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Solution of the Anomaly Puzzle im JUSY Gange Theories

and the Wilson erator ansion
Op Ep I. Intreduction

It is well-known that the perturbative series in super-

M.A.Shifman, A.I.Vainshtein symmetric (SUSY) mdels[1jpoaaesa miraculous properties. Thus,

1 for P terms the loop corrections are absent at all (the so
called non-renormalization theorems [E] ), while the Gell-Mann-

Abstract Low functions in N=2 gauge theories are exhausted by the firat

The present paper completes a series of works on J6’ ‘ loop PJ « In the present work we will discuss calculation of
functions and the anomaly problem in supersymmetric theories. the effective action in FN=1 SUSY gauge theories, i.e., in par-
Exact expressions for the ﬁ functions are obtained within the ticular, the gauge coupling constant renormalization.
framework of the standard perturbation theory. The key obser- In the literature the term “effective action" is used,
vation ie that the Wilson effective actica JWWﬂOES nct actually, in two diatinct senses. According to one procedure
coincide with the sum of vacuum loops in the extermal field we calculate vacuum loops in extermal (background) fields, The
[',c‘d . The difference is due to infrared effects. The coec- functional of the extermal fieldas obtained in this way _[:ﬂ{)
£fioient ,f/!/ 2 4n front of the operatcr ¥° in Sy is renor- is often called “effective action", slthough more exact is ano-
malized only at one-loop level (extemsion of the non-remormali- ther name-—generator of ome-particle-irreducible vertices. We
gzation theorem for P terms). This fact results in ome-locop form will stick to the latter terminclogy. The second construction
of the anomalous operator equation for the supercurreat (gene- is calculation of the effective action WE 16 witson[4,
ralization of the Adler-Bardeenm theorem). The full Gell-Mann- The difference between ‘-’GW,W and [%)13 due tc the fact
Low function emerges after passing to matrix elements of the that in the vacuum loops for S, we keep only the comtribution
operators., The quantity entering cbservable amplitudes differs of virtual momenta !5 > /{4 ~ The action Swyc) is the nor-
o 5{(}2 by "Z’ s Z‘l ahiere the Pactors Z describe re- ¥°l action with respect to the low-frequency fields. The sub-
normalizetion of the fields. (Imn this sense the Z factors of script W iriroduced above emphasizes the distinctior beiween
the matter fields become observable). We discuss relation with the two notions. Thus, within the framework of the Wilson pro-
the calculations of the instanton type. ! cedure we deal with the normal operator product expansion. In

ardar( t}pau from S' to 4»_*’7 one must take matrix elements of
£x : L
| /i s wﬁ‘/ ‘% waﬁ/

& =< & 5.
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Let us emphasize that the difference of two definitioms is due
to the contribution of the infrared domein fﬁ = L (p is

the momentum flowing in loops).

In particular, in SUSY gauge theories the coefficients in
front of Wﬂm ( i/ff #here; is the gauge constant)
are different in Sy and 1r7 (starting from the second loop). We
will show that the coefficient ¢f W° in Sy is remormalized only
at one loop. The conventional gauge coupling is defined from
1f7 . Two-loop and higher order contributions to the latter
coupling correspond in the Wilson lamguage to caleulation of
some matrix elements.

Quite clearly, it is convenient to study the ultraviolet
behaviour of the theory in terms of SW . Moreover, in solving
the snomaly problem, the use of Sy becomes the necessity, not
the question of convenience, if we are going to deal with the
anomaly equations in the operator form. As & reflection of the
fact that the coefficient of we in Sy is renurmalized only at
one loop the anomaly in the superirace 59 d?? contains the
operator WE with the one-loop coefficient. Just this observat-
ion solves the problem of higher orders.

The issues touched upon above have a rather long history.
Let us skeich the situation which will allow us to formulate
the results in more concrete form.

We know,already for a few years , the exact expression for

the Gell-Mamn-Low function 4&'(X,/ in SUSY non-sbelien models

-~

o 3708 - Z TR/

/5@{/_ - 27 Z - (;%:/ X/27) (1)

with matter,

where the sum ir the right-bhand side runs over all matter mul-

tiplets, L is the aromalous dimension of the i-th matter
superfield,

f==5 "’/5’/%‘/ Bl %

£7" "')'

% -,

GE(RiJ is thc quadratic Casimir operator,
7T = e

while the coefficients T{Ri} determine the normalization of

the generators:
e a4 ﬂ‘_ "?f“
/r'(f’ 77/"‘ fﬁf;(s\

We have introduced T(G)= T(Adjoint)., Recall that

P ;/p.. 1
7'(%)= €& &£§2'5'5¢ :

In supersymmetric gluodynmamics (hereafter referred to as SSYM),
in particular, the exaaf}/? function is rixed unambiguously,
pe)= - 25 2T @
f—(f’f)ﬂ’ﬁy :

Eqs.(1),(2) have been ortained in ref.[ﬁjwithin the frame-
work of instanton calculus. From the very beginuing, however,
it waa clear that there should exist a direct derivation in
the standard perturbation theory. The fact that the j/? function
can be written in a simple form, - for instance, it.reduces
to a geometrical progression (2) in SSYM- certainly, could not

be accidental, and hence, one has to give answers to the obvi-

ous questions:

(%) |




- How relations like (1) and (2) emerge in perturbation theory?

- What properties of the theory are responsible for the speci-
fic structure of the O( series for ,ﬁ@c) ? Do these pro-
perties show up in other guantities?

A partial answer, primarily to the f{irst question, has been
given in refs. [6’7]. These worke reproduce egs.(1),(2) with no
reference to instantons., Jere we shift the emphasis from tke
computational aspect to the conceptual one.

Another line of research which also led us to the necessi-
ty of carrying out this work is tﬁe notorious anomely problem
in SUSY theories.

About 10 years ago Ferrara and Zumino have noticed that
the classical supercurr2nt &‘,‘ and the energy-momentum
tensor ;’;y are comnected with each other by a supersymmetry
trannfurmtinn[aj. In ref. [ﬂ:{a prescription has been formulated
accoridng to which one could construct the supermultiplet z‘;{
fneluding ,_gf,,{ . Buy . end, epirt that, the axial current

7
A1l three objects, f?;f 3 &d and ‘ész , &re claaa.‘...nal-
ly ~onserved and, as well-known, have anomalies at the quantum
level., Grisaru has indicataﬂlg}that if ‘Zﬂ 5 A;(/:.,( and Dy
enter one and the same supermultiplet, just the same property
should be inherent to the correspoanding anomalies. In ref. [BJ it
has been demonstrated that this is indeed the case at one-loop
level.

The problem arises at two loops. The Adler-Bardeen theorem

1"”, establishing the ome-loop nature of ‘/;)& t:/z’“ , Seems to

contradict the multiloop expression for the trace of the energy-

momentum tenser

& @

G = v G
which is usually quoted in the literature. Many papers are
devoted to attempts of solving the anomaly puzzle in SUSY theo-
ries. & list of references which is far from being complete
it S Rt 90 Soaaas U12%h, tos i e Tiimt detatied
i At gt hab Dah, s Sy Siafode st sas DYy,
Upfortunstely, in spite of definite progress no real break-
through has been achieved.

Let us elucidate our basic assertions concemingﬁ
functions and anomalies by & simple example ~ supersymmetric
elecctrodynanics (SQED). The action or,the model can be written

5L (AW ST Y

(4)

where W is the supergeneralization of the strength tensor

1 2
=4
T ﬁzéf*) (Xa) y (5)
(= K 28 B
Tﬂr{“ ;‘?/ and éréju & are chiral matter superfields with

charges +1 and -1, respectively. The action (4) is to be under-

W=ZL7pV=¢ K(&jﬁgﬂﬁ)-;&/ﬁ@@)

stood in the seuss of Wilson, i.e. all operators in the right-
hend side are normalized at/c and :‘Z'/ézjc/and ,iié(/ are

the corresponding coefficient functions. The mass term ??,?77 54%,
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is omitted in eq.(4), since _,»“('{' is assumed to be much larger
than m, & >>72. The maximal value of /( is equal to M, the
uwltraviolet cut off parsmeter. At this point the actien (4) is

just the original SQED action and the coefficientas '.’Z'/ﬁz/ﬁﬁ), 2 e ..‘:‘/"i 22t 2&[2.}({/

Z(HO} are bare parsmeters. For arhitraryjt- kthe coefficient L@{/{HJ 05(“) (6)

functions are determined by normal graphs of perturhation theo-

ry constructed starting from the original actioa with the fol- where oX = 53/4{?— . The term with ‘4’7 - emerges in cal-

lowing constraint - and this is vhe most cruciel point for us - culating the r;_thntunic_matrix element of the operator

the integration domain over momenta k in all loops is limited ‘ j/fpﬂfff(Tﬁ ?F"fﬁffré/in eq.(4). The matrix element is

by the condition 4 < ,{d /91;‘ : fixed by the so called Konishi anomaly [23-25] . The obeervable
Assume that we would like to find the amplitudes of physi- quantity is Z&/{ﬂjf . The fact that it explicitly depends

cal processes with the external momenia /E‘ ~ 44 . The central on the Z factor is a new and surprising element. Notice that

atatement ic that they cannot be read off directly from the eq.(6) refers to the bare quantities é( *—'—‘_/%} as well.

action (4). The adequate quantity determining the amplitudes is Therefore, the following two models will be physically equiva-

f}f{,’, the generator of 1 PI vertices. Although superficially lent: in ;bia ?irat one the coefficient uff in Elis equal to

/7 contains just the same structures as the action (4), their (4/&3@) while the coefficient of /[ /v [/ 4 is equal

meaning is different: in /" they are c-number functions while to 2, and in the second model these coefficients are

in Sy they are operators, i reflection of this fact is the dis- _(é’]f_a(a)ht—' Cf/fff_}j "é?t‘-?.f and 1, respectively. The

tinction in the coefficients. We will demote the coefficients quantity o j«/ is renormalized only at one-loop level, as

in f;:;br the seme letters but in square brackets, 7 / é‘-'_‘j"ﬁt} ” was mentioned above, i.e.

[E’ﬂ(}_? . The normalization pumt/dc_ in /” 1s to be g£ E; _2_;2{ P, ﬁyi_’l{_e

understood as the momentum of the extermal field. - oﬁ(&() 174 o AL (7
As will be shown below, the connectiion between a{ﬁ(}:gfj’p}/ﬁ‘ \

and [of/ﬁ(/i] is as follaws*) Combintng 29u:459 ad (T4 we. 0ot 2

*) The 2 factors for the matter superfields in Sy and il A oA BUE ﬁ + 2 - 2 _/_&IJ (8)

and ZZ/{’Q{] respectively, seem to coincide. This i=s definite- ' é&/@] /d#] afé [gﬂ]

1y the case if the Kunishi anomsly is purely one loop, see

below. There are various arguments in favour of the equelity Apart from the one-loop log the /é{ dependence enters only via
and in what follows we will often make no distinction between ihe Z factor. Differentiation over 42—/4( TELis the/5

the two quantities. If necessary, one can easily trace whif:‘h function for the observable comnstant /5( Dﬁ(!/ :

particular 2 factor appears in this or that expression.

g 9
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5 e equations uf motion, cannot be omitted. Indeed, the otonic
Bl) = X7 x)) e q o , , the ph

matrix element of this operatnr, as was discussed abovc, is just

the source of dirference between Ew And [7 « Calculation of

where | ) is the anomalous dimension of the matter super- — = A
J ke . g o the matric element of [ 7 + b & can be carried out by
field '[23_25]
f/, /; virtue of the Eonishi anomaly =
B o e /0 2R E o3
EIRLENE il S b Lo 10 R W i T ) N 2
/ e 7 1 $02 TH T LR e 5 -l €13)
: _ VR
Let us deacribe now the ancmaly equations in SQED. The Due 30 this relation the complatej function is restored in
supercurrent Zx ol in this model has the form +he photonic matrix element of the enomaly (12).
i e vl —_— _2_/ V. / V‘_) y =are i
E‘:{ —- ug Wi M{ &Z/__ K:' éﬁ ?})g’ Q{ Eos Tov) = Let us pass now to non-atelian theories. Since the effects
i / agsociated with the matter fields can be treated essentially
¥ Foee)
R, 775“ 0«' I/'” /‘0?/ ;’7/ ’JQ;, }-’-a-(’ F?;“.,L in the same way as in SQED let us concentrate on purely gauge
11
4 !) Vil model (35Yx) with the sction

£ F L
?f- { ‘/—r’—"ﬁ"' .:f/_'j V = .r"- / ?'

J

i /a/érﬁ/frf’w Wo=F0 )

Ita supertrace is
Non-abelian fields play the role of sources for each other;

17/{5(’79(9? Q{/ __/ ZZ‘O /_f’Vj?’?L/g’ 4%71,,) therefore even in the esbsence of matter multiplets rescaling of

fields changes the magnitude of the gauge coupling in the Wil-~

son a C S
The coefficients in the right-hand side result from differen- BPFIGR, ;3 vt 10, Eha B0 WAy, 57, 1f pccured. ip DQED under

i 3 i . if
tiation of the action Sy {see eq.(4)) over the cut-off parame- TOSRIINE. OF She BRESAN Gields, Fpecificeliy, lf. g9 Renee

f v i.8.
ter ]Io « The coefficient in front of WE in the operator relat- rom, the field ko ? V g +2 %

e s |
ion (12) is exclusively one-loop. Eq.(12) iz actually a super- Pl u # ek 7}" /
' ‘]//o( — = 7 7wk o

: (15)
extension of the Adler-Bardecn theorem for the axial current. i

The one-loop result for the ccefficient of ,‘2 is general , K
in order to get the action equivalent to (14) one must, simul=-

for all SUSY theories., It 1 th not that the ond i
o SOIET i o s ' taneously with (15), change the coupling, jz —;/;f , accord-

term in the right-hand side (i12), formally equal to zero by ing to the law

10 11




2 — A
E I g,

;UE

the domain of virtual momenta k of order p. Im our terminclo-
The coupling constants in Sy and /" will coincide if the kine- gy this loop is to be interpreted as computation of the matrix
tic term of the V field is normalized to unity. Under such nor- element of operator W .
malization the matrix element of the operator Wa can be obtai- A few words about the supertrace anomaly in the non-abe-
ned by mere substituting M by the extermal (c-number) lian thecry (14). The mmly equation has the form:

field. Normelization to unity means that f;? é;i.f « fdence,

e 7
the observable charge [9{5/ and the one in the Wilson aciion ; ﬂ : ZJ{ e f’{fz/ Qx 7— W (19)

are related as fallﬂwa

/_i{ ;? & 77//57%/ (17) o B —/gf Z?/W,} W 5}7 o

i the W i : & 1
Since the Wilson f s renormalized only at one loop, where the definition of W( is given in eq.(14).

C?’fz- ﬂ jﬁ//ﬁ f% The absence of higher orders in /(22 in this reletfion is
j s cﬁﬁz _/a, 2 “p) in one-to-one correspondence with the one-loop law of the

coupling constant renormalization in 5'. As in SQED the comple-

differentiati eg. (1 er /£ t th i .
ng eq.(17) ov f?§/£( we ge e function teJﬁg function emerges at the stage of taking the matrix

(2) for the obgervadble coupling é§5f37 .
Fotice that an explicit computation of the two-loop cont-

element of the operator we N

The paper is organized as follows. In Sec.2 we consider

: $5h § )
ribution to the effective action in SUSY gauge theories has 2 aisle [nan-atosni PR > 1 of ‘elécirod (5 o B

S TRNENTRNMC FERPITE N GRS SIBETIOr i gscalar field. In this example we demonstrate the difference

betwaen B' and [7 by analysing the charge renormalization in
two loops. Sec.3 is devoted to SQED. Specific features of non-
abelian models are discussed in Sec.4, Comparison with calcu=

lations of the inntnntnn type is presented in Sec.5. Here we

works [26] . The covariant supergraph technique has been used in
combination with supersymmetric regularization by dlmensional
reduction (SRDR). From explicit formulae givem in ref.léﬁ; it

is seen that the two-loop pari of tae ﬁ funciion emerges

from an infrared-uncertain expression af the type 1'.~2..r’1:|E (p - 0)

generalize the instanion-based approach of ref. [’E] to the case

where p is the externmal field momentum. Actually the integral
| of arbitrary self-dual background. Sec.6 presents comments on

corresponding to one of the loops is totally determined by the literature, summary of the results and conclusions.
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the Pauli-Villiars fields, partners to ;23 plus higher deriva-
tives for the vector field g?L .
/..-’

2. Electrodynamics of Scalar Pield In one loop the issue of finding ,LSTV /{%_.-‘ is certainly
. : : : trivial. The result reduces to
In this Section we will discuss an inatructive example -~
; : ey 5 L 3
scalar electrodyhamics. This model will allow us to elucidatfe F)-:ﬁ 2 ,.f;?/é;’ ./: ;:g ¢ ,’/gf > ;_;{55;_!_»1@//4;: fﬂ')@‘(ﬁé’%%zzj
in & simplified situation, some aspects of the resulis refer- < R g S ¥ SR S  ft { 1/

ring to SUSY theories, A concrete computation ¢f the two-loop

. _ where for the Z factor we have
‘1;5 function with the special emphasis on the points we will

need below is described in detail in ref. 2?1 Here we focus dn . { i !
I_ . [ g%/#f;f = :.Z/ Sy é"?{_ ; "} 'ﬁf {é;_'{_tgp {23)
interpretation of this celcvlatiop within the framewcrk of OPE. L Ar L -%/f ra Ufﬁ?

The original lagrangian can be writien in the form
Botice that Z depends on the gauge of the photon field whose

P A
—--’Fﬂ e __,,_,_f g ’f_;ﬁ £ j 4 = 1 -
e H%f.z o, Lar Ibf;g, o Dé{/y: (21) propagator is chosen in the fo:m
gl

TRas add e Ry e A Yl
ijw—f’a L/ifﬁV’L; ?f/;ﬁ
In this approximation _{:;%;auperficially coinci&ha witth;;jﬁéﬁ
gince the photoniec matrix element aff{E?-—%j)é%QH}gﬂfgga;f

is to be taken into account only in the two-loop order.

where jﬁf is the complex scalar field and :5§l¢:=££“ zéﬁﬂn

Below we will comstruct, to two loops, both 3, and gf;
the Wilson action and the generator of 1 PI vertices. The back-
ground field method will be consistently used throughout the
paper.

let us proceed now to two-loop analysis. In the twa-luuﬁ
Firast of all, let us explain the procedure of introduci
ra ’ xp ¥ 8 approximation the coefficient in front of F° in Sy is determined
the normalization pnintgfw in Sy and /" . In both cases ./
is the extermal field momentum. (The ;g? field mass is assumed

to be negligibly small in comparison withv/L£ ). As we will

by the diagram of Fig.1. Let us single out integration over the

virtual photon and perform it at the very end. Then, before this
-

last integration, calculation of Ajﬁi}ﬁgjia equivalent to a

see, in one of the loop integrals & definite contribution comes
calculation of the photon polarigation operator in one loop

from the infrared domain of virtual momenta, 'gfﬁgijz « This
-

(Fig.2). More strictly, cne needs to find only one term in the
contribution should be included into Jijéé/ , but excluded from

operator expansion for /ZU, , namely C /{;! /’{:f « The

«). As far as the ultraviolet cut off is concerned, . /
; coefficient of this term is finite end well-defined. Then the

e
*"W/'C:
within our approach we will deal only with single-log integrals

which can be cut off at the upper limit Hﬁ in a step-like way.

last integration over the photon momentum k will yield a loga-

rithmic integral of the type /% 4" :
In principle, one may think that the theory is regularized by yve [/ K which cen be simply

15
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cut off from above at M/ and from Yelow ﬂt/b{ + (For further

details see ref. (27] ).
Specifically, in the X representation
z 2/
- 1 ﬁ/

4
6y () Ly (24)
3&ﬁ:x§}w

*)
'/g;‘f = dghurds fﬁ{fgiﬁ%f iiﬂ%%;é>j

T= Ly ipray-@p vl

' 2
while the superscript (F2) indicates that only the operator F

where

(25)

should be kept in /7 4, »
In eq.(24) stands for the free photon propagator

Sk PTG a?.ﬁ'f’ c
Guy =G5 52, 43‘%’3_

3 ﬂ%ﬁ"”+25ﬁ““ Z/w 395 by

The operator expansion for /?A , bas been constructed in ref.

[ET,{ where an explicit expression for the acalar field Green
function 6{}; gy in the phntonic background has been foumd:

. 2z
7—32* ﬁfxafﬁ (27)

(26)

Gilx )= <K Z/0>=

*) We omit in /Z.r ¥he piece of the form -—gﬂlgﬁf i.e.
the tadpole type graphs which are irrvelevant fur the prauant
analysis.
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>
rs \)Lu.! f:_-’ﬁl'; H‘_J.-'If f/ ')rf

L AEET
(in the Pock-Schwinger gauge for /i« . {r_;q H# ¥ Ry

The cruciel point is that in constructing ,_5;;,/”2« /' we must

keep only the first, singular, term in eq.(27). Just this piece
corresponds to large { ~ ,{ . 8te Pig.,2) wvirtual momenta in the
loop of Fig.2. The norn-singular term (in the momentum space it
is proportional to ff?f/%;;} %,b,,;.} GM@

red effect. In the diagram of Pig.2 it corresponds to virtual

represents an iufra-

mcmenta of nrderh/f( , the extermnl field momwentum. (In eq.(27)
=0
L
In other words, thic latter domain is irrelevant to the
OPE coefficient and will be accounted for in teking the wmatrix
elemert, see below.

Iet us quote heire eq.(25; fmm ref. [Ej. (the quantity we need

in that work was denoted Ja"]/f'J P ):
Vi ' b
{ e ot -4 KX (28)
o /«;f "X Ky
-/g:f}/ _!‘/c;‘f ey : D‘j/

Let us draw the reader's attention to the fact that the expres-

gion (28) is not transversal; as a raflection of this fact in

f,S',i - I.:’_’_z{ ! there emergecs a dependence on tha gauge parametars’
Combining eqs.(zﬁ-} (26) and (28) we zet

e gfr”; AP o X,
7. : g o bonll i R L g ] ; s
:_'r P]K}T'E/ CP‘/ 5? __/(/ 7':2;_3'{17 ":‘i!’ ?7‘1_/_%4; -

At first sight the situaiion is paradoxical. Indeed, the two-=loop
s
coefficient in front of 5_5 in JW" 2‘15 gauge-cependent.

The corresponding constant, clearly, cannot be observable. How

17
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can one reconcile eq.(29) with the well-known expression for
the charge renormalization in scalar electrodynamics, which,
of course, contains no gauge parametar?

The answer must be clear to the reader from Sec.1. The
coefficient in front of F-in ,J:;» () actuslly does mot coinmei-
de with the observable charge. In determining 7/ ome should
take into account thet a non-vanishing contribution to the amp-
litudes (in extermal photonic field in the case at band) comes
from the matrix element of the operator f?%iﬂﬁf;};zyﬂr aver
the extermal field,

Formally, the operator Jﬂ;/f%ééa

ions of motion. However, one can convince oneself that in the

Jiza i b £
,ﬁﬂﬁ? 8 zero by equat-

external gauge field there exists an anomalous relation

58 ¥ Y - 7
&7 é&/’/ oﬁf‘?f”> W et /’g,f s (30)

stemming from eq.(27) for the Green function O x //

The complete propagator bﬂ{ﬁ'aﬁcertalnly satisfies the

3 _O@E&S ___0["4
equations of motion, ’6%,%9—- [ﬁﬂf + In our compu-
tations, however, we decompose it in two pieces: the first
part, singular in x , is included in the OPE coefficient
while the non-singular part is referred to the matrix element.
Indeed,

T G ol 1:_
LBp D p>= Gomr [T O 5] =55 Ka s,

a4
where (7 %g's the second term in the right-hand side of
eq.(27). (Recall that the analysis is carried out in the Fock-
Schwinger gauge for the background field).

18

Returning now to the action (27) we can find the observab-
le coupling constant by passing from SW to gr? . Taking the mat-
rix element over the extermal photon field we get for the

structure /75 a -

fgf/{¥lﬁr?2”f;é;ﬁ* ﬂfﬁﬁ%.

Mrzﬁfm "‘f/{ g lots oo {31}

g

Tnvokirng eq.(23) we convince ourselves that in the sum the

geuge dependence cancels, as expected on general grounds, and

a—

s SN N /’f " /
o bt ’f}e& ST

We pause here to make a few explanatory comments. In pas-
sing from Sw to ,Z?', as usually in perturbation theory, we
have calculated the matrix eiement only of that part of S, that
should be treated as perturbation with respect to the operator
basis chosen. Specifically, we have calculated
- 2)fe% E) 2p >

Hotice also that quite definite procedure for the ulira-
violet and infrared regularization has been used, which is by
no means unique. In the literature Feynman diagrams in gauge
theories are often calculated within the dimensional regulari-
zation, both, in the w-ltravioclet and infrared. Actually, all
these calculationa, irrespectively of the procedure of infrared
rezularization, refer to jﬁ and yield a correct amswer for the
observable charge. The answer automatically includes the infra-

red domsin,

19
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In the example considered above - gcalar electrodynamics
~ the decomposition in two pieces, ultraviolet and infrared
(i,e., OPE coefricients and maitrix elements) is not unique, In
perticuiar, the anomalous relation (30) is noi related to the
well-known conformal anomaly; the coefficient in the right-
hand side of eq.(30) depends cn the procedure sdopted., Neiural-
ly, within each particular computaticnal scheme both, the coe-

s -
fficient in front or F- in OPE and < (Lugrf Ly > o oxe
fizxed unambiguously and have quite definite wvalues. However,
in otuer schemes some redistribution can take piace.

Confirmation of the latter poinifan be easily found in
SQED (see Sec.3), which admits two types of analyses: the
component one (with no menticn of superfields) and the analy-
ais based on the superfield formalism. Scalar particles are a
part of tke matter sector of SQED. The apinor fields, also
figuring in SQED, have no anomaly analogous to (30) under the
component treatment, .;szuﬁaiﬁ? > =/ , In other words,
spiner electrodynamics has no infrared piece in the charge
renorealization. On the other hand, within the superfield
treatnent eq.(30) is substituted by the Konishin anomaly (13).

3. Supers tric Quant Electro cs

The Wilson action in SQED has the form

F s % = Z 8 (/- 7L
Sop= i Jh d TW s E b G 702 zé)

Using the same general apprecach sketched in the previous sect-
ion we will show here that transition from Sy to /7 results

in eq.(6) for the observable charge., Besides that, a general
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theorem will be proven establishing the fact that the renorma-
lization of the coefficient of Ve is exhausted by the first
loop. The assertion of ome-locp mature of renormalizations,
cluse in gpirit to ours, has bsen made in ref, 53. Since the
parumeters sfég-&nd % in eq.(33) are not observable aund depend
or. the quantization procedure the validity of both points for-
muzlated above esgentially rely on the superfield formwalism. In
othker words, it is importent that the off-shell continuation is
performed explicitly supersymmetrically.

To analyse the relation between ﬁw and ;f? we might follow
the same program as in Sec.2, It is necessary to find the pro-
pagator of the matter superfield in the tackgiround gauge field,
decompose it in two pieces = singuiar and non-singular -
refer the first piece to calculation of the coefficient /-2

and then the non-singuler part will fix the matrix element of
the nperator

(it Teire B == Lt B ) (e 1 7

In the problem at hand realization of the program simplifiecs
pecause theie Aar2 no second and higher order loops in jffg“f z
and therefore, no "redistribution" between different terms in
Sy « In other words, within the superfield formalism the sepa-
rAation of OPE coefficients and matrix elements is performed in
a unique way. As a manifestation ¢f this situation one can for-
mulate calculation of the matrix element of (34) as the anoma-
lous Komishi relation (13).

In this point there is a direct analogy with the Adler
enomaly in the axial eurrent[ﬁu}
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As well knmown, this anomaly has two faces. On one hand it can
be revealed as an infrared effect in the transition of the
axial current into two photons:

i aE L pr o I

et
-~ Zz J.H,_‘g 5’(,; J
& e "4

where q is the axial current momentum (the photons are assumed
to be on mass shell). Prom this expression it is immediately
seen that the fermion loop is saturated by small virt{ual mo-
menta, of order q. Multiplying by ﬁiﬂ.we arrive at eq.(35).
mis derfvateih P euiladrotns Thetidtrare NNEaRe 62 #6 #02
fect corresponds to computation of the matrix element of
@5/;}* 0‘9—;/1 (7 1in Sec.2 by virtue of separation of the
non-gingular part of the Green function in the extermal field.

On the oiher hand, since we deal with the divergence, the
anomalous relation (35) can be obtained as a result of the
ultraviolet regularization, say, by the Pauli-Villars metrod.

In the language of the spectral flow in the extermal
field the double-face nature of the anomaly means that the
number of levels coming to zetro is equal to the number of le-
vels crossing the ultraviolet cut off.

The operator ﬁ?/?’rf“}/?’% L/("_é"’h%f interest is a direct
generalization of gﬂfﬁg in SUSY theories. Its matrix ele-
ment is unambiguously fixed by the EKonishi anomaly (13). From
this we deduce that to the first order in Z-1 eq.{33) implies
the following expression for xf? H

22
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As was already noted, the one-loop law is wvalid for,{;%?z:

T iy
% - ii #ANE _f{, (37)
If we consider for & moment only the first order in 2Z-1,
the result (36) can be represented as a substitution of the
ultraviolet cut off M_ by Hﬁfz. This fact is not a simple coin-
cidence, of course; it is in one-to-one correspondence with the
ultraviolet derivation of the Konishi anomaly.
Indeed, let us introduce explicitly the Pauli-Villars re-
gulator fields T, and Up . In other words, the action (33) is

supplemented by the regulator part

o B N T
‘gzig a gfiLJg/fktygféi;ﬁ; £ e T4 & =”§i;'f

_ %/ff?@/a,/@ 7;%+j_£) (38)
H 3 /j

When the regulators are included explicitly the naive equations
of motions are valid. Therefore, we can use these equations in

the perturbation, proportional to (2-1). Then the perturbation

reduces to

£

o

O cosnibi® 2ot L TR s FgART A p "y )
A“_ e o i fllr _:; -J r./‘fy’/; ! ,"f? “"-'p_ F A i85 (39)

| -

After taking the matrix element the additional term (39) re-

produces the term with (Z-1) in eq.(36)., Thus, we have used
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the term 0(Z-1) to establish the following: the mass term of
the regulator fields in 2q.(38) dces not contain Z. After this
cbservetion is mede it is quite evident that summation of all
orders in (Z-1) in the matrix element . gauge field [ exp (5453{
'sauge field ~ is equivalent to the substitution M_—> M _/Z.

Hence, the observable sharge figuring in /’ 1is equal to

,';" (f, ¥ = - /.:'J"
E e T (40)
-_|:— _" __‘__::-;.‘, u//‘;.z

Expression (40) is our final result for SQCD. Differentisting

over £ 4 we arrive at the & function qucted in eq.(9).

s
--‘f —

As far as the supertrace anomaly (eq.(12)) is concernmed it
can be obteined by aifferentiating the sction (33) uvergﬁ&iég.
In doing so one should keep in mind that the ome-loop law (37)
is valid for /< and the factor Z depends on the ratio ﬁ;fj’@

The last thing to2 be done in this Section is to prove the

i

theorem of the absence of higher orders in ff=€2 declared abo-
7

ve, Actually, we will merely reformulate argumerts of rﬂf.'i

Thus, let us assume for definiteness that we are calculating

‘ in the

the two-loop coefficient in froni of the operator W
effective sction, Within the beckground field method the latter
is determimed by the graph of Fige 3. '

Notice that in the sbelian case the superfield V does not
interact with the ertermal field. Regularization can be perfor-
med just in the same way as in 3S¢c.2. Neamely, we cut the V
line and get the sub-block which is finite both In the nltra-
violet and in infrared. The last integration over the virtual

mowentum of th2 V propegetor is cut off at M. in the ultravio-

let domsin, and at ¢ in the inlrered one. The ultraviolet cut
-

4

-

Aiﬁﬂa%?n;z)rwlfi;/ié_a?ﬂgé 92%23,55) ég}g?;ié)iéaéé,?ia))

orff can be introduced via higher derivatives for the field V.
Keeping in mind any n-lonp graph one can formulate the gemeral
regularization procedure - the Pauli-Villars fields TR,th with
the masas M, combired with higher derivaiives for V. Onmiy the
very fact ol existence of a superfield regularization in 4
dimensions is important for us.

Within the bdackground field technique the expression for the
diagram 3 hes the form

(41)

where ,é?:z(f%; g, i%i) and 529{;?;319) and ‘§:(ékxéi?}

-are the Green fuactions of the vector and covariantly chiral

superfields in the external field. The operator representation
for these propagators can be rfound, for instance, in rafa.[?ai

26f,
D, 2)= <3 (V- W%

B
4 of g
G2y 2)= <g,/~ vy (3~ WR-2 4 ]) g, 712>

Of principle importance is the fact that egqs.(42) comtain no

Vogt» the external field enters only via I}Z;Frf and covariant

derivatives. Therefore, the method is explicitly gauge invari-

ant with respect to the external field. In particular, under
gauge transformations of the extermal field the propagator D
does not change at all while the propsgator G goes into

3 o7 .~ &)
Cl2,8)2 € 1)6;@»27/ Eodi 151 (43)
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where ,«f;?' is a real superfield of the general form. The

integrand in eq.(41) is obviously invariant with respect to

to prove the vanishing it was crucial to have a quantum inter-
the transformation (43). In the non-sbelian case K is a matrix

The "extra" dzé- cannot be eliminated then. The one-loop super-
trace over colour. The gauge invariance of the integrand in
graph in the extermal field technique does not reduce to exp-
ression like (41) at ell.
The proof of vaniahing.af the twc-loop graph in SW iz readily
: F gereralizable to include higher loops and non-abelian theories.
3 e Vg L £ 28 i = - <
/ 5@ E/:_/ /‘fx/ ;94?/5?/ (A 42 fy o Our assertion is actually an extension of the well-known non

renormalization theorem for F-terms [21 .

z
eq.(41) means that the latter is expressible in terms of D\Z( i
and covariant derivatives. After integration we errive at the

expression of the type

4 ExZ
where -< ig a function of H‘Z‘, (it does not depend on

explici . \
X ﬁ & - c_jlr) have ususl form in terms of }-ocy.zﬁ and not o(f«/ In particular
g - — ", = - r- L
EX;%/& %, &/ ocan be locally expressed in terms of ﬂ/ﬁﬁ'ﬁ/ﬁ/ﬁ’;‘f - “/’(@%ﬁ% it is convinient tci;hcuse (oA, and
T : - : ' , i
J/,;T ‘X ‘éy pngd, She. sovariant dei'ivntlvaa, the;' U5, MRS EO as initial date for these eqs. Then coefficient Z in Sw is
ously, the structure of the typaf,ra/f(ﬁ/gf W ex ay cannot

emerge. On the other hand, in concrete two-loop calculations

[Eﬁjthis structure has been obtained. A paradox? The explanat-

Let us mention one more interesting point. Renorm group eqs.

—

proportional to ZG and coefficient f_;;.,{ at operator ‘1’#2 depends on
- i
Z, logarithmically, 2/ /X :f-?e‘?’/fcxi_y 72 %‘I‘he variation of 3,

induced by rescaling of 2, gives the rencrm inverisnt operator

ion is a non-local function of W, for instance of the form

o Py — ~/ Z Z
2 7/773}?774' &€ ‘ijpj};z La (44)

The physica’ independence on EG means that opzrater (44) is zero

.‘"‘-‘

A
/j — ¥ 1;,0 %

end it is our derivation of the Konishi anomaly.
An infrared singulari*y here is undeniable, If the momentum of

the external field W is p then the ,_f/ /oz pole could appesar

Moreover we have two renorm invarisnt combinations of ¥ ana

AL i o
_{Wf{"'ﬁ’;@r_’?f’ 31",_!] One is given Ly eq.(44) and another enters eq.(12)

only from the domain of virtual momenta {m/ﬁ « As explai- It implies that operstor

ned above this domein should not be included in the OFPE coe= A Z/j

@7//5[7'75 i A

(45)
fficients in Sy, it should be accounted for in matrix elements. r
o — - ted _,V
The arguments presented above are not applicable to the dimension of 2 ( 44 - ™

one~loop graph with the chiral superfield inside., Indeed,
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4. Non-abelian Gauge Theories

The basic aasertions referring to this case have been for-
mulated in Sec.1. Here we will elucidate derivation of the re-
sults by the simplest example - supersymmetric gluodynamizs
(SSYM). Introduction of matter fields require no special congi-
deration because this aspect does not differ from the procedure
discussed in detail in SQED.

The crucial distinction of non-abelian gauge theory frum
SQED is evident: now the gauge fields are sourccs for each

other and, therefore, the matrix eiement ﬁfl@’ng does not

2
ext

rent let us turn to SU(2) model &nd assume that the extermal

vedvce to the c-number W

field is oriented along the third axis in the colour space,
XL __f 3 1EXT ]
lﬁf, =HAL « Ther the third field cen be treated
e e S i ‘ o
a3 "neutral”™ while L&F‘:fég (ﬁ? ;TJP?'J/ play the role of
charged fields with respect to the U{1) subgroup singled out
by the orientation of the extermal field. The nperator.wa is

representable as a sum
2 ~— 4?‘ sl .31.';
W= 2W "W + W' W"

The matrix element of W-W- over the "neutral®™ extermal field
is trivial, while to fix <2 W’ W/ ’we actusily must consider
electrodynamics of the charged vector superfield. Now we szee
that conceptually the situation is just the same as in SQED,
Due to an anomaly the matrix element of W*W~ over the "neuiral
external field does not vanigh.

More specifically,. the following relaticn takes place

28

. To make the point more tranape-

.ﬁ"mh-.

A = 75@‘ Mi:ﬁ’“ g%*--)w/ifuﬁ)

L/égfbﬁsﬁ{)

where L/_@@’/ and . y-7, cogp (o) denote the complete and one-
loop Gell-Mann-Low functions, respectively. The fact that
fg;%;zﬁgw w> reduces to Lj,fﬂé{} Lﬁi;;_ is obvious
from the renmormalization - group-invariance of the boih quanti-
ties, Thus, the right-hand side of eq.(46) can be comsidered as
a definition of the Gell-Mann-Low function. QOur aim is const-
ructive calculation n{fgﬁé%? « By virtue of egq.(46) the é%;jé)_
loop coefficient iﬁ/ﬁ%éif s fixed in terms of the - ~th
coefficient in the matrix element {f]ﬂ?r€:>.

First of all, let us recall that the Wilson action in SSYM

s exhausted by one loop

77 ¢ e
5{»’/‘) 7 fé‘é . L@é%ﬁ/i s Bl (47)

FTS Loy

This fact has been proven in Sec.3. At one-loop level the exp-
ression for zr? has, evidently, just the same form. Higher
loops in Jf? appear from caleulation of matrix elements of Sy
(more exactly, M/&;’f:* (E{;ﬂ:’fy}}“ )e Let us establish now

the relation between ,giikj and gjiv.Jé%/

level, In this approximetion

at two-loop

2 g7z

o)=L (bt O TFWGE, — F ﬁ%f%/’%’ FWas)
fikiu ﬁ;ﬂfJ/;nx rexs " 2y <f” 4

The subscript "ext" marks a c-number extermal field in which we

2 2
calculate the matrix element 4{??V}V?f:§' of the ouperator Iﬁp-.

29



In asai r - *
p ng from eq.(47) to eq.(48) we have taken into account Therefore, as will be seen below, we will manage to formulate

that the matrix element should be calculated only for additional the calculation of < & 5«?;) in terms of a cerfain anomaly

<
just in the sams wey as it happens with g;% « More exactly,

P
both % and "f/.« have infrared poles of the type {@/,/ijésf

with coefficients which can be fixed unambiguously. The aasert-

piece, absent in bare action. Therefore, it is sufficient to
2
£ind /- WD to order f{é'{/j'? .
The one-loop part of the result (46) can be extracted frow

22 :
ref.f ]{eqa.(_i.. 21) end (A4.22)). The main complication in find- ion refers to the following kinematics: the gluons in the final

ing the matrix element </ [{/< 1 Foiy2
/WS> ie the mecessity of the state have momenta k, and k, with & =4,= 2 and ?i£+{7_);§.

infrared reguiarization. In particular, the authors of ref.z-‘?g;’ e The presence of the infrared pole in P ig a well-known fact

have used dimensional reduction for th ; z
T this purpose. We would like, ngfaq?raflecting the existence of the axial snomaly. The ana-

however, to present here another derivetion, referring directly lugous pole in seems to escape attention and was not

to four-dimensional space. A transparent physical meaning of discusged in the literature

this derivation will help us to establish a few useful facts Ir calculaticn of X

e > we will use the background

and to discuss the relation with revio "9
i P us analyses. field formalism,

We concentrate on the G-component of the superfield we

which has the form sd f"/.' 4 <+ 5% (51)
"/Zf ’);;/‘",,f ExT o

2 7 ~
%W/:M@rﬂf“jé%@) ( 2 i
f& 4 i 8 49) where rf"”f‘- ffe‘ o and i‘?/’.,, are the extermal and quantum fields.
g B In one-loop approximation we need only the part of /f' quad-
‘Nhﬂ;'ﬁ d?"“: -~/ ,‘f’;f‘)) is the gluino axial current, rafle 4 ‘9.0, o5
)M /;,(:__g:_g}. =12, 5) is the Weyl spinor deseribing gluino. In &
2 .
the Majorana notation )ﬂf ( o = 1,2,3,4) the same current K/f)_ 25 s ‘?f.?og ﬁfri (52)
- = . v
can be written as T = zj )ﬁﬁ) " s Zer ) 78 4
It is extremely essential that not only fermionic, but The matrix element of interest can be obtained from eq.(52) by
tlso the bosonic part of IZL is representable as a full derli- > gubstituting the Green functiom for the quantum field,
vative
o P, =T e IR B ot >-sph T, /B =] 1> ey
oot st 5 e ST 5 B 3 //*V[(?p ¥ /f ik ' ’/Jt>" f j,éf)yﬂ; o Eoler J / j""'_?&? f),
o i & "
TL_?Tf 7f 4 Y éf"f c?"/ ( ;
. -~ 50) Here all quantities are matrices in the colour space,
)

This derivation was done in ¢collaboration with V.A.Novikov
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@7,)#4; {.(/fa.fé} = ﬁf?iij
(28] =&

To simplify the expressions we have scipped the subscript
"ext” for the external fields. The formalism we exploit is ex-
Plicitly gauge invariant with respect to the extermal field.
As far as the quantum field gauge is concermed, eq.(53) implies
the Feynman gauge, ,;; :—g@* a;‘f/z. Needless to say
that the final arswer should be independent of the quantum
field gauge. We will return to the issue later,

Now, let us expand the propagator (25) in powers of ﬁ/f 5
The zeroth order term in G drops out because of contracticn
with %Vdﬁ « The second order term

L = - 4
75 % 32 G

conteine two G's contracted over one index; hence there is no

o é»;;d, s deter-
mining the longitudinal part of /(j,,, « Thus, we are left

with the linear in G term:

way of getting the only structure, Z,/‘,

if}?; ;;::J.5292321 <f%7-ﬁ?-52? fﬁ;V Z o>

Instead of direct computation of (54) (which presents no dif-
Ticulties, though) one can compare this expression with tke

matrix element of the spirvor axisl current & » Whose anc-
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mely is well-known. For the spinor current
v Tt r gupE e S o L o=
b f T Z [‘1/ fa-f"‘:#r ,f‘"ﬁ

' f‘?zﬁ 7;,&::# 5’3 /ég;n_gh Z

Calone e il &
B i il 4

\
N\

— %S

——
—

N

As in the previous case one can convince oneself that in the

i (7 term
longitudinal part of ({;H)\ only the linear in & m %

ﬂ ']
i aurvives,
& 6?
<KET = -~~;.f /X2
{e’f:)__ ;—/ Ja!aarr ST P (55)
A simple inspection of eqs.(54) and (55) shows that in =
g
there is jugt the same pula as in <7, >, é{ gy ) &:
but with an additional factur 4, hinca
ot 7/4% r:‘:’,f’rc?'ﬁ;‘? ) :
la Lo P = ;F_ (Lo @;:/.gx: _ (56)
B,
we get for <G>
Fa P 3
s # f.’_a-‘-? ..-"‘?':| Z%F?/Z‘p"( /
. Sl e ]
< Frh = <ok & >= {i”a;’ J?*ffé_ﬁ s Y a )(57)
where we have added the unit texm from the clasaical peri.
¢ 2
& Boa.(56) and (57) imply for the G componant of W™ (see
eq.(49)):
: o e PPSe Fnd
- F’}q VY 2/ M;} = 1I.‘E;.__z 2._.- : nf 2 _"__~,____ j {58}
< ¥ ¥ i - ! ;
i ey e 7
i At i ok e ‘?_‘(@f}?_‘\/}
: T & s 275
33




How, keeping in mind supersymmetry, we see that the one-loop
piece of relation (46) is reproduced.

What remainsg to be dome is to demonstrate independence of
the quantum field gauge. In arbitrary gauge the propagator of

the field <,° has the form

/z-* y
t?’l/ (Xf G 3 %L’?é-ﬁ,f _f"f‘ff;;; /f"r) (59)
One can readily check the following operator equality
Z B Z :
Lo /715;“ -26.,)= 7F, #0ol, Gy (60)

If the extermal field is assumed to saatisfy the equations of
motion, 9%&#6;{3 = s @8 required in the extermal field
method, the second term in the right-hand side drops out, and

the Green function is representable in the closed form:

/7 i W % P

Sy £-w LTy
Returning now to the matrix element of J{:?
we write the ,EI’ dependent part as follows

Ae <&z g;;&} G e e ol

Pormally, due to gauge invariance with-respect to the extermal
rie1d, </ RHEZ /x>
which is zero. However, in the kinematics comsidered

4
(é :'-,{;E:;J

defined in the infrared (it conteains 1/k2 ). Por regularizat-

99 @’j'/*— c:"?f/,-f ??ﬁ

(see eq.(53))

must be proportional to o, #..
7 T3

) the expreasion -'x?’f”j'?ﬁﬁ ¥ e ol 11]=
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ion one can introduce an infrared mass m +to the quantum

I
field f;, + In other words, in all propagators
_5?5‘,,—5? {532 ?:»p/ . It ie assumed that > << §7£:'

:(jf" 4%3; . Just the same device is used in the fermion
triangle (cf. ref.[asj). After the regularizing mass parameter
m is introduced the vanishing of eg.(f1) becomes valid not
only formally.

A few remarks ere in order here to comment the resuits
obtained above, The infrared pole inu Jiz. ig fixed absolu-
tely unambiguously, and does not depend on the procedure of
off-shell continuation. Ia other words, the matrix element of

\&’Eéﬁ must be one and the same both in the component and
superfield formalisms. Extension to the eother components of
wz implies the superfield formalism., We have checked that
eq.{(46) results from rﬂf.[z which consistently exploits the
superfield formalism and SRDE.

Notice that the bosonic anowaly in Dﬁfzzg has the coe-
fficient twice larger than the fermionic one and of the oppo-
site sign. Effectively this changes the sign of dikxyekg -
in comparison with the standard practice (refs.[13’16'1g])
which totally neglects the bosonic anomaly. We will return to
discussion of the point in Sec.6.

We have not compuied explicitly the two-loop and higher-

order terms in 2q.(46). Let us skeich an indirect line of rea-
soning (the analogue of the analysis carried out in SQED)
which will allow us to generalize the one-loop answer to all
orders.

In SQED the second loop in ij emerged after taking the

matrix element of the gperatcr i ’52'14%/6f
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This matrix element is saturated in the infrared domain; how-
ever, thanks to the universal nature of the anomaly the resul:
for the second loop in Z//#27/ can be formulated as the sub-
stitution of the regulator mau; M >N fz, in the one-lonp loga-
rithu, In such a form the result is velid to all loops (see

eqs. (37)-(40)).

In non-abelian theorizs no explicit procedure for deriving
eq.(46) from the ultraviolet regularization is corstructed at
the moment, but beyond any doubt this can be donme. Then it seems
natural that the situation analogous to SQED should tske place.
Namely, the effect in iﬁggff' due to higher loopa must redu-

ce to a substitution

)‘J——-
_M; a? (?:J
pZ /z%
in the one-loop logeritom. Here | is some number. Since the
ultraviolet regularization procedure is not apecified we Lave

reserved the possibility of /4 £ 7 . In the model comsidered
(SSYM) the factor /Z?j/ obvicusly reduces to

The two-loop result stemming from eqs.(48),(46) is repre-

gentable in the form

o SEESE SRE L, T /,{f////
o I 5 R L (/5] -
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/'Zj b /J f;%* 3/7 "

Parallelizing the analysis in SQED we conclude that if we do

not expand the ratio EEE;j;/Qfgfyag? in the gauge coupling
constant, the expression (62) will be exact. Notice, that it

i;? Wi ﬁié %ﬁ;gy?:: A ﬁffﬁﬁié:
A

immediately implies the Gell-Mann-Low function (2).

The fact that the exponent .4 +urned out to be 1/3 in
the cese at hand finds a natural explanation within the instan-
ton-type svprecach (See Sec.5).

S.Comparinon with Calculations of the Instanton Type

The present investigation is essentially based on %he
observation that the coefficient of ;%%;*ﬂ?’zin Sy 13 remor-
malized only in one loop. As .as been already mentioned, thi§
fact generalizes the well-known non-renormalization theurem{%;
for F terms. Below a somewhat non-standerd procf of the theo-
rem will “e given which, among other things, will show in what
cages the theorem can be viclated. Our arguments will simulta-
neously demonstreste why the one-loop renormslization of the
struelure ﬁ/%ﬁ Iﬁrz is possible.

The besic idea of the approach we would _ike to propose
is as follcws. In any SUSY field theory there are several - at
least four- supercharge generators, and one can pick up such
an external field that will be invariant under the action of
some part of the generators. For thie specific external field

acme terms in the action S can wvanish. The non-renormalization

theorem will refer to those structures that do not vanish in
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the background field chosen.
For instance, in the Wess-Zumino model,

SWE Zfnntb pp + FJ% (42 2p) #4.) o

the appropriate external field is

PRI i - o “ =
/G«”gxg*ﬁ,; }ﬁm‘ sy’ iy o (65)

where C1.2_3 are some constants. The relation (65) assumes
that /@ and ﬁ are treated as independent variables, not
connected by the complex conjugation (a kind of amalytic con-
tinuation). The X independent chiral field (65) does noi
change under the action of CE} » the dotted supercharges,

i.e., under the transformations

l=0, Pb=&, Ixy=244&

J

Hence, in the quantum problem for the devistions /;!5—- ;E?E. -
there exists the exact symmetry under the transformations ge-
nerated by CEE .

In terms of quantum states we face here a boson-fermion
degeneracy just as in the "empiy" vacuum. This degeneracy is

sufficient for ensuring cancellation of all quantum correct-

ions to if?Z?qfréj , 1.0,
o ws{,ﬁﬂ): R W?@ﬁ) (66)

The situatiom is absolutely analogous to that with quantum

corrections to the vacuum energy in the empty space, i,e. for
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o
Eq.(66) implies the absence of renormalization of the se-

cond term in (64)., The firet term vanishes in the extermal
fielé (65), and nothing can be said about its renormalization.

What changes if one switches to gauges theories, for ins-
tence, SSYM (see eq.(14))?

The general line of reasoning siays the same. As iu the
Wess-Zumino model one can choose a purely chiral and X indepen-
dent external field. (More exmctly, it is sufficient to impose
these consiraints on }ﬁi ’ 'PQE and not on the prepoienti-
al V because / depends only on gauge invariant quantities).

ther, more complex variant, also suitable for our purposes,
is the instanton solutiunlji](see raf.[5]). Although in the lat-
ter case the field does depend on x the invariance of the ex-
ternal field under the (Q: -generated t{ransformations still
survives. (Strictly spesking, the atatement refers to colour-
less combinations like // W/ ). Starting from this point we
might arrive at a non-renormalizetion "theorem" for the struc-
ture wf;réﬁﬁlh?’é; the comciusion analogous to the one made
above for F-terms in the Wess-Zumino model, Such a conclusion
is perfectly correct in the Wess-Zumino model but, as well-
known, is incorrect in gauge models.

Where is the loophole? The point ies that sometimes the
fermion-boson symmetry can be broken, namely, in the ceases
when éz; annihilate some states. In somewhat different
language, more usual for the external field method, the effect
reduces to appearance of zero meodes.

Recall the instanton example in supersymmeiric gluodynamica

39




ZMEE. For the vector field the number of modes with the eigen-
value );.—(ép is equal Vo 4-2=2 *) « Simultaneously, there
are two fermion modes with the eigenvalus ,Em and tw: meore
fermion modes with (— )Q[BE.? .

Such & reletion betwaen the boasoric and fermionic modes is
a consequence of the invariance under 52; and takes place
in any field with this invarisnce, It ia eaay to see that just
this balance - 1:2 - guaraniees the cancelletion of the quantum
corrections. (For instantons the phenomenon has been first dis-

covered in ref.l?%z}. In particular, the ope-loop correction is
i ) 2
proportional to 2-; ﬁe’/g/&ﬂy - = (-/f/‘?)é”/)ﬁ/

S 72

¥

and is vanisbing because each bosonic level is accompanied by
%wo fermionic. The cancellation in higher orders is ensured by
the exact symmetry with respect to 5@; .

Let us turn now to zero modes. The same symmetry with ros-
pect to éﬁ; results here in a "wrong" relation between the
numbers of hosonic and fermioni~ zero modes, namely 2:1. Indeed,
the zero modes of the vector field ,4€E#, and the spinor one,

jamf » &re essentially the same and sstiafy the relatione

& D‘:.-'G?
O@ﬁo()ﬁ a ¢ DTl s = &)

o /3

[

The second relation leaves the dotted index free, also a conse-

quence of invariance with respect to {2} + Keeping in

mind the "spertator® role of the dotted index it becomes evident

< :
) Literally sp3aking, the vector field in a fixed {covariant)

gauge hes four modes. However, tmking account of Lthe ghosti

determinant is equivalent to eliminating of two modes.
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/ j /Z?fm »0(€ S

that the bosonic zero modes repeat fermionic and that
2ero modes 5 e, A disbalance in the

number of modes leads to the fact that quantum effects do not

cancel completely, and jxfjijEWﬁ)?é AS?.[diﬁégg:} . More

specifically, the zero modes (in combination with their regula-
tor counter-partners, of course) yield the following contribut-
ion to L7 :

s =2z K72 ] . 1 oA
fos < /A?E?EEZEJ -ﬁé?f@%ﬁ? ﬁfﬁ?ﬁgif# 2

where M  is the ragﬁlﬁtar mass, and the sum runs over all bosonic
and fermionic zero modes, respectively. The factors za;z account
for the fact that higher loops affeci the normalization of the
gero modes (and this is the only manifestation of higher loops).
The corresponding renormalization coincides with that for the
exrtermal field since the coefficients of the expansion in the
zero modes have the meaning of collective coordinates of the
external field. On the other hand, by defimition the external

field renormalization is just the charge renormalization,

(=] . —M | (69)

i —— Wz

Bl (2]
where &W}’ :&ﬁ=ﬁaj] .

Let us rewrite now eq.(68) for A 1/7 in terms of Dy

the pumber of fermionic zero modea,

2t of iioonnad o0 L]
(iaiizi?wihaﬁéﬂs e 274 'Zgi;:, G E L
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Furthermore, the coefficient n, is fixed by the index theorem,

_ Jl5y s Tl
7 %}?J/é/ ki fﬁ'-" ’Q /h/”’ﬁ/;w (71)

The second relation in eq.(71) is due to the self-duality of
the external field. Substituting eq.(71) into eq.(70) and com~
paring the reault{ with the original action

551 ¥ i;ié Zﬂjﬂ;{f;dyxij

>

il 2 ¢ 57 S
TRl Jakd 8T ) 0y

we find the law of the charge renormalization (cf.eqs.(17,(18))

S
e A f@f @)

It will be in order here to compare this derivation with

&

the analysis of Sec.4. First of all, let us draw the reader's
attention to the expenent 1/3 in /ﬂf& // ad }{’2% /Z?/%'/f (cf.
eq.(62)). This 1/3 emerged in a natural way; indeed, the coeffi-
cient of ,ﬁ_/‘z% in eq.(68) is -/5? o »’?,;/ , while
< 2/ 2 is mltiplieﬁ by --/:: ar;/ %
Moreover, the latter factor, (5‘ 4%;! is in one-
to-one correspondence with the calculation of the matrix element
ot TFW ¢ presented in the previous Section., The residues
of the poles in {i; and fﬁf count ny and fp respective-

1ly. Actually, we have digcovered an index theorem for the zero
modes of the non-abelian vector field., The fact that nB=2nF yreT T
nifests itself in perturbation theory in the following way:
the contribution of the bosonic anomaly to < ?;*W% 2 is

twice larger (and of the opposite sign) in comparison with that
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of the fermionic anomaly.

The arguments above do not rely on an explicit choice of
the background field. All we need to know is ng, the number
fixed by the index theorem. Therefore, along with the instanton
example an x-independent self-dual external field suits equal-
ly well for our purposes. However, for such a field the integ-
ral [ fx Yy

strictly speaking, ill-defined and calls for an accurate treai-

, figuring in the index theorem, ie

ment. Ome of pcssible regularizations is introduction of a fi-
nite volume154'3éz thorus L4 . The simplest self-dual field in
this case - toron - has been discovered by 't Hnofti?&]. The
55;4, tensor for the toron field is constant (x independent);
moreover, the aciion and topological charge constitute (1/2) of
these quantities in the instanton (SU(2) colour is assumed).
Our general srgument in this case is realized as follows: there
are two zero Termionic modes (they are generated by applying
to the toron field) and four bosonic modes (conventional trans-
lations).

It is instructive to find the matrix element of the opera-
tor ?;~$&;é, in the toron field. Actually, this has been done
in ref. fﬂ@? where the condensate < Jﬁ)g( > has been

determined. The result for the expectaticn value in the foron

field reduces to
BT o

: - -~ 2
B Y 3P ;’%j £ &@J(T“

where L is the box size. We reprocduce eq.(74) here in order to

emphasize that this expression is exact - no corrections in

the gauge coupling comstant. Eq.(74) demonstrates that the
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operator 7o W2 , not éwgéyﬂ“ Wz , i8 re~

normalization-group invariant; just the matrixz element of the
former is expregsible in terms of observable quantities and

dees not depend on llu .

6, Conclusicns and Comments on the Iiterature

The present work- we hope - complete continuous efforts
in inveatigation of two related problems in SUSY gauge theories:
ultraviolet renormlizations and the structure of the anomaly
supermultiplet. We have ascertain how the exact relations for
/_‘3 functions emerge in ordinary perturbation theory. The key
finding is non-coincidence of the Wilson action »‘-S{V /@/ and
the sum of the vacuum loops Jiig?i in the extermal field due
to the presence of infrared effects, The famous non-renormali-
zation thaoranlajfor F-terms is generalized to include the ope-
rator _/;fégﬁﬁiff/zin 3' ¢ The coefficient of this operatoy,
-_Z/?Z , i®m not renormalized &t two, three, etc, loops & .
The first coefficient inwfﬁ function for the observable charge
reflects the renormalization of «/z< , the second and all
other coefficients represent infrared effects coming from some

matrix elements.

The observable gauge constant 7 /p %/ enters /7 end
differs from 7/;% by = g&;gé
L

lizetion factor for the i-th field and C; is a nuiber emerging

ere zi is the renorma-

*] Another example which falls under the genersalized theorem is
the so called Peyet- Iliopoulos D terq)@kﬁﬂ}fin.the abelian
theory. The abasence of higher loops for this term has been ea-
tablished in ref.[3U .In order to demonstrate the applicabili-
ty of our proof let us rewrite this term as follows /o7 V'~
~ @O0 " P Vf W, ,Now it is cleer that it
can be called FP-term just in the same sense as faﬁfzﬁﬁ-}r/‘? <
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in calculating the corresponding matrix element (all C;'s are
fixed by a one-loop computation). One can say that the Z fac-
tore of the matter fields become observable.

It is gseen that the standard perturbation theory is extre-
mely ineffective as far as calculations of the gauge constant
renormalization are concerned. Working with the normal super-
graphs one has to take into account a lot of superfluons things
{ghosts, etc) - such things which all the seame caﬁcel from the
final answer. In this sense the approaches of the instanton
iyp< are much more ecomomic, they reduce the problem to escen-
tially a classical one, with a finite number of degrees of
freedom {a few zero medes). The Z factors encountered along
this path evidently refer to external, not quantum fields.

The geometricel meaning of the first coeificient in the
\/Ag function is absolutely transparent within the instanton
type approach E/ﬁﬁ,w{/?'?ﬁ — Ei zg;)}. In essence, this means that
the first loop by itself is determined by infrared effects.
Unfortunately, in the atandard‘perturbatinn theory we failed
to find the line of reasoning which would adequately reflect
the phenomenon.

It seems - and we strongly hope - that the ordinary per-

turbation theory can be improved in such a way ithat the process

of renormalization of WE will not require invoking quantum
fields, ghoats, etc,

As regards the anomsly supermultiplet problem, within
our approach its solution is straightforward. Since the renor-
malization of E%VH??Ein Sy 1s exhausted by one loop, the ope-
rator anomaly equation for :213? (see eq.(19)) contains
the operator W2 with purelr.onu—loap coefficient. Just this
ag=ertion is SUSY eXtension of the Adler-Bardeen theorem. Many
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readers may find rather unusual that the conformel enoumaly in
é;/ is determined by the first loop * » The conventional

expression for f; roportional to thé complete &£ funci-
P et prop p e

ion 1s restored after averaging the operator equality over the

external (gauge) field. Simultaneously the same 4 function

A
appears in the matrix element of 54 « At this point we

!c;j‘_,
encounter another unusual aspect - the expectation value of
the operatcr 55"” LY no means reduces simply to @'%fo .
The effect can be formulated as anomaly in the hasnnié exial
current jg; (see eq.(57)).

Now, let uws discuss in brief the relation of our results
1o those known in the literature.

Clark et al._ﬁﬁhnva undertaken a therough investigation
of /  and matrix elements of the supercurrent. The analysis
has been carried out in terms of the Ward identities. The au-
thors of ref. [1 1] came to the conclusion that supersymmetric
congtruction of :"f;{;‘, snd an anomaly supermultiplet is
poasible, However, their results - and the authors fully rea-
lized the fact - did not admit a direct operator formulation.
Although in principle the prng:ram[uf is quite correct (and ac-
tually combining some expressions from ref.ﬁﬂcna could ext-
ract, with some effort, eq.(9) for SQED), practically the conmsi-
ruction is too overcomplicated. Our progress is due to the

following additional elements:

(1) the language of the Wilson operator expansion (the

" Here there is a remote analn% with anomaly supermultiplet
in the vitational background 8-40] . As bas been shown in

ref. EI-O the accurate treatment of scalar field contributions
require a modification just in t;,?,,},. s not in f’/‘ .
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distinction between S, and 4 );

(ii) supersymmetric off-shell continuation essential for
the assertion of one-loop renormalization of L/ € in Sy -

It is worth emphasizing that the supersymmetric off-shell
cortinuation iz important for asnalysing the coefficients ia
S‘; in _.,/7 details of how we treat the theory off shell are
far less essential.

The next series of investigations EU"IEJhas been initia=-
ted by the paper of Jones [12—]. In this cycle of works effortis
were focused around the question: how to reconcile the Adler-
Bardeen theorem for é;?‘f & with the existence of higher
orders in the trace e ? The summa-ry of the program most
clearly formulated in ref. [‘3115 as follows: one introduces
two different axial cu:r}ant;, f‘f‘f d figuring in the Adler-
Bardeen relation, and 5(‘,’5 entering the supermultiplet
'ff_{ o . Then one assumes that the difference between

g,;,;‘ #2 and /@’I’f : is due to an ultravioclet subtraction cons-
tant, to be found order by order by comparison of supposedly two
anomaly equations fer ?fg" L7 P

As we understand now the very formulation of the problem
was inconsistent and te a large extent associated with a wrong
treatment of the anomaly status. Indeed, the starting presump-
tion that in the operator form é'ﬂ/a F:_'/.’:-",{é::’_,f/éa() /é,,f ffﬂi
does not take place and, as 8 cons2quence, the main stumbling
block is eliminated., The Gell-Mann-iow function appears in the
right-hand side only if the latter is underatood as a matrix
element. On the other hand, the original proof of the theorem
Lmjfnr éi f;f

ie baged on & certain two-limit technique (for a recent dis-

1
actually is the operator statement. Ref. f“:y
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cussion see °O)with two regulator masses, /L/;,. and /z?’ﬁ-
(Mﬁ- 22 My ). Within this technique there are o correcti=
ons of second and higher orders in g;, % « The assertion,
as it stands, relers to the amplitudes with extermal momente
p in the interval ﬁﬁ" 3-"?/" >> ,[47])" , 1.2, it bears the
operator character in our language 2 « In ref. [2?] we have ex-
tended the itwo-limit-technique to supersymmetry and found that

the situation with éf; %

;.

limit sense. The answer, however, did not satisfy us since of

was Jjust the same as with 4}9& f,,,
In other words, is exhausted by one leoop in the two-
most interest is the one-limit regularization (evolution to
pr<e /Y, ) and constructive computation of the 48 v
functions. In passing to the domain /a << ﬁ}, confrontation
with SUSY seemed to be inevitable since calculation of matrix
elements of 5 g and ﬁ zaaemd to, produce different coefii-
cients. It was tacitly assumed that< (> £ > coincides with c-
number cﬁ'—»f while .~ ﬁz)dnen not.

The latter postulate < /= ,,2' ,?:(5:5%#1- horrowed
from ref. Bojaamﬂ as a basis for a no-go thaor&mﬁ‘gruling
out the existence of the anomaly supermultiplet. Needless to
say that the theonmﬁ"ﬁfia invalid since <( ﬁ)# (,5: sz"
An ettempt to circumvent the no-go thaarem!j%thu been under-
taken by Kazakov Pale sian etiaail 1 mei vim o hypothesis
o varas 1189y graw i operater 6 - ohmnges-dn super-
umetric‘ calculation in campnriﬁun with the non-supersymmet-

*) Ref. Bcﬂalan gives some arguments that further evolution to
<< /), , i.e. calculation of the matrix element
does not change the coefficient. Unlike the firat part of the

theorem the arguments are not generally wvalid.
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ric one, and the change is due to an ultraviolet subiraction
constant {the full parallel with the alleged fi/a,ﬂ and f‘,’aﬂ )
A constructive approach has been presented in works [21'2%]
which, in the technical sense, have produced a strong impres-
sion on us and partially stimulated the present investigat-
jon. The authors have performed & direct two-loop calculation

for all relevant operators invoking dimensienal reduciion for

s
7 ve

been found in d=4- € (€20 ). In d=4-¢€ , apart from

7B
regularization. Explicit formulae for c:;,,, and

W‘?, there exists uftherdnpﬁmtnr gauge invariant with respect
tec the external field, /ﬁ'ﬁ . rPere fé‘: is & connection,
and the Aouble caret according to I-H'Ezjdenutes pﬁ:*a.jar:.ticn on
the "additional" < dimensions. The answer for the two-loop E
diagram obtained in [21'2%?1-3611“3 to the operator gj;}ffjmffgff
and not to the operator g f.ﬁ/‘fx,s/‘;’" 7 aprearing in
the one-loop gr_?.ph. Then the authors have used the fact that
in SRDR ?fﬁzz T e

According to the picture developed here the solution of
the snomsly problem does not require introduction of two axial
currents, two operators 45:5? , etc, Moreover, the two cur-
rents considered in ref.zzg]actually differ not by an ultra-
violet constant, but by an infrared singular non-1ocal expres-
sion. As a manifestation, the difference %Jg‘_ f’tj P
ror. 122 S5iia 2ot be weithen in'GheMimit £ — 0

from

In our langusge the situation is easily explainable: in
essence, the two-loop computation of ref. [2%}‘18 a computation
of the ma’rix element of j/z—ﬁ/%f W within the SRDR pro-
cedure, The matrix element is completely saturated in the

infrared domain, As regerds the issue of different schemes for
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the operator 5§¢§};, the main peint is not the distinetion
between 6;5? in the different schemes but the distinction
between the operator and its matrix element, The latter is
fixed unambiguously.

Here it will be in order to explain te which renormalizat-
ion scheme thsvﬁﬁ' functions quoted in eqgs.(1),(2),(9) refer.
Our definition is close to the MOM scheme. Specifically, we
fix the gauge coupling Z/E"" f/}j for some extermal field momen-
tum /:' ~ and express iif%/‘r in terms of the bare
charge and the ultiraviolet cut off. Thus, we get a relation
between ﬁga and M, . No subtractions are made at intermediate
stages, The latter point seems to explain the disagreement
hutween.aur three-loep coefficient in eq.(2) and that found
1[4/,

In conclusion, let us mentien the papar[??uhich presents
two perturbative derivations of eq.(1). One derivation was
based on an infrared regularization in a bex of & finite volu-
me. Although eq.(7) from rif-IszGr the relatien between :9fsﬁf
and Z/o¢, is correct, the motivation used in its derivation
(see eq.(6) inEr}) is literally speaking unjuutii‘iad..

The authors sre grateful to V.Chernysk, D.Eazakov, Y,.Kogan,
VeHovikov, A.Bmilga, V.Sokolov and V,.Zakharov for ugseful dis-

cussiens,
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Pig.1.

Fig.2.

Fig.3.

Pigure Captions

The two-loop contributien to ,_f{,y /&,} in scalar
electrodynarics. The solid line - the ascalar particle
propagator in the external field, wavy line - the photon

propagator.

By cutting off the photon line in Fig.1 we arrive at
the photon polarization operator ./Z“y « We are inte-

rested in the coefficient in front or :‘5:(/4 ;{;/5 in
the operator expansion for _//Z/n y oo

The two-loop comtributioen to Jijﬁﬁiin SQED. The solid
line - the matter superfield propagator in the external
gauge field, the wavy line - the geuge superfield

propagator,
L0
Fig.1 rg.2
G
x 66| /’ g E"
Fig.3
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