei ¢, k~10"2, see [16] and
below).

The last term in (15) containing the angular momentum opera-
tor has the same origin as the quasirotational term in eq. (12) be-
ing essential for the description of fine characteristics of the
B(E2)-transition pattern, such as «splitting» of values B(4F —21)
and B(25 —2/).

Using the matrix elements of operator TE? between the oscilla-
tor states |v, n, /) (see Appendix B) and eq. (14), it is easy to
compute the probabilities ol transitions with ANs=1 and ANs=3

48




3,+6,

61-'41

10,~3,

0.

Fig. 4. E2-transition probabilities with AN;=1 in units of B(E2; 2] =0}) induced by
the T operator (eq. (15)) in the simplest one-parameter variant xs<0 and for the
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pure quartic interaction, ®2/A%*=0 as functions of =.
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B(EZ,J*J'?.VEJ(EZZ"U) y 2= 0.
f.r’
Tise
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— 2=-019
2.}
L 2=-029
..

Fig. 5. Experimental values of E2-transition probabilities inside the yrast--hgnﬂ in

units of B(E2; 2 —0;F) for some isolopes of Se, Kr and Ce as compared u.f:ltla Illt_-.;.l-

model prediction in the simplest case 0?/323 =0 with the only parameter x in F

(15). The experimental data for the Se and Kr isotopes are taken from rel. [29],
and for Ce from ref. [30].
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(bands connected by the transitions marked on the leit)

Y—Y: B(EZv+1,0,]=2042—>0,0,/=20) =

=(v+1) Ko [Ro+ (20+ 1)0]?, (16)
KooV BB 04 1, 0 B0 iny, 0, FmBu) = 2 t=
v—+0,0,/ 2U}—4U_I K.R% (17)
X—X: B(E2;v+1,0,2v—>0,0,/=2v—-2) =
_ (v=1) (40+3)
K, [Ro+ (20— 1), (18)

dv—1
Z—Y: B(E2;v+1,0,/=2v—1—12,0,/=2v) =

3 (v—1)(4v+1)
(20—1) (4v—1)

Z—~+Z7: B(E2;v+2,0,20—1—0,0,/]=20-3) =

Ko [Ro—2un], (19)

_, (=2 @u+1)
Y o—1) (2o—1) Ko Ry (403 ()

p—Y: B(E2; v, 1. J=20—+0+1,0,/=20+2)=

s (4v+5) (2v+ 2)
(dv+1)(2049)

B—X: B(E2;v,1,/=20—>0v+1,0,/=2v)=

ﬁv[sﬂ—(1+(u+7;2}tp;} (20+1)n]% (21)

___4Qu+tl)
(2u+5) (4v—1)

p—~p: B(EZv+1,1,20+2—>0,1,/=20) =
2

_ (w+1)(2v+7) (fﬂuh)zﬂ-u [TU—}— WoEo —(U-i-“g-) Euiu] : (23)

2045 m:rgu @y
p—~Y: B(E2;v+1,1,/= -
[AN:=3) [ e 2 ’J 2U+2_“+U1 01!—2U} =

Wy :
-{v+l)[v+?/2}( ) K. Vi, (24)

WoEo

2
K. S3, (22)

here the factors R., S., T. and W. are determined by formulas

R”=1-+ Du : 2047
' V5 oot o, , (25a)
S;;:}—(U-i-i) 5 4o 2047 =

e e i (25)
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Tu=5u~—(ﬂ+-g—) Eooot ?f (24 (20+7) eat
2 ,\/5 Wy

+ (v —|—9f2f|[1—2tpa—-[v+?f2} Pool] (25¢)
Wo— — 2% [1+ (0+7/2) &a] +ecko, (25d)
q/ﬁ Wy
where the notations are used
4 u.'r;.-+1—-{s}u i (l.'lu-q-l‘l—(ﬂ:.- 26
£ -———2mU+! e F o (26a)
B (26)
T T A6

Without a cubic interaction, the third as well as fourth terms in
TE2 [16] do not contribute to the enhanced transition probabilities.
sitions with ANsa=2, transitions in-
side the multiplets (ANs=0) and generate the quadrupole moment
expectation values. Although it is necessary to include simultaneosly
the cubic interaction for calculation of those values since it produces
the same contribution to F2-matrix elements with ANg=0, 2.

They cause weak Cross-ovet tran

5. CUBIC INTERACTION

In the sec. 3, 4 the Hamiltonian H. has been approximated by its
D(S]—symmetrical part il 1n the present section, effects due to the

ferm
His‘.l__zxm} }_1' Eﬁ.ﬁﬁu?d&.ﬂ t:ri d&j] ; (27)
ey eplasbla
with the selection rules
(28)

[Avl =1, 3
are considered by the perturbation theory. There are also selection ru-
les | An| <3 and |ANg =1, 3 in the unperturhed oscillator basis (see
Appendix, egs A7—14), which are, rigorously speaking, violated in
the physical basis |u, n, J) of eigenvectors of H (sce eqgs (13,
14)). As a consequence Of (28), H® does not conserve U and viola-

tes the O(H)-symmetry. Thus, the eigenstates of the full Hamiltoni-
an H.—=H+ H® have not definite values of the seniority v. Neverthe-
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less, for H'Y<H it is possible to label the wave functions corrected
according to the perturbation theory by values of v. Later the states
containing the correction from H® are marked by asterisks in dis-
tinction of those from O(5)-scheme | v, L § %

lo, /i, 1) = B Col v, n,1). (29)
e

Because of (28) H'® hasn't diagonal matrix elements so that the
first nonvanishing correction to energy appears in the second order of
perturbation theory only. In the same approximation, the eigenvalues
E*(v, 7, 1) of the Hamiltonian H, are given by

E*(v, i, 1) =E(v, i, ]) +AE (v, 7, Fo (30)

expressions for the corrections AE(v, i, J) are written down in Ap-
pendix (A30—34).

The relative smallness of the cubic corrections is determined by
ratio AE(v, A, I)/E', A, J)~X®2/4% since the canonical transior-
mation (sec. 3) corr. .ponds to the coordinates and momentum res-
caling

&'!il—}:_l__ f‘;} d: i 34 1;{.!_1;; [—}. (31)
W Wy

So that the cubic coupling constant enters in all observed quantities
as X¥/w%2 1t is useful to choose the value of

x = X2 /3 (32)

as an universal measure of the cubic anharmonicity; all the large
quantities (energy shiits and transition probabiliies with AN, =1)
are linear in y in the main order.

In Fig. 6, the energies £ (v, 7,/) measured from the ground sta-
te energy are plotted in units of the E,. for the three typical ratios
of ® and A. In the absence of quartic interaction (Ah=0) the degene-
rated vibrational multiplets are observed being splitted by inclusion
of y5=0. The middle part of Fig. 6 corresponds to the pure quartic
asymptotic for ®?/4%3=0. Here the effects by cubic interaction are
superimposed on the pattern of conserved O(5)-multiplets of states
with 'same v (the oJ(/+1) correction is not included here). The
right part of Fig. 6 corresponds to the case &?/A%3= 4 where the
potential energy (11) has a pronounced minimum at the nonzero
deformation parameter B. Here the cubic anharmonicity tends to
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h=0, SY/AP0, Y/ A= -4.

mjm
-

—

" 1 7' 2* 2
o - i i LT
0. 510> 0. 5407 0. 5107

B 4

Fig. 6. Energy levels with the quantum numbers v, 7, J (in units of E;+) calculated

with the account of the H'” for 0=0 versus the strength of the cubic interaction

x=X®/w] for three cases: without any quartic anharmonicity, in the strong quartic
anharmonicity limit and for ®*<0 (from leit to right ).
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compensate efiects of the strong quartic anharmonicity inducing the
displacemeent of the states with =1 (0F and 23) up in the
energy. On the whole, one can conclude that the influence on the le-
vel energies by the H® is inverse to that by term of (J+1). It 1s
natural since at H¥ =0 one can remove the cubic term in Hamilto-
nian by the point canonical transformation which produces an effec-
tive correction to the energy being proportional to J(J+1) but with
negative sign. It is valid qualitatively for H®=£0 " also but in the
strong anharmonicity regim the effects of H® are being attenuated
with the v increasing in accordance to the renormalization (31), SO
in presence of o=>=0 it is the quasirotational term only that survives
for high-lying multiplets. This does not contradict to the experimen-
tal picture: as for small v~2, 3 in some nuclei the inverse ordering
over J of levels in multiplets is observed (for example, two-phonon
level 25 lies in some cases higher fhan two-phonon 47) which may
be attributed to the cubic interaction whereas the level ordering in
the higher multiplets (v~4-+6) is always in accordance to the an-
gular momentum ordering.

The cubic corrections to wave functions do contribute to all mat-
vix elements of T2 removing the forbidnesses. To compute the tran-
sition probabilities one need, within the same accuracy, to take into
account in the wave functions (29) the second order corrections as
well as the first order ones (at least these of latter which make non-
seroth contributions in matrix elements). To this end, the coefficients
have been calculated in general form for each band and they are lis-
ted in Appendix B.

Fig. 7 is analogous 10 Fig. 6 but depicts the B(E2)-values. It
shows the dependence of electric quadrupole transition probabilities
in units of B(E2; 27 —0f) on x for three typical anharmonicity regi-
ges hoambha: aadh =0, &2/32/3=—4. As it could be seen the swit-
ching on the cubic interaction violates the equality
B(4+—>2}) =B(2f—2) and duces cross-over transitions. The
change of anharmonicity regime causes the change of y-dependence
of B(E2) values. One sees also the necessity to include the w (d?),
term into T'F? -operator (plots are obtained for »=0) since the expe-

rimental values don't exceed usually 1.5—2.0 for a quantity
B(0f —+2])/B(2F—07) being of order 0.5—0.9.

*) The same procedure couldn’t be made up at the strong quartic anharmonicity,
which makes doubtiul results obtained by means of boson expansions [22], because
the anharmonicity appeared to be strong.
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Fig. 7D . i |
I:é ependence of B(E2)-values calculated with account of the main term dt) in

2)
(15) only on the strength of the cubic interaction v =X*2 /% for the three anhar-
monicity regimes: A=0, &*/A¥®=0 and &*/A¥*=—4.
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APPENDIX A

. The second order perturbational corrections from the renor-
malized quartic interaction in (8) to the energies of states v, n)
for =0 and n=1:

T Dy
&-E;,[l?}i..-.ﬂz_lums (3:+5]{1’J+?}"2} 1 (Al)
(144 (v+13/2))
i 32 %2 (v
Y g WP B{utlu{gﬂ—i—i’} e 3 mufvh-[uﬁ+?;"2}[v+9ﬁ} _ (A2)
: |+ 4 (v+19/2) 2 1+, (v+25/2)

The third order correction to the energies of states |v, n=0) va-
nishes because of (v,A=0|P|v,i=1)=0. For the states [v,n=1) it
is equal to

-3 i
12w, 43 (20 +7) (204 9) (A3)

Y i AT
[ U1ﬁ=ﬁ_ - e ’
[1+h (v4+25/2)][1 + 2o (v+19/2)]

[t is easy to show that the corrections to wave functions |v,n) in-
duced by the residual quartic interaction in (8) are small (especi-
ally for the states with i=0) and don't make any essential contri-
bution to observed matrix elements.

2. Cubic interaction Hamiltonian
H{E}: 2 {d{+]2)2ud:+!l e (d3]0+ (d+3]0+3(d+2d}u+3(d+d2]0 {A4}

3

obeys the selection rules |Av| =1, 3, A/ =0. By use of commutation
relations (2) one can easy derive the following formulas of commu-
tation of H'® terms with the operator creating n boson pairs:

[P, (d1d?),] =n(d®), P, (A5)
[P?, (d+2d) o] =2n(d*d?) o P"" + (n®—n) (d®), P" 2, (A6)
with a help of relations (A2) one can derive expressions for the

matrix elements of H® in the basis |v,n) from matrix elements
between the states with the maximum seniority:

3 __H_ﬂ\/:ﬂ »
(o, n| HYv+1,n) = 772 5 (v, 0l ¥ v+1,0), (A7)

(v,n| Hv+43,n—1) =

(v,0| H®| v +3,0), (A8)

=3/\/n{ﬂ+n+5f2} (v+n+7/2)

(v+5/2)(v+7/2)(v+9/2)

0,0 HDv—1,n+1)=20t3n+s n+l B} o
( ) wrs Vigas (OOHMv—1,0),  (A9)

(v,n| HY v +3,n) =

ol /\/[v+n+5f2) (v+n+7/2)(v+n+9/2)
(v4+5/2) (v+7/2) (v+9/2)

(v,n| H¥v—3,n+2) =

:3,\/(ﬁ+l)[n+2}{v+n+3fﬂj e
e Thsagr - a0, (All)

(o, nl H¥v4+1,n+1) =

(v, 0l H¥| v +3,0), (A10)

e =t (n+1)(v+n+5/2) (v+n+7/2)

a+?,f2'\/ 0+5/2 (0,0l H® v +1,0), (A12)
(v, n| HN v —1,n+2) =

ST (n+1) (n+2) (v +n+5/2)

U—F—&,KE/\/ v+3/2 (v, 0l H¥ v—1,0), (A13)
(v,nl Hv—3,n+3) =

- (n+1)(n+2)(n+3) %

/\/(U—lfg}(ﬂ+lg’2}(u+3j2} (v, 0 ¥ v—3,0), (Al4)

Thus, for calculation of matrix H¥, it is enough to know the
matrix elements connecting the states with n=0. The corresponding
formulas are listed below (the third quantum number stands for the
angular momentum J):

(v,0, 20| H¥ v +1,0,20) —6 ﬂ*‘[;ﬁ (A15)
2

(0,0, 20| HM 0 43,0, 20% = — /\/6{]8:: + 199v + 245)

> 7205 7) : (A16)
(0+3,0,20+2| H v +2,0,20+2) =6 "“”;"93’ Fars) (A17)

(20+7)
(9,0, 20—2 HO| 9430, 20—2) 2,\/5{35u3+944u2+2:?5n+ 1024) . (A18)
7(20+5) (20+7)

<u+3,0,2a+31Hmiu+4,0,2u+3>=61X3“i'w—tﬂ, (A19)
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(0+3,0,20+3| HY| v +6,0,20+3) = N/

6 (5407 + 7390 + 1859)

7(20+13)

(v+3,0,20| H* v +2,0,20v) =

B 12/\/731.19_11(4“3}(4v+5}[4u+2]
i T -

20+ 5) (2v+7) (1802 + 1990 + 245)

{v+2,0,
~ 6(2v0—1)

2u+

o

20—2| H¥ v +3,0,20—2) =

,\/(u— 1) (40— 1) (360° + 944 0% + 21750 + 1024)

14(20+7) (1802 + 1630 +64)

3. Wave functions of states v, 0, J, M=/).

1

Y-band: |v,0,/=20)= 1 g7 110

X-band: |v,0,/=2v-2) =

g 1 d+d+ ,\/_ d+2 1- :,-—2| D} =
A (dv—1) (v — 21'

e d—.— g—2 [} —
/\/Q{em—n(a—) (@) 2 (d7) i

X’-band:

1

|v,0,] =2v—4) = . X

4/ (4v—5) (4v—3) (2v—3)

A {Qﬂ-l- +2 d+ v—4 o) —
ﬂifvizziﬂd)ﬁ(z) 10)

—44/(0=3) (v—2) lv—2,1,J =2u--4>},

A-band:

<V

|

|v,0,f =2v—6) = X

6(v—3)

4/18v 4+ 91v— 190

?{EU-FU { d+?) 0 (dF)°730) —

— 4/6(v—3) (4v—9) |v—2, l,!z?ﬂ—ﬁ}},

A’-band:

{V

7 (4v?—1)

6

10,0,] =20—8) =

1
4/360°% + 62007 — 446 1v +2023

(d1%) 4l v—3,0,20—8) —

24

i

X

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

% \/3{:1-5}{41:-11}(zv_?}(za—n TEETE = e

20—3
_2»\/"‘”_4”4”“”’ Bt W, —4,2,2u—3>}, (A27)
20—-3
Z-band: 0,0,/ =20—3) = : X
AVi{v—1/2) (v—1) (v—23)!
x(\/‘ didtdi— d+‘=‘ d;rﬂd_l) (dF)*=2|0), (A28)
Z'-band: |v,0,f=2v—5) = -, X

A/ (v—2)(v—3/2) (4v—7) (v—5)!

x(/\/-g d;drd{?—%drtd;ﬂdi,) %
3 E
x(zd;d;—/\/; a,ﬂ) (dF)"510). (A29)

Wave functions of states with ns£0 might be derived from those by

. - HTH
using the relation |v,n) = | ©,0).

nr

4. Corrections 1o energies of Y-, X-, Z-, A- and B-bands from the
cubic interaction in the second order of the perturbation theory:

Y: AE (v,A=0,]=2v) =

6 X2 O [ 18074 1990+ 245
s Z{ IAZE® (003, 00)] 24

?{2U+?} r.r+i-.n I-'ﬂ
bv(4v+3 ] v .
—I——-—-—EU[ - E} | A, +I[mu+1:tﬂu}+’\/ﬂ+—a‘1nu {mv+h“’v:'12}' (A30)
v+ bae T S

X: AE (v,n=0,]=20-2) =

6 X —1) (4v— i
=__—Z{3(ﬂ -5 |An[}I{mL—-I mu}+

7 U)E s | EU—I.J'I_EU.D
2 v—1 2 v—1
T e {mn——lsmﬂ}'*‘ AnE (w,_ 1{11':..“2+
Vv +3/2 V(v+3/2) (v+5/2) "
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6(v—2) do+1) (20—1) | post (o ml)Jr__l_ ATT (@05, @)1 2+
(2v+3)(E, 1.n—Eu0) e s Vo+7/2

360+ 9440® + 2175v + 1024 |A"“'*'3(m d mﬂﬂz}‘ (A31)
(204+5) (20 +7) (Eyyan—Eod)

A: AE (v=3,7=0,/=0)=

x@n2 i { 144 A7 (05 09)1*

E- —Ealﬂ
n=I0
E |4 U AHJ mu m3}+6‘v A.I"E-I mﬂ. ma
0m 3.
124/3 Aﬂ(mmma]Jr«/moAmu(mu, %Ha}, (A32)

Z: AE (v,n=0,]=2v—-3) =

i x‘imi{ﬁ[v*i’:}ﬂv—&x

7(2v+ ?_:l w3 Epprn— EU.IZI
a=0
>(|f\/ﬂ_-5‘ igl{mﬂ+1 {'}U)+A;r,-1|_ (llmﬂ+l>mﬂ]| =
- -
5402+ 4150+ 128 AL Ha.mu)iz} : (A33)

Eu+3rt ELG

ﬁ X{E]E
X
(2v+5) (2v+7) o

xZ{gﬂH”H] |4q!v+ ALt 0y 11, 0,) +

r.l+1n

B: AE (v,a=1,l=20)=—

ne=0
2

+(20+13) A%T (0ps1, 05) + 24/20+9 A3 (0,11, 0,) | +

2(1807+ 1990 +245) 44043, . @)+
Eu*—ﬂ-,ﬂ _Eﬂ'.l

+\}' _Au+d( U+31'mzr]|2}+ (AS‘:‘}

Eqs (A30—34) contain formally sums over n from zero up to
mfimty since the cubic operator hasn’t rigorous selection rules for v,
n in the basis of physmal states in contrast to the unperturbed oscil-
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lator basis. Although it is enough for the practical calculations to
adopt an approximation A, ~4§,, since coefficient in front of the
small quantity y is considered. It could be evidently seen in the
example of the ground-state. The corresponding correction is equal

AE (v, 7i=0,]=0) =

(3)2 o= 3
3 Z }AW(MS lﬂu}l ¢(3,0,0 (d757)410,0,0)|*=

X[:!}E 2
=—=— 143,00 (dFR) 0l 0,0,05]2x

(1]

[Aﬁn{ms- mu” |"*l p (0, {*10”2
x{ ' - : } A
S Z e oo

A following estimate is valid for a sum in curly brackets:

oo

- |AHD (g, mnﬂz 1 3
B e E|Aﬂﬂ{m1m}|2=
Zﬂ Ea.n _E[m b E:LEJ_EIJ,H ==l : ’ \

]_lf"‘lgu (@3, )| E
" . _ A36
i (A36)

and since A, (v, o,)=~~1 with a good accuracy (see (14)) a sum
over ns=0 may be neglected.

APPENDIX B

I. The quadrupole transition operator T'*# (15) acting in the spa-
ce of O(5) representations f{|v,n,J)} has the selection rules
|Avl =0, 1,2. It might be divided into even T, part and odd 7, one
with the selection rules |AN,| =2k and | AN, =2k +1, | Av| =1 corres-
pondingly:

T =T+ T, , (Bla)

2:_(2PD+P+P+} do, (Bb)

Te=q(d'*?),+q'(d77),. | -, ~ (Ble)
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Here the last term in T'®? is not accounted for small corrections in-
duced this term have been already calculated and included into
(16) — (24). One can easy obtain the recursion relations for reduced
matrix elements similar to those from the book [1] (p.605)

(o, nld ™ o+ 1, nY = 1/"j—j§f2f—2 (v, 0lld ™ o +1,0, (B2)

(o—1,n+11d® o, ny = rf\/v’lgj,z (v—1,001d* Jlo, 0, (B3)

here the matrix elements of the operator (d‘t®), between unpertur-
bed states |v,n) are expressed through the corresponding quantities
for the states with the maximum seniority |o,0):

(o, nll (@) llo+1,n) =

—(v+3n47/2) A2 222 (4 01d v +1,0), (B4)

v+0/2

(o, nl (@) llo+1,n+1) =
= (v+n+5/2) I:U—}—PI-I-T}"E]{H‘FIT {L‘ ﬂl|d{"‘]'||u+l D} (BS}

v+5/2 : Saeicy

(v, nll(@ ) llv+1,n—1) =
=(2 W/_” 0lld " 1o+ 1, 0y, B6
(20+3n-+4) A/ <001l +1,0) \Bo)

(v, nll(d ) llo+1,n—2) =
_A/na=D(@+n+3/2) 0 (+) ' B7
,\/ - (v, 0d ™ o +1,0). (B7)

A general formulae for the matrix elements of T between an
arbitrary states with |Av| =1 follows from eqs (B4—7):

i {v,00d" " o+1,0)
V(v +5/2)w,

x{ AL @1, 0) Af v+ nt st VAT @00 00) +

' 7
+ 2 [(p +3n +-?) ’\/ﬂ—I—ﬂ-I-% A (@41, @) +

iy

(v, nl T o+ 1, i) = (v, nliTollv+ 1, n’)

X

+V{n+1}(v+n+%)(ﬂ+ﬂ+%) i S

28

+(20+3n+4) Vn AVNL (@41, @) +

+/\/n{n—1)(ﬂ+n+%) Al (@orrw) |}, (158)

where the notation is used:

Q= js_x. (B9)

Coefficients A}, (o,,w,) are determined in the text (14). The next
formulae are valid for the T. matrix elements with the boson num-
ber changes |AN4 =0, 2 which correspond to the quadrupole mo-
ment expectation values and cross-over transitions:

(v, nllT™ Jlv, n’) = (v, nll Tellv, n*), (B10)
945/
¢o, nli T, n>=2%(f— +q’m.:.) (v, 0l (d*+d),llv, 0), (BI1)
tu; ol ol g 1) 2 A (n+1) (v+n+5/2) "
v+5/2
X(mi+q"mu (v, 0ll (d*d),llv, 0), (B12)

(0, Al TE? [lo+2, ) = SL0@),llo+2.0)
V(v+5/2) (v+7/2)

b4 (-f;-#q'mu) [‘vﬂ{ﬂ—l ) A:t;z-z (@49, ©,) +

+ A (0+n+5/2) (v+n+7/2) A2 (@0, @) +

+A/n(v+n+5/2) A:-f_mu.m] . (B13)

Below we write down the summary of equations for the matrix
elements of the 7'*® operator between the states |v,n,/J):

(v,0,20lld  lo+1,0,204+2) = Ao+ 1, (B14)

(v+1,0,201d P l0+2,0, 20 +2) = A /280D (B15)
4043

v+3,0,200d"* lv+2,0, 20+ 2 =?'\/ i

¢ ’ (20 +7) (18v% 4+ 1990 + 245) ' Ve
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(v+3,0,200d" v +4,0,20+2) =

(v+1)(2047) (180% + 2350 + 462)
(2v+9) (180v% + 1990 + 245)

(v+2,0,20ld"  lo+1,0,20+2) =

:_4/\/ v(v—1)(v+1)
(v+5/2) (2v+ 1) (40 +5) (4v+3)

(v+3,0,20ld" v +4,0,2042) =

(4v +2) (360 + 105202 + 41710+ 4179)
(4v—1) (20 +9) (180° + 199v + 245)

(v,0,20]ld""lo+1,0,20) = m

(v+1,0,20/ld"" lv 42,0, 20) =

¥

2_4/\/ 20(v—1) (20 47)
(20 +5) (4v 4 5) (4v + 3) (4v—1)

(v+3,0,20/ld"" llv +2,0,20) =

AR ,\/ 3(v—1) (204 5) (4v+5)
(20+7) (4v—1) (18v°+ 1990+ 245)

(v+3,0,2001d""lv+4,0,20) =

(40 +2) (360°+ 10520% + 417 1v +4179)
(4v—1) (20 +9) (1802 + 1990 + 245)

{v,0,20]l(d?),llu+20,20+2) = 2,\/4an 7

!

bia { 0.9 2y — 2v(v+1)
(v+1,0, 20l (d7d),llv+1,0,2v0+2) = 2 7(4v +3)

(v+3,0,20] (d*?),llv+1,0,20+2) =

B(v+1)
= (6v+49 /\/ 3
i 7(20+7) (18v* + 199v + 245)

0,20 (d™ , z,\/t'(2v+1)(4u+3)
(v vil(d7d),llv, 0, 2v) e ;

20+1) (4v+3) 4P—v—6

(v+1,0,20 (dtd),llv+1,0,20) = \/‘
(v+2,0,20lld P lu+1,0, 20) =

Tv(dv—1)
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dv+3

(B17)

(B18)

~ (B19)

(B20)

(B21)

(B22)

(B23)

(B24)

(B25)

(B26)

(B27)

(B28)

_ (v—1) (4655
i ki '\/Umu—n{wﬁ} (20+5) ’ il

2. The coeflicients C:’;j in the corrections to wave functions (29)
in the first and second order of the perturbation theory for H'® are
given by formulae”:

C[ij U,ﬂ,.lr == X{BJ <I.:|,, H‘I!H[a-}l U!, n:s- I}
o' ’

= st niskn
EYE] ) F
[I'};_, EL'.n § Ei.",n’

2o X[B}E
s e
I:E"n _E:l'n'}

e (v, n, J| HNv”, n” 1) (v",n", I HO v’ n .-'}
Z 0 (Eyp —Ep )

X

¥

c@ond _y_ X ¥ | (o, JIHP 0", 0", )1
N EU-'E {E:.r.n _'Eil".n"}ﬂ

L'U‘ﬂ”

where the sums are over all the intermediate v”, n” satisiying the
selection rules |Av] =1, 3; |An|<3; | ANz <3, and the matrix ele-
ments of H® are calculated by use of eqs (A7—22) calculated by
use of formulas (A7—22) in the harmonic oscillator basis.

The observed matrix elements of operator T"**) between the
physical states |v,n,J)" are determined (with the cubic corrections
included) according to

s{U.r‘ nrlj,t” T{EE}”U,H' !}*z

SO L OO Sy (0, a T T M, B

1 A 1 e ’ E2
e T T Y 4

bl T ol T

3 Bt g g IRT S S

O :
- E2
+ BBty IO,

0y

where the values (v’,n’, J’|IT" |lv,n,J) are determined by formulas
(B8—12).

"' Here the same approximation is assumed as in the calculation of energies

A, (0, @) 28, . (see Appendix A).
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