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BEAM-BEAM EFFECTS IN STORAGE RINGS WITH A
MONOCHROMATOR SCHEME

A.L.Gerasimov and A.A.Zholents

Abestract

Beam-beam effects are considered for the case of electron-
-positron storage rings with a monochromator scheme, when the
interaction of the beama is taking place in the presence of a
large vertical energy dispersion at the interaction point. 2
limitation of luminosity in monochromatic experiments due to
the decrease of a monochromaticity factor under the influence
of the beam-beam effects is obtained.

INTRODUCTION

In the Institute of Nuclear Physics at Novosibirsk the
works are continued on the upgrade project of the storage ring
VEPP-4 for the monochromatic experiments in ﬁf;r'-mQSﬂns ener-
gy region. The important question for these studies is the es-
timate of the maximum luminosity, for which the effects of
electromagnetic interasction of electrons and positrons(beam-
-beam effects) don't significantly affect the monochromaticity
of the interaction energy of the particles. It should be noted,
that eccording to a suggested in the work /2/ scheme, the mono-
chromaticity is obtained through the special method of perfor-
ming the electron and positron beams collision. The beams at
the interaction point are decomposed relative to the energy in
the vertical direction, so that the size of decomposition is
much larger than the r.m.s. betatron size. The gain of energy
resolution due to the monochromator is determined for the un-
perturbed motion, when the particle distribution is gaussian,
by a factor A=I[¥:18:/6z , where Y¥; Gy are vertical dis-
persion function and betatron beam size at the interaction
point, and O is the relative energy spread in the beam, The
interaction of particles of one beam with the space charge
field of an opposite beam changes the distribution of partic-
les. Even for the standard regime of electron-positron colli-
gsion the number of particles in the distribution tails and the
average size of the beam are growing with the increase of the
beams intensity (see, for example, /3/). In our case one
should expect a stronger manifestation of the effect because
of a larger vertical dispersion at the interaction point. The
broadening of the particles distribution function in Z -direc-
tion leads to a stronger intra-beam mixing of different energi-
es and monochromaticity deterioration.

The first studies of mechanisms of the possible loss of
monochromaticity because of beam-beam effects were carried out
in a one-dimensional model” in the work /4/. The conclusions
therein are resuming basically to the prediction of & ralati-
vely high value of a threshold space charge parameter X
for a particle distribution function broadening, and the iden-

tification of the effect of a vertical dispersion function




perturbation by an opposite beam field as the most dangerous
one, In a whole, this allowed to obtain a well enough optimie-
tic prediction of a beam=beam effect influence on a monochro-
maticity, moreover that the compensation of a linear part of
an opposite beam "force" (see /1,4/) allows to considerably
supress the phemomenon.

The problem of a magnitude of a beam-beam effect influen-
ce on a monochromaticity requires, however, a furthep investi-
gation, where the two dimensional character of motion should
be taken into account. Such an investigation was carried out
and the results are given in a present paper.

The first paragraph containts the analysis of a magnitude
of a vertical betatron amplitude oscillation for the nonlinear
betatron and synchro betatron resonances, arising from the par-
ticle interaction with the opposite beam of elliptical cross-
-gection. The dependence of this quantity on the monochromati-
city parameter A and the information about the relative
"atrengthe" of different resonances are obtained.

In the second paragraph the model and resulte of simula-
tion are given.

Th tic estimates of a B8 e
in monochromatic regime

Let us consider the case of elliptical beams with a large
aspect ratio BE=G'X5'E??1. Then the oscillations of a betatron.
amplitudes on the coupling resonances ¢V,+my;+nVs=K
occur basically, in the region of a moderate amplitudes Ax,ﬁg .
in the direction Z : AAg/4, «d.

The quantity ﬂﬂ-z in a general case is given by /5/:
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and normalized tune shifts AV, ; can be calculated through
the formulas:
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and equal unity for zero amplitudes 4,,A? .

In the formulae above the following notations were imple-
mented: v=4/3% - aspect ratio parameter, %.,3; =linear “tune
gshifts, %¢,5; - forces of beam-beam interaction, normalized
through the condition %lwknxl 5, T;—cr#.srz y Ax,Az -
dimensionless amplitudes 4, - m » As- Vg pF , nor-
malized to &, and G; (the full vertical sigze of the beam)
respectively.

As it was shown in /6/, for the case 22 >>4 andiXl|Z|~1.

the forces 5x,4{; can be well enough approximated with the
expressicns.
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where Fn(Yy) 41s the Dawson function Fn('ﬁ‘} 'n’-'a i*-’- dAx

(see /7/), and eri(y) is the error integral. It shuuld be
noted here, that the value of a betatron amplitude Ag in
monochromatic regime is much smaller, than the synchrotron
smplitude As . Making use of this relationship, we can use
the power decomposition of the force 5z in the integrals
(1.3), (1.4) and obtain explicite analytic expressions for
the nonlinearity, harmonic amplitude, and the rezonance width
itself. Thus, taking into account the relations:
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we can get the function A1), and the derivative
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where Io and .-{1 are the modified Bessel functions of |ze-
ro and.first orders. & i
It should be noted, that for the case SB(‘;-:) P >>4
the last, ﬁrnpa‘rtianal to ﬂﬂ%_.z%za , term in the expression
for the nnniinearitjr' _db (1.2) is prevailing, so that in
such’ a situation we don't need AVe for the calculation of
noﬁlinearit;r e e~ :
Anﬁther characteristic feature of nornlinear resonances 1
in monochromatic regime, following from the expression s ey & o
is also important: since we have A; << {4 (full vertical beta-
tron beam size normalization), the quentity AVz; 1s weakly
depending on Aazp + What in its turn means, that in the A, A,
rlane the resonance lines are nearly parallel to the Az axis
(with iﬁ'l‘ and 41 E; taken for a unity length in corres-
ponding direction). For the harmonic amplitude Vemn calcula-
tion we can use for each given M , a corresponding power of

S5z decompozition in A; C.G‘;QE‘_ what gives:

S ¥ 4 Anly—  BAf . Rt il A
me=4 Noin” “n ArAs€ iy F}/L.-.(?Hin_p_-{ﬂj e
4 L=t o L
where J1 1is odd ;
o 3 2 4
VR s P A 4
m=2 Ven”= g Az & Jﬁ(#)fgi ¥)€ (a2
where /T is even .
e ¥ 3 r 1 2 _A;}a
VT 4t = JAYh Tt IRy 1 1A ™
m =3 Vesn © Ty A € le, "Ef'&j ﬂiji'_.;‘_i"ﬁé}*ii:l,{fﬂe
- i 2

where /1 1is odd.
Making use of expressions (1.9) and of an approximate
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relation L = 2mm*(Z) T‘Eﬁf with £2°%  from (1.8)

we can have, introducing normalized to the vertical betatron 4
size amplitude Azp=iAz = S¢/0.p + the expression for
the resonence width:
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Obtained thus formulas for the resonance width AAzp ot the
point /41 ;"42' show a number of peculiarities. The first of
those js the same as in a conventional non-monochromatic regi-
me independence of AAzp either on 22 , or on 34,3, ( =8
it was pointed out €arlier , this is valid under the assump-
tion !“lgiflﬂ'ml << 4 ). The sbsence of any influence of the
parameters 22 and 3y on the quantity ﬁAzF arise from
the assymptotic character of a2 beam field for a large 22>>1
(1.5), so that the amplitude oscillations occur predominantly
in 2 direction. The independence of AAspof ¥, isa
standard consequence of linearity of an urperturbed hamilto-
nian of betatron oscillations, so that the value of stabiliz-
ing nonlinearity and the resonance harmonic amplitude are pro-
portional both to the parameter of the perturbation intensity

%, (see /8/). The second peculiarity is the specific depen-
dence of a relative magnitude of different harmonies resonan-
ces on the parameter A . It is clear from the expressions
(1.12), that the resonance widths for |ml= 1,2,3 and arbitra-
ry € and R are growing with the increase of X , while
the resonances width with |ml=4 doesn't change, and the reso-
nance widths with |m| > 4 are decreasing. The third peculi-
arity of the formulas of discussion is a zero value of denomi-
nators in the expressions (1.12) (that is, ba*.—-:‘—i—:d from
(1.8)) for the argument value Ag*14.35, At the same time the
resonance widths (1.12) are formaly infinite. In the reality
the oscillation amplitude will be stabilized by a higher po-
wer of nonlinearity. Moreover, it is reasonable to assume,

that the value As=1.35 doesn't have a significant affect on

[

the average beam sizes, because the direction of 2 resonance
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line,for a decreasing nonlinearity &, is approaching the di-
rection of amplitude oscillation on the resonance, so that
the resonance stripe width in the plane A, A, for the fixed
amplitude Az tends to zero when ?m‘: — O, (As—> 1.35)

The applicability condition of the formulas (1.10)-(1.12)
is the inequality AA;p « Agzp , which is fulfilled for

Ax,Azp, As~1. only for high enough indices [¢[,imlinl. In spite
of this limitation, however, the formulas (1.10)-(1.12) ecan
be helpful as well for a comparison of 1relative magnitudes
of different, and even low, order resonances (because @ lar-
ger value of harmonic amplitude leads to a larger resonance
size). Purthermore, in a conventional situation of having the
working point in the tune region with a minimal beam "blow up",
essential are . high harmonic reeonances, for which the for-
mulas (1.10)-(1.12) are wvalid,

The information about the relative strength of different
harmonic £,m ,n resonances is presented in the table I,
showing the resonance width A App for the lowest possible
value of |[rn| (zero for even m &and 4 for odd M ) and
the first |n| , following it- 4 for even m and 3 for
odd M ), The width was calculated from the formulas (1.10)-
(1.12) for Ay= Azp=As=1. . Resonance widths A A; for
the standard, non-monochromatic regime A= are shown for
comparison. These quantities are nonzero only for even e
and m , and for zero N , because synchrotron modulations
are absent in this case. The data shows, that the magnitudes
of AAzp (A=10) are considerably larger, than AA; (A=0)
magnitudes.

An important question of the optimal regime choice in
the ratio ¥x/$, 1s the dependence of individual resonance
widths on this parameter. In the formulas (1.10) the resonance
width ﬂfqz{s doesn't depend on the parameters %x,%; » but
the formulas themselves are valid only for %; -‘_1-1 << 4 .
¥hen the ratio Ix /3, is of the order e

T“/ﬁg . E ‘%l (1.13)

then one has to take into account, besides the third, the
first term in the nonlinearity & (1.2) (we can always
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neglect the second term if we have 25> 4 ). The quantity dﬂm

for this situastion is decreasing relative to the value (1.10)-
(1.12) end it's characteristic dependence on Ay ,Aq &8s a pro-
duct of a function of A, and & function of A; 1is violated.
The decrease of dAgF' in respect to (1.10) can be estimated,
however, for A, _JA“'M 4. » by the following expression:

AA AR A;p =
zp ™ \I-if" -I;-gtffs-izmtx‘
In the estimate (1.14) the smallness of the second term in the
nonlinearity o (1.2) in respect to the firet or the third
was utilized, and the amplitudes and derivatives =g, Aol
were considered to be of the order of unity. Thus, the magni-
tude of the amplitude oscilletion on the individual resonances,
is decreasing for increasing ratio ¥x/¥, , what lead us to

the conjecture of the advantage of a regime with ¥,>> 3z

(1.14)

in respect to the conventional regime <, 2 .
Table I
The e of resonance widths aA ¢ chromatic

and standard regimes
)k = 105 Ax-AEF-AH
2) A=0; Ah,o=ad,; A = A =1,

‘1-

K4 2 4 6

im| 1 s i 1T 1 T
1 nw==I 50. 0. 14, 0.] 3. 0.
ns= :3 10- U- 3- u'- GIS 0-

ns=0 10. |0.72 ¥ 0.18/0.6 n.nal
e nw 12 1. 0. | 0.33 0.[0.06 | o
3 n = :1 1.- D- 0133 D- ﬂ.DE 0.
nes 0.33| o. 0.11 0.] 0.02( O.
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Simulation

In the model of computer simulation of heam-beam ef-
fects the following features were inecluded: betatron and syn-
chrotron oscillations in transverse and longitudinal directi-
ons, noise and damping in all coordinates, beam-beam kick. The
position of the opposite beam centre was modulated with a ayn-
chrotron oscillatione of a particle according to the formula:

P=P+% 5(X,%) (2.1)

where the full displacement 7. is the sum of synchrotron and
betatron displacements, normalized to the full vertical size
of the beam!
z +\E
253 Ny (2.2)

$(a,b) are the normalized forces of the interaction with
the opposite beam, depending on the normalized to the corres-
ponding aizeﬁhe beam coordinates; X - the coordinate o ,
normalized to the horizontal size of the beam; Z - the coor-

Ainate % , normalized to the vertical betatron size of the
beam; E - the energy coordinate, normalized to the energy
arread magnitude; A = the ratio of synchrotron and betastron

beam sizes in vertical direction.

Moreover, in our medel the affect of the longitudinal os-
cillations of the particles on the tune P& and linear tune
shift ¥, was taken into account (see /9/):

‘b}E: v?c‘ 1—:‘51}_{-E S?:SEU‘ ‘;i‘l'quEl {2.3)
v#here the modulation amplitudes are given by
5. VE 5 Ug A
(2.4)
A=tps
with' & ~8tanding for the beam length, and 5z = for the

Sunelion
beta ¥ &t the interaction point. The forces from the opposi-

te beam 3,}53 were computed with a linear interpolation
from the grid in X ,7Z oplane, and the values of forces on the
grid were calculated with a numerical integration. The main

regults of simulation were the values of the “mnnochmmaticity
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factor" Kw and specific luminosity LSP , defined by the
expresgiona

bp = ':7:. “Ps(X}Z{JeJ}&'e'E;&o{rafz (2.5a)
Kn= 4 1 px,2) e 2 dx dz (2.50)

where P(Y,'Z) ; Sjsfg. Zs) are the equilibrium distribution
functions in (¥, Z) end (X,Z4) planes, and normalization con-
stants A, ,A); are determined from the condition, that in
the absence of an opposite beam, when %, =7%,=C and
P(X,%)= QKP(“K}E-Z%) ) = wp(-ﬁzrzz‘,&) , the quantities Lgp
and Kw equal unity. Thus defined "monochromaticity factor"
Kw doesn't depend on the horizontal beam size, and it's de-
pendence on the vertical beam s ze is the same, as the corres-
ponding dependence of specific luminosity, soc that KM*‘-’L/@
(for a gaussian distribution Q(X,Z)~exp(- z}'z&g}l Therefore,
the real energy resoclution gain due to monochromatization
will equal, with the beam-beam effects in 0CLOiKnt » %o
KwmAi « The convolution ef the distribution function (3(,Z) in
the integral (2.5) with the unperturbed gaussian distribution
corresponds to the "weak-strong" situation of our simulation.
The distribution functions Q(X\Z) and (x(X,Zs) were com-
puted in the simulation programs as the density distribution
of all the particles of the simulation at each iteration step.

The values of the model parameters, constant in all the
gimulation runs (and corresponding to the planned monochroma-
tic regime of VEPP-4), were: synchrotron frequency V= 0.0%;
frequency modulation amplitude 5-112 =0.06 ; beam intensity
modulation amplitude A =1 ; aspect ratio of the opposite be-
am 22 =30 ; damping time, measured in the number of collizi-
ons AN=%000 ; synchrotron/ betatron beam sizes ratio X\=40
collizions number in the ring equals one.

For the specific luminosity and monochromaticity factor
computation one need to have a comparatively large iterations
number in the simulation. Correspondingly, the typical statis-
tic error of the calculated quantity Kuw for the absence

of an opposite beam (5,};“0) was 2% for 150 damping times of

-
¥

a total iterations number,and was drastically increasing,when
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the vertical beam size was growing under the influence of the
opposite beam. So, for a 40% increase of a vertical beam size,
the typical statistic error of the quantity Kw , calculated
from the K, values of each of ten different initial conditi-
one particles of simulation, was 8% for the same iteration
number. '

'The goal of the simulation was ‘the determining of the
gpecific luminosity and monochromaticity factor dependence on
the opposite beam current for the optimum tunes Vy ), and
ratio ‘igfiz « It doesn't seam possible, however, to carry out
a direct optimization in a large number ~ parameters in con-
sideration with a direct computation of a necessary quantities
because of an asmount of computations required. So the problem
of optimization in 3x/ 5, was solved with a help of a special
methodice of fast ccrmputatinn of an auxiliary quantity, con-
nected qualitatively with a monochromaticity factor.

It is known, that the main reason of a beam size growth
in beam-beam effects is the appearance of nonlinear resonances
in a phase space, so that for the trajectories, close enough
to these resonances, the amplitudes Ag,A; oscillate. It is
important also, that the libration frequenecy of 1resonances,
affecting the beam sizes (that is, localed not too far from
the coordinate centre and having the libration amplitude 2, G'),
is always much smaller, then the damping time (this condition
wae discussed in /10/, and ites relevance was shown either in

/5/). We presume, that the libration amplitude at the moderate -

amplitude wvalues Ax,Agpé i hae to be qualitatively con-
nected to the beam size growth, so we choose this quantity
for the beam size enlargement estimate.

To avoid the semi-integer resonances 2V, =X " influence,
leading to a nonresonant oscillation of a corresponding ampli-
tudes ALA—E ; in a rather wide regione, close to these
resonances in a tyne plane (what isn't leading to a beam size
growth), we cumputeﬂ the value of the oscillations- of the
coordinate Z at fF;%(0, moments, rather than the oscillations
of amplitude themselves. Thus, we computed an auxiliary quan-
tity Az =

A, = mf"’-"‘[ { B

%ﬁ:ﬂ.i LZ““)I &:P?‘ 0.-1] Sk
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where 'Z.. and Z vin refer to the maximal and minimal valu-
es of Z under the condition R /4 'Zz-rf’;! <04iand for 7 ,
belonging to a single trajectory ¢ , and mAxX means ta-
king a maximum from different trajectories (initial conditi-
ons). We had, in our computations, 10 particles with different
initial conditions (with Ay = 1, Azpe = 1 and randomly teken
phases é'mlggp ) and each particle was interated for 600
steps. It was checked, that the quantity /A, didn't increase
with further increase of a particle number, or a steps number
for each particle. Since we want the quantity 4z to charac-
terize a hamiltonian motion, the damping and noise in the pro-
cege of its computation were switched off.

Examples of level curves of the quantity A; in the pla-
ne Y,V: are shown at the Pig.1,2. The pictures were got with
a help of a standard program, with a use of a 40 x 40 grid in
the tune plane v,,vg_ for a level curves construction. Compa-
ring Fige1 and 2,one sees the principal difference of a stan-
&ard(A=D , Mg.1) and monochromatic (r=40 , Fig.2) regimes.
So, the strongest in Pig.1 are the coupling resonances V=1
and ), +V,=4 , while the strongest in Fig.2 are the double
lines (synchrotron sidebands n=+4 ) of synchroiron resonan-
ces 2W+2V, =) and 2W-Y,>2)s; , what agrees
well with a Table 1 data. The pictures of Fig.3 and 4 illus-
trate the assertion of a ?3/52'?}1 regime preferability,
distinct from conventional regime %z/fy ~+3. . The reduction
of a (=2 ,m=-2 ) resonance for Y¥y/q+3 is clearly ob-
served. Moreover, the background height of Az , generated
presumably by nonresonance uﬂcillatioris, is also lower for a
larger Sx/%: . So, with the data at hand, we choose the
ratio %/f; to be equal to 5. This can be achieved at VEPP-4
facility with the help of a [3x =-function at the interracti-
on point increase to 30 m with bz = 0.05 m. The efforts
of a further 33’!’5; increase via [x enlargement require
an overcomplicated optics of the Interactlion point region.

To check the methodics of a qualitative beam size esti-
mate with a fast computed quantity Az and to have an exact
data sbout the monochromaticity factor K. , &8 numerical si-
mulation was conducted in a model with a noise and damping

switched on. The quantity Kw was computed from the formula
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(2.5b) with a help of numerical integration. Simultaniously
the specific luminosity Lf’P was computed from the formula
(2.5a). To decrsase the total computation time the iterstion
number in each point Vy,Vz wase chosen in dependence on the
value of Kw, in this point. Thus. for Kw>0O7 the iterati-
on number was AN, =450 2 , where 2" is the damping time,
with 10 particles; for 0.5 < Kw < 0.7 we had Ve =407
with 6 particles and A = 257 with 6 particles for Ku.<0.5.
The scheme of iteration number distribution was motivated by

a desige to have a better statistical accurasy for a larger
values of Km , The estimate ofﬂ$§1ue, by which a choice of A

was made, was obtained with the shortest +time M = 257,
The results of the computations are presented in Fig.5,
where the level curves of K. are shown in a plane V,,V, ,

and the regions with Ka, < 0.38 and 0.38 < Kw < 0,68, in
contrast to the region K., > 0.68, are marked with a shad-
ing. The picture consistes of 8ix emaller ones, each computed
from a 40 x 40 grid, so that the full picture has a resolution,
corresponding to a 120 x 80 grid,

A good qualitative agreement of a Pig.5 picture with s
bottom half of a Fig.2 picture confirms the validness of a
conjecture of a qualitative connection of Kw decrease with
a Az growth and justify the Az -methodics implementation

The most powerful in s Fig.5, the same as in Fig.2, are
the synchrobetatron resonances ¢ = 2y n = ti, n = i?,
while the following, and approximately equal in strength are
the resonances ¢ = 4, Mm = i1, n= 21 and € = e

M= 1FE,, N = 0, The resonances & 4, hy = 11 A€ more
clearly seen in Fig.5, than in Fig.2, and this is presumably
related to a higher tune resolution of the first (120 x 80
for Fig.5 with 40 x 20 for Fig.2).

#1ith a help of an additional analysis of L"P values,
which were computed simultaneously with K., » 1t was cleared
out, that the horizontal beam size was strongly enlarged in
all the Vy,Y, regions with high Kw. values in Fig.5, except
the regions, close to the integer and gemi-integer resonances

Vy = 0.5 and Vx = 1. This leads to a luminosity and (pos-
8ibly) beam lifetime deterioration, but doesn't affect the

14

monochromaticity factor Kwm value, Purter on it should be
noted, that in a close to the integer resonance region of tu-
nes, as it is known from the experiment, the beam size
grows under the strong influence of a "machine" resonance, the
existence of which is not taken into account in our model,
Thus, in monochromatic regime, the best in reepect to
beam-beam effects is the region of close to semi-integer re-
sonce Y, = 0,5 and not too high tunes V. < 0.7. An exam-
ple of monochromaticity factor Kw and specific luminosity
Lyp dependence on the opposite beam space charge parameter .
<, in the considered to be the best working point ) =0.525,
Vy = 0.63 is given in Pig.6. One sees, that with an increase
of ??_ the monochromaticity factor K., rapidly decreases.
The specific luminosity Lsp is decreasing at the same time
much more slowly. This is quite natural, because the lumunosity
decrease occurs only in a situation, when the vertical beta-
tron beam size is of the order of magnitude of the aynchrotron
size and, consequently, has to be enlarged many times ( v1C).
The "monochromatlcity factor™ cutoff 1in a storage rings
with a monochromator scheme impose a severe limitation of =
maximum % ,» and, consequently, a maximum luminosity, valu-
es. The value of 3; 1in monochromatic experiments, according
to Fig.6, if we wouldn't allow the energy resolution gain to
decrease more, than 20%, can not exceed »,0{ (for 'fgffi = 5),

Conclusion remarks

Let us repeat in conclusion the main results of the work.

For nonlinear resonances EVi+wmVa+nVi=K in a
monochromatic regime it was shown,that a vertical smplitude
oscillation magnitude for the resonances with m < 4 is gro-
wing with the monochromaticity parameter X growth, and can
subetantially exceed the oscillation megnitude in a standard
nonmonochrometic regime, The vertical amplitude oscillations
for a large aspect ratio parameters don't depend on the linear
tune shiftse ix,ﬁz values, but decrease, when the ratio ‘3‘.'}).f /5.?
is getting larger, than |2 [3e’

It wae found in & simulation, that the vertical betatron
beam size in & monochromatic regime is growing with the oppo-
gite beé.m current increase much faster, than it happens in a
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nonmonochromatic regime. Thus for the optimized tunes and retio

/%, =4. , the vertical beam size is getting 20% larger
when $§ = 0.01. This cause a monochromaticity factor decrea-
se and impose a fundamental limitation of the luminosity in a
storage rings with a monochromator scheme.

n conducting the numerical simulation of beam-beam ef-
fects one adways meet the problem of how well is the computa-
tion model, and a real beam-beam interaction in some particular
machine, correspondence. The question isn't simple and the an-
swer can not be given explicitly. For the problem of investi-
gation of a present paper, we have, however, a substantial
simplification in thie aspect. More particularly, there is &
single effect, namely the large synchrotron modulation of an
opposite beam space charge field, which is so strong, that it
presumably dominates all the others. It is reasonable to as-
sume therefore, that in spite of an obvious incompletenesa of
the model (such effects, as a machine nonlinearity, a residu-
al beam separation at the interaction point, the second inte-
raction point with not fully aeparatudkﬁ%ﬁﬁbrsnt beam~-beam ef-
fects,weren't included), the results of a present work will

prove to be wright in a future experiments.

Over a considerable period of time the authors frequent-
ly discussed the problems of a present study with P.M,Izrailev
and G.M.Tumaikin. A substantiasl help in a simulation methodies
choise was given by A.B.Temnikh. To all of them we wish to ex-
press our sincere gratitude.
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Fig. 1. Level curves of the quantity A, in a plene

Vx,Vz for a standard regime: A = 0, 5,= 0.05, Fig. 2. Level curves of the quantity Az in a plane
3;= 0.10, The regions with ,.{‘;e:;—jo are marked vy, ¥z for moncchtomatic regime: A= 10,
with a shading. 3= 0.05, -5, = 0.01, The regions with g’_‘-.i:-iG

are marked with a shading.
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Fig. 3. Level curves of the quantity Az in a plane
Yy ,V; for monochromatic regime: A = 10,

5,= 0.015, £, = 0.04. The regions with Az > 10
are marked with a shading.
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Fig. 4. Level curves of the quantity Az

V,Vy for monochromatic regime:

in s plane
A =10,

5,= 0.04, ¥z = 0.015. The regions withAz > 10
are marked with a shading.
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Kwm (curve I) and specific luminosity L;P
(curve II) on the parameter 3z for a constant
ratio Sx/%, = 5. and tunes V) = 0.525,V;= 0.63.

Fig. 6. The dependence of the monochromaticity factor
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