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ABSTRACT

The physical restrictions on the powers of the sources of
short intense electron bunches on the basis of photocat-
hodes are studied. These restrictions are due to an in-
fluence of the space charge of the bunch and radiation
losses when passing the bunch through the anode hole.
The critical beam current is estimated, beginnig from
which the beam dynamics is strongly influenced by the
space-charge field, and the estimations are made of the
energy losses on account of transient radiation. For a
detailed study of the dynamics of short bunches at the
injestion stage, a computer program has been prepared
using the 2'/2 D «cloud-in-cell» model. The internal fi-
eld of the beam is determined in the program from the
Maxwell equation. The computational results concerning
the dependence of the bunch charge, its length and the
energy losses because of radiation on the photocurrent
are presented.

© Hucruryr adepuoii ¢pusuxu CO AH CCCP

I. The papers [1—4] treats the problems concerning the creation
of devices utilizing the sources of electron beams on the basis of a
photocathode. In these sources the train are formed of short (up to
50 ps) intense electron bunches generated by a laser burst of the
same duration. The bunches are employed either for further accele-
ration (Ref. [2]), or for the creation of RF generators (lasertrons)
(Reis [3, 4]).

Fig. 1 illustrates the operational principle of a lasertron: a laser
burst illuminates a photocathode imitating short electron bunches.
These bunches are accelerated in a gap to which a constant accele-
rating voltage is delivered and then arrive at a r. f. cavily where
their kinetic energy is converted to that of a r. . field. :

The variants of using guns with a photocathode and the parame-
ters of electron beams are given in the Table where the following
notations are introduced: U—cathode voltage, /—pulse current,
[—bunch repetition frequency (it is equal to or multiple to the ope-
rating frequency of a generator or an accelerator, if the gun is em-
ployed); {—duration of a bunch, P—pulse power of the laser,
t—duration of a bunch train, A—laser radiation wavelength, and

W—peak energy.

In Ref. [2] the results dealing with a study of GaAs photocatho-
des are presented and it is shown that the photocurrent density can
achieve about 180 A/cm and the maximum electric field on the pho-
tocathode is about 80 kV/cm. '

The present paper is aimed at a study of physical restrictions on
the number of particles in a bunch, which are determined by a spa-
ce charge and radiation when they leave the accelerating gap.
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Centre Device Beam parameters Lazer Status
U =200 kV 1981
SLAG | Injector [=12 A A=1.06/2 nm E xperiment
' {=100=1000 ps
U =400 kV
: : =735 A A=1.06/2 nm 1986
SLAG | Lasertron | f=2856 MHz W=100 mJ Project
' \ f =60 ps P=600 kW
T=1 mks
: - U=30 kV
Lasertron =100 A A=1.06/2 nm
Tokyo : - f=2884 MHz W =50 mkJ - 1984
Univ | MARK-I + t=60 ps P=5 kW Experiment
' : =100 ns ;

2. Let us consider the photoemission process of electrons at a
high intensity of laser radiation. Let there be an accelerating gap to
which the voltage U is applied and let photocurrent (photoemission
current), determined by the amount of y-quanta incident per unit ti-
me dn/df and the quantum efficiency of the photocathode k,, be

I.=edn/dt k, (2.1)

Here e is the electron charge. The total charge Q, ol photoelectrons
is likely to be equal to /.t where { is the duration of a laser burst.
Being restricted by its internal field, the bunch charge Q may pro-
ve, however, be less than @, since a fraction of photoelectrons can
refurn on the cathode. There is the critical current /., at which the
electric field on the cathode vanishes when the laser burst stops.
When /. tends to /., besides a decrease of the ratio Q/Q, the uni-
formity violates in the density distribution of the charge along the
bunch, and the bunch length increases. In view of this, it is not de-
sirable that the current /. be higher than the critical value of /.,
whose magnitude depends on a geometry of the accelerating gap,
voltage U and burst duration ¢. Ii the emission does not stop when
the «<head» of the bunch leaves the gap, /., is determined by the per-
veance P,(U) of the gun:

lee=Py(U) UY2. (2.2)

The value of P, is dependent on U at relativistic energies of
electrons at the exit from the accelerating gap.

Let us estimate /. for the practically interesting case when all
the bunch particles still are in the gap when the emission stops. The
transient radiation fields are assumed, for a while, to have little in-
fluence on beam dynamics and the «<heads of the bunch be at a dis-

tance of d<<L from the cathode (L is the lenth of the acceleratmg i

gap) at the moment when the injection stops, and its electrons are
weakly-relativistic. In addition, let, when accelerated, the beam do- -
not change its transverse size (fnr example, the Coulﬂmb 're;}ulsr've-_-_.
forces are compensated by the action of an external focusing mag--
netic field), the electrodes and the bunch are axisymmetric and the

condition d=<r, where r is the beam radius, be sahsfued Then the

potential on the axis is

ol g 0<z<d _ 5 at o pSigee L i
\elagtil TE" dgz el - o s s A
Since @(L)=U, it follows from the contmmty condition nf the pu iy

tential and electric field at the point d ihat
3 d 3 d

d=_cp~{d)=—.—.~—u-x-_u. H R L (24)

4 (L—d/4) ¥ L

Then

d. 4 d/

" On the other hand dwtudﬂ where Ud is the electrﬂn “JEI{JCIt}F at: a
distance d from the cathode, which is determmed by the pntentlal.g'- e

Uyg. Expressmg d via U we obtam

- 252 1§
dzdcf U

S T

where UG—-!‘H{?E./E m is the electmn mass and ¢ is’ thL I]ght veluclty_

Wlth (2.6) subshtuted into (2. 5} we Dbta;n

_glﬁ_ ihplorey kA Ak TG b
TR G R i e L g T {2?}-

From (2.7) it follows that the averaged over the permd DE bunch

running, beam power P, wn]l satisfy the condition
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where A=c/f.
Since, under the above assumptions P,ocr? and the beam radius

should not exceed the radius of a flight hole, proportional to A, it
follows from (2.8) that

P ocAlU?, (2.9)

.. e. the average power of the beam decreases with decreasing the
wavelength. So, for example, at A=4.2 cm, U =400 kV. L~4 cm
- (the latter is determined by the electric photocathode strenght) and
ct/h=0.1, P,,~=20 MW.

Another physical restriction on the pulse current and P, is asso-
ciated with the radiation induced by a bunch during its passage
through the anode hole. The radiated energy can be estimated using
the «cutting» model. The bunch is assumed to be relativistic when it
reaches the accelerating gap. The field of the point charge leaving
the metallic surface with the light velocity is shaped as an infinitely
thin hemisphere whose radius also increases with the light velocity
(Fig. 2). In this case, it follows from the Gauss theorem that the
module of an electric field strength vector at the point with cylindri-
cal coordinates r, z, at the moment of time {,, is equal to

=it an e
S S X=(r'+2z%) i P (2.10)

where ¢ is a charge and §(x) is a delta-function. The energy radia-
ted by a bunch of / long in a gap of the length L will be equal to
that fraction of energy of the bunch field which is «cut» by the hole:

=

2nce

u?e =

Inltg (% arc tg %)l (2.11)

Here a is the radius of the flight hole, /=g¢/lc is the pulse current
of the beam and Z =4/p,/e, is the wave impedance of the vacuum.

The ratio of the radiated energy to the kinetic energy of the
beam is

b LR (_1- 1)
. 32l lnl tg 3 arctg 3 I (2.12)

0

where U is the beam energy in eV. The right-hand side of (2.12)
may be expressed via the average beam power P, and the phase
length of the bunch A@(Ag=2nct/L):

W' iy (L P 2.13
ST Inltg S-arcig L)l (2.13)

The restriction on P, follows from (2.13):

AgU?

- ; (2.14)
Z,In (2L/a)

P.<

It is worth noting that the restriction on P,., associated with the ra-
diation, is usually weaker than that associated with the action of
the space charge.

3. Beam dynamics in guns whose current is close to the critical
one is possible to study in detail with the use of but numerical met-
hods. The solution of such a problem involves a precise enough ta-
king into account of the radiated fields and, hence, the solution of
the Maxwell equations.

Some time ago we have prepared a computer program to calcu-
late the dynamics of a high-current beam in a r. f. injector (Refs.
[5, 6] ). In this program the macroparticle models was used, the be-
am own field was defined by solving the Poisson equation and the
unstationary problem of beam motion in a high-frequency electro-
magnetic field modulating the beam in density was solved. Since
weakly relativistic beams were considered, the radiation fields were
neglected.

In the known program BCI (Ref. [10]) the Maxwell equations
are solved and the radiation fields are calculated, but the electron
bunch is simulated by a one-demensional and constant-in-time cur-
rent distribution whose maximum moves with the light velocity.

To solve the problem under study it is necessary a combination
of the macroparticle model with the definition of the internal field of
the beam from the Maxwell equations, which has required to prepa-
re a specialized computer program.

In this program, while calculating the beam dynamics the
«cloud-in-cell» model is employed (Refs [8, 9]). The beam and the
surrounding electrodes are assumed to be axisymmetric. The elect-
ron beam is represented as a set of macroparticles having the finite
longitudinal and transverse sizes, the latter varying depending on
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the nature of the beam motion. Thus, one can decrease substantially
computational noises arising in the particle-in-cell model due to the
charge fluctuations in the grid cell.

To calculate the trajectory of a particular macroparticle, the
equations of motion in an impulse representation were used, and the
Boris scheme was used to integrate them (Ref. [9]).

u =u""2 L E"At-e/2m

v =u""+u 7 xt,

u'H=u"4u xS,

u" 2=yt L E"At-e/2m

R T, P el P

Here u=v-.y, v
and y is the relativistic factor;

t=H"Atep,/ (2mey") ,
S=2t/(1+¢).

This scheme is of the second order of accuracy. The macroparticle is
assumed to have three velocity components: v, v, and u,. The elect-
ric field is a superposition ol the electrostatic accelerdtmg field ge-
nerated by an external source, and the eddy field induced by the be-
am; because ol the axial symmetry, it has two components: E, and
E.. The magnetic field is a superposition of the constant guiding fi-
eld with two components (radial and axial) and the eddy field with
the only azimuthal component.

The eddy electromagnetic field satisfies the Maxwell equations.
To integrate them numerically, we have used the method with frac-
tional steps (Refs [9, 10]), which yields the second order of accu-
racy. Fig. 3 shows the spatial arrangements of the points where the
values of the field components are calculated.

Integrating the Maxwell equations over the areas of the approp-
riate contours, it is possible to obtain the following integration sche-
mes:

2 n—1/2 n—1/2 Al a-=1yd
E :E“'Jr——-———H_’w. ——t
k r bk 5 ﬁz,—+ﬁzf-_.[ =l s ) %
4
Ezk—‘ +_

X
g0 (2ri4+Ar)?—(2ri—Ari_)?
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is the velocity of a macroparticle, r its coordinate,

x [(2n+An) Hi' P — (2riars y HEG R 31— —.r‘ VA
L 1.

l'lld..li
€

FOE2 n-1/2 2 E{ Boe o Bnags 3 Crast ET*} : (3.2)

\ LY
94 ¢ Ar; Ar; Az; Az,

where Ari=r,,,—r; and Azj=z,, —z;. Thus, the quantities E and r
are defined at the moments of time Atn, while H, u and J are defi-
ned at the moments of time (n+1/2)Al.

For the equations of motion to be integrated, it is' necessary to
know H at the mnment of time nAf. It can be obtained by a simple
averaging:

Hn—1;"2+ HJ'H- 1/2
2 i

H" =

At the initial moment of time there is an electrostatic field in the
gap. It may be defined solving the Laplace equation with the ap-
propriate boundary conditions. Fig 3 demonstrates the points at
which the values of the electrostatic field potential are defined. In-
tegrating the Laplace equation over the torus whose cross section is
formed by straight lines connecting the centres of the gris meshes,
we obtain the difference scheme. The set of linear equations obtai-
ned were solved by means of the successive over relaxation method.
For this purpose, the matrix of system B should be summetrized:

A9p=AB 'Bp=AB 'y=Cy,

‘where y=DB¢, ¢ is the vector of the values of the potential in the

grid nodes, C=AB"' B
B;‘;Ef;(ﬁfﬁf—ﬂ."ﬂ-_]}.
Although we integrate the Maxwell equations and the equations
of motion with the second order of accuracy, calculational errors
are, nevertheless, possible, which are associated with the fact that
the density distribution of the current in the gap is calculated on
the basis of the macroparticle model. As a result, the law of charge
conservation and current continuity can violate. In view of this, it is
desirable to check the accuracy of their fulfilment in the course of
the process of computation in the computational process. Our com-
putations have shown that, with the conservation laws fulfilled, the
relative error constitutes about 102 if the grid includes about 103

is the diagonal matrix with the elements

. elements and the number of macroparticles is about 10%, in the solu-

tion of the model problems, and this error is no more than 10~2 in
the calculation of the particular constructions.
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Because the system we here consider is not resonant, the noise
level in electromagnetic fields does not grow. In our calculations
we have not, therefore, corrected the current density, which is requi-
red during the simulation of, for example, some plazma processes
(Ref. 9). '

The charge density is calculated at the moment of time n-Af,
while the current density at the moment (n+ 1/2)Af. In this case,
the coordinates of the macroparticles at (n+1/2)Af are determined
by averaging

i 1/2 o ’.n+ru+| :
2

r

Note that for the stability of the used scheme, the Courant condition
should be satisfied:

At
e efAr 2 4 A7) 7.

This condition is somewhat modified if there are the boundaries with
the radiation conditions.
Thus, the complete simulation scheme is as follows. We start to

integrate with the definition of E° r° u'?, H'? and J'2. It is clear

that E°=A¢, Z°=0, 1V2=0 and u'/?=0. We further perform the in-
tegration according to the scheme:

1) over the known values of J""'/2 u"t'2 we calculate E**' with

respect to the known values of J"*'/2, u"*'/2 and E"

2) we calculate H""%?2 with respect to the known values of H"''/2
and E™;

3) H"t'is then c¢alculated: H"T' = (H"*¥2 L H"+1/2) /2,

4) u"*3? is calculated with respect to the known values of u
Ei’l+l‘ H-‘l-l-i;

5) we calculate r**? with respect to u"*%? and r"*';

6) o"t?is calculat>d with respect to r"t?;

7) r*t*? s then calculated: r"***=(r"**+r"*")/2;

8) the current density J""¥? is calculated with respect to the
known r"*3? and u"*%?; '

nd1/2

2

9) we test the satisfaction of the conditions div.l=—z—f and

div E=gp/e,.
The integration procedure is ended after the beam leaves the
system; after that the energy emitted by the beam is calculated.

10

S

4. Using the above computer program, computations have been
done for a gun schematically shown in the Fig. 1, at the following
values of the parameters: L=2 cm, a=1 cm, r=0.5, ct=1 cm and
U=1 MV. According to (2.7) and with the dependence of P, on the
voltage taken into account, /.,=1 kA; according to (2.12),
W./ Wp~8-10"2% at I=1 kA. Following the bunch dynamics, one
can distinguish convetionally three stages (Fig. 4):

a) the regime of small space charge when the bunch own field
has little influence on its dynamics; in this case [.</.;

b) the transient regime when the bunch own field leads to a
considerable elongation of it, but the space charge does not yet limit
the emission; this regime corresponds to [.~/.;

c) the saturation regime when /.>/.. In this case, a large frac-
tion of the photoelectrons return at the cathode, while the beam
dynamics exerts great influence of its own field, including the radi-
ation fields.

The occurrence of these regimes is well seen on the curves of
Fig. 4 for which /I, = 1.5 kA, which is in agreement with the estima-
tion according to formula (2.7).

For I.<1 kA the bunch length remains, in practice, unchanged,
and the radiation losses grow linearly with the energy (current) of
the bunch. Here d(W./W:)/dl.~6-10"? kA™', which is in good ag-
reement with the estimation according to formula (2.12); for these
parameters this estimation vyields the value 8-107% kA~
At | kA</.<2 kA there occurs a drastic increase in the bunch
length, whereas the charge is not yet limited. At /,>2 kA the space
charge limits the current in the bunch. The bunch length, the ratio
W./W, and the energy spread change insignificantly with increasing
the photocurrent (because the bunch charge does not grow). The
quantity W./W, is here small and is about 5%.

From the said above the conclusion may be drawn that it is not
desirable to employ an electron gun with the photocurrent exceeding
I., since in this case the photocurrent is utilized incompletely (and,
hence, the laser power), and an elongation of the bunch sharply
falls down the efficiency of a r. [. generator.

Thus, the most significant factor limiting the average power of
the beam in the gun, without an additional beam compression after
acceleration, is the action of the space charge rather than the radia-
tion fields. _

It is worth noting that the calculations, the results of which are
presented in Fig. 4, have been made for the beam with constant
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transverse sizes since the longitudinal dynamics has been studied.
This constancy can be provided by the introduction of a longitudinal
- magnetic field.

In our calculations the voltage U on the gap has been assumed
to be constant. At the parameters indicated above this condition is
satistied rather well: on account of an appearance of a variable
constituent of the current in the anode circuit, the voltage changes
slightly.

The results obtained enables the conclusion to be drawn that the
«classical» scheme of a lasertron (without the transverse bunch
compression) is poor suitable for the creation of powerful
(10°—10®* MW) r. . generators at short wavelengths (5—10 e¢m).
However, this scheme seems, in our opinion, to be interesting as an
Injector of periodic sequence of short and highly-efficient (up to 10'2
particles) electron bunches.

The authors are indebted to A.N. Skrinsky for the problem for-
mulation and the attention to this work.
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Fig. 4,d. The relative energy spread vs. the photocurrent.
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