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Lbstract

A new method for numerical caleulation of the Green func-
tions of the Schrodiuger equation is proposed in case of sphe-
rically symmetric potentials. This method can be applied to
the potentials describing the heavy gquarkonium as well as to
other problems of quantum mechanice . The case of Coulomb po-
tential with a running coupling constant is considered in de-

tail.

The potential models are widely used n>w for the descrip-
tion of heavy quark-antiquark systems (see e.g, (1-3]). a1l
these models successfully describe the ¢% and bb systems in
spite of the essentially different behaviour of the correspon-
ding potentials at short and long distances. Tt is suggested
that the discovery of toponium will allow one to determine the
correct potential.

The Green functions of the Schrodinger egquation are a ve-
ry convenient tool for the solution of different problems con-
nected with heavy quarkonium (sce z.g, [445]). However, the
explicit forms of the Green functions are known only for a few
potentials and numerical calculation of these fireen functions
directly from Schrodinger equation is a very hard problem. The
use of Feynman path-integral representation for the (reen func-
tion is one of the possible methods of calculation (see ..

[6,7]).

In the present paper a new method for numerical calcula-
tion of the Green functions of the Schrodinger equation is pro-
posed in case of spherically symmetric potentials. This method
seems to be effective not only for the quarkonium problems but
for other problems of quantum mechanics as well, Let us consi=-

.der the Green function G('E’J BIE):
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which corresponds to the Schrodinger equation with imaginary
time, where 11 is the quark mass, p =-/, ({(z) is & poten-
tial. The consideration for the real time is similer. e shall
represent G(ﬁ;ﬁjﬁ‘) in the form
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where ﬁ?)-is a state with momentum K . We introduce the func-
] I Foa g oy
tion G':I. (ﬁf}g{p) by the relation




Then,
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We define the function F(f;?} EKS,’E:) as follows:
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The (Creen function G-(E:Eff?) ig connected with F(;é:ﬁ/gfﬁ)
by the relation
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Cur further purpose is to obtain the relatively simple equation
for the function [ suitable for numericel calculations. Dif-
ferentiating both sides of expression (3) with respect to vari-
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Let us multiply both sides of eq. (7) by e;x,o( Sk SK/W)
and take the integral over f? . Using (5), one obtainas:
- (5~ b}m‘#iﬁ
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Then, let us consider a very wide class of potentials, which
can be represented in the following form:

o z
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All potentisls used in the quarkonium potential models satiafy
this condition. In particular, all potentials for which U{{X)
is a Laplace transform of some function ::F(ﬂ') gsatisfy the re-
lation (9). For example, if U (z)= A/® | then $(5) =
-,Aa’m'd'/ I'"(@v/,;__) i for the Coulomb potential $(¢)=oL A/FF -

In case of the power law Lix)-= A‘z"} » 88 for the Hartin

potential [3], one has } = *Aa‘“m%/p(ﬁ E,g_) and so
on. NHote that in case o7 real time ¢ 1-;.;, Sazds
we have to use the relation (9) with g = _;: s

. -+
Substituting (9) into (8), taking the intezral over K
and using the relations (3) and (5), we get finally for F
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where W = (44 46"@4-’:.‘)/{“_)‘ . Here, for simplicity, we
restrict ourselves to the function § independent of Ty~
(see eq. (9)). The general case can be considered quite simi-
larly. Introducing the variable % =1 -W one hag

F(E Rfs h) J,(; LJ[“I'__'-S(J,{-_{_ -4)(5-T LJ) o jF{R R@"ﬁ)li-— |
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The boundary condition can be eacily obtained from the defini-
tion (5) and (3):

m(R-R
F(R'R[s,0)= ( %1-7("%’ (12)

Emphasize that equation (11) contains only the variahleax_ﬁ/ 3

L and ¢~ as independent ones. The varisbles ﬁ.ﬂ and the
angle between vectors R’ and & are the parameters and pre-
sent only in the boundary condition (12). It is very convenient
to solve eq. (11) numerically. Equation (11) becomes essential-
ly simpler when £ = 0O:
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The boundary condition in this case is

i,
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So, eqs. (10),(12) and relation (&) allow one to solve the
problem of the Green function calculation.

The Green function {;(5': 5’,’6’)5 §('f:) is of great inte-
rest because it pregsents in QCD sum rules for heavy quarks
{4,5,8]. This function has been obtained exactly for the Cou-
lomb potential with a fixed coupling constant in the first pa-
per of ref. [4_7 The analytic calculation of 3(:@ for the
case of Coulomb potential with a running coupling constant has
been performed for the first time in [5_? in the one-loop ap-
proximation. In the recent paper [8] the last case of potenti-
al corresponding to the quark-antiquark interaction in the co-
lour singlet state has been considered numerically, with the
use of the path-integral representation for the Green function
(1). In view of great importance of this problem we apply our
method to the case of Coulomb potential with a rumming coup-
ling constant too. The case of pure Coulomb potential has been
used to control the calculations. The potential under conside-
ration is [9:{ .

- 2
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where $=41- ?,,h&/g ( h.g— is the number of light quarks).
The scale parameter Av ig connected with the parameterAm
used in QCD by the relation: A= _AE eStc » Where
¥ = 0.57T... is Buler constant, € = (93 - 10 n;)/18Q,
(2 Vg =3then @, =9, A =2628Am -
Since the bend of potential "\?‘;ij has no physical sense, we
use the regularized potentials -\é'g_(t«)- which practically

coincide with 'V, () up to the maximum of [ (z):

Rttt ol
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where X =Avt_; B= -iﬁf;’i’ﬁv/z:?- . The potentials V:L'E_) .
‘ﬁ./';_(t) and V% (D) are shown in FPig. 2. Making the inverse

Laplace transform one can represent ;-fr-i ﬂ.(fr) (see (9)) in the
form: :
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The terms with S -function lead to the multiplication of
31{'&“‘_) and 9.2 (t) by factora EB*-‘-' and ezst

correspondingly. The consideration of two potentials V_i{t;) and
T.»’.'z('z,) enable one to investigate the dependence of the Green

function on the regularization. Let us define the function

C(T) as follows:

%
gie) = (451“’57)’{’-3@) (18)

m

If /' =0, then (%) = 1. Fig. 2 shows the dependence of
fc-;fﬂ'?_@}an \ime® for some values of A /jy; (see figure capti-
on). PFig. sh th
g. 3 shows the dependence of ﬁ.‘;jﬁ‘:r'&'cd,a(w on fime

at the same values of Av/m + For comparison, the results ob-
tained by formulas (16-18) of ref. [5]5:& shown in Fig. 3 too.
One can see from Fig. 3 that the one-loop approximation results
can be come to an agreement with our results in some domain of




T by recalculation of A . For example, _,{-w = 0.25 GeV cor-
responds to A, 27 0.35 GeV from [ 5] . Taking into account the
terms (fa Hp/ﬂ.ﬁv‘r.,qﬂnd higher (in the notation of [5]) results
in a change of R(z) obteined in [5]. Since the argument of the
coupling constant olg is A R}, the change of R() for cer-
tain values of ¢ is equivalent to the recalculation of A,

in [5]. Notice that m?T S>> in the nonrelativistic approxi-
mation. It is well knovn that £ &\ g@)—>~ Eo forTs oo
where f;a is the ground-stete energy. This is wvalid also for
& nC(r) (see (18)). For the values of p&rmeterﬁv/m under
consideration the bound states are absent. Therefore, E.
coincides with the continuum threshold ( -B fnr'Tﬂi(tg and

-2B fcr‘ﬁﬁ(z) ,'sae (16)). That is confirmed by numerical cal-
culations, Then, it is seen from Figs.2 and 3 that the depen-
dence of C(T) on regularization may be very essential. This
fact has been pointed out in ref.[ﬁ]. The corresponding results
of [B] concerning the calculation of (%) are in agreement
with our results. The example considered above shows that ap-
plication of our method gives an essential decrease of the com~
putation time in comparison with the method of fﬁ].
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Fig. 1.

Fig, 2,

Pig. 3.

Figure captions

Ver/e ( B=46FA, fo72)us. A,

for the potentials \/;{z)icuﬂre 1), V ()
(curve 2) and V(t) (curve 3).

£'7 Ct) vs. Ym??' for different values of
-Aw’lm « For M = 4.9 GeV the scale parameter _Av
is taken to be 0.25 GeV, 0.35 GeV and 0.45 GeV (cur-
ves 1,2,3 for the potential %{z)a.nﬂ. curvea 1',2',3"
for the potantial'V(‘t.} correspondingly).

The dependence of %j&,-& C'(f} or V’mf:." « The nota-
tion is the same as in Fig. 2. The dashed curves cor-

respond to the results of ref.[5]; for Ay =Q25GeV
(curve 1") and A, = 0.35 (curve 2"),
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