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ABSTRACT

We discuss QCD sum rules for upsilon system and

consider information on short-range interaction of &

quarks which follows from available experimental data

on ete —bb. Constraints on » quark mass and i
parameter A are found.

| 1. INTRODUCTION

Predictive power ol various applications of QCD is nowdays
strongly restricted by the fact, that the numerical value of its fun-
damental A parameter remains so far rather poorly known. The
problem is to find an effect, which, at one hand, is purely perturba-
tive, and, at another hand, can be accurately measured. In the pre-
sent work such effect is the Coulomb-type interaction between qu-
arks at sufficiently small distances.

In the limit of very large quark mass quarkonium states are es-
sentially different from common hadrons, because the separation of
quarks in them is much smaller than 1 fm, the typical confinement
length. So, from the first days of QCD it was argued [l] that such
particles are bound essentially by perturbative Coulomb-type forces,
with small and calculable correstions. Unfortunately, the ‘size oi

‘ charmonium and upsilon mesons is not sufliciently small, and non-
perturbative effects are quite significant. This can be seen from the
phenomenological potentials, extracted irom data analysis [2]. In
order to emphasize an ambiguity of the potential at small distances,
we remind that among successful potentials there are those without
any Coulomb-type term at all. Thus, the Coulomb forces among qu-
arks have not been yel clearly observed. 3

In this work we discuss whether the data on eTe —bb indicate
the presence of Coulomb-type potential between & quarks at small
distances and obtain some estimates of its strength. Unlike the pre-
vious works dealing with phenomenological potentials, we do not
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consider spectroscopy of stationary states. Instead, we study some
virtual «wave packets», constructed out of stationary states and be-
ing much more compact than any of them. It is obvious that its pro-
perties are affected by Coulomb forces much stronger, while ambi-
guities related to nonperturbative effects are significantly reduced.

Investigations of such wave packets are the key element of the
so called QCD sum rules, suggested by Shiiman, Vainshtein and
Zakharov [3]. First considerations of upsilon system in this frame-
work were made by Voloshin [4]. Among his conclusions there was
the statement that Coulomb-type potential with «running coupling
constant» (due to asymptotic freedom) is incompatible with experi-
mental data. Voloshin has suggested to «ireeze» the colour coupling
at ag;~0.3.

The technical problem here is to evaluate the propagation ampli-
tude, taking into account both quark-antiquark Coulomb-type inter-
action and nonperturbative vacuum fields. Using the method based
on numerical evaluation of the relevant path integral one of the
authors has attempted such calculations for few models of QCD va-
cuum structure [5], and no contradiction between the data and the
modified Coulomb law has been found. However, in this work the
region of small distances was not studied in much details, in parti-
cular, no attempts to fix the lambda parameter and the b quark
mass were made.

This problem was also addressed by Baier and Pinelis [6, 7]. In
the former work the perturbative part of the Green function was ta-
ken for pure Coulomb force, with the coupling constant taken at so-
me typical distance. In the latter work some more elaborate appro-
ach was suggested. These authors claim that the value of relevant
parameters, m, and A, can be rather accurately fixed. However, as
we show below, these results are obtained in the region where the
perturbative potential used is meaningless. Moreover, the method
for evaluation of the Green function fails by itself in this region.
Thus, our opinion is that these results are not well grounded.

The work is structured as follows. In section 2 we outline the
sum rules used, and in section 3 we describe the method used for
the evaluation of the Green functions, while the properties of poten-
tial under study are considered in section 4. Results of the calcula-
tions and data analysis are discussed in section 5, and our conclusi-
ons are summarized in section 6.

2. SUM RULES

The standard starting point of any sum rules is the dispersion
relation for real and imaginary parts of the polarization operator

Ret1(@)= L { as ‘;“féﬁ},
M(Q%) (qugv—8wq®) = §d*x 6™ K. (x), Q2=—g?>0, (1)

Kuv (x) = (Ol T{q (x) vuq(x) g(0) v+ ¢ (0) }I 0),

where the r.h.s. is known from-experimental data on ete— annihila-
tion into b quarks

ImII(s)= aglete —bb,s) (2)
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(here a=1/137 is the fine structure constant and e;=—1/3 is the b
quark charge). It is traditional to follow ref. [3] and to perform
Borel transformation, but we prefer more transparent possibility
suggested in refs [4, 5] and perform Fourier transformation, retur-
ning us irom momentum to coordinate space

K(t)=K,u(x) L?=tﬂ =

S AT, P T, - 2_.2
_de” o(ete” —bb, s) D(s, x*=1?). (3)

Here 7t is the so called «Euclidean time» (or distance) between two
points at which the external electromagnetic currents affect the
QCD vacuum. The function D(s, x?) is defined as

D(s,x:’)zg d'p e 1 (f_)

@n) p’t+s  4dn\ &2

/2
K, (x*s)"*) (4)

(K, is the modified Bessel function) and it is just the amplitude of
propagation of the particle of mass s'/? from one space-time point
to another. So, the physical meaning of relation (3) is selfevident.
The correlation function K(t) is the main quantity we deal with,
but it is inconvenient to plot directly this functions because due to
obvious reasons it is very strongly varying over the region of t un-
der investigation. Therefore, we introduce its logarithmic derivative




d In K(7)
i e (5)

Note, that this quantity has simple physical meaning, represen-
ting some average energy of the virtual wave packet with the lifeti-
me t. In particular, at large v this quantity tends to the mass of the
upsilon meson. In order to get rid of trivial kinematical contributi-
ons we additionally subtract from (5) the logarithmic derivative of
free quark propagator squared (with the mass m;=4.9 GeV):

FO=E@—[- %ln Kf”*”(r}]. (6)

Thus, this quantity is nonzero only either due to interaction
between quarks, or to deviations of their masses irom this reference
value. Roughly speaking, we have subtracted from the measured
energy of the packet the part, corresponding to quark kinetic
energy.

At this point it is meaningful to consider the magnitude of rela-
tivistic corrections. There are nontrivial effects like the spin forces,
retarding potentials etc. which it is very difficult to take into acco-
unt. Kinematical relativistic effects are much simpler, and we may
evaluate their magnitude by the following simple trick. We may
subtract the logarithmic derivative corresponding either to relativis-
tic free propagators or to its nonrelativistic version. The results are
presented in Fig. 1 by the shaded region and the dashed line, res-
pectively. The conclusion, following from this exercise, is that we
cannot trust nonrelativistic calculations at t less than about
'GeV ™1, :

The parametrization used for resonance and continium structure
is as follows
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where leptonic widths I'; and masses M; of upsilons are taken from
Particle Data [8], while for continuum we use R;=0.31+0.06 [9]
and assume that it starts just from the mass of Y state. In order
to estimate the errors we have simulated spread in data and have
measured the corresponding effect on the correlation function and
its derivative.
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3. METHOD OF CALCULATIONS

We have to calculate the propagation amplitude of two quarks,
coming from one point to another at distance t. One of our main
approximations is the nonrelativistic approach used, assuming that
the interaction is described by some potential V(x). We use well
known Dirac—Feynman representation for the propagation amplitu-
de in terms of path integral

T

o oxtnenf — | e B+ B2 v o))
KT“(x) ey e 5
S Dx[{] exp{ — S! m[ﬂ;_l + m;g]}
= (exp{— % At VX, —%9) 1 iree paths » (7)

where { ... );,...n Means the average over path ensemble of free
(noninteracting) quarks.

Methods for numerical evaluation of the path integrals are usu-
ally based on such Monte-Carlo methods as Metropolis algorithm.
However, we have prefered to generate directly the paths for free
propagation and then average out the factor related with mutual in-

teraction. It was done by means of the following Fourier represen-
tation of the path

x(t)= %]ck sin(“—f—-{) 2 (8)

The coefficients ¢, may be generated. independently with Gaussian
weight. As we show below, this simple method provides suffi{:iently'
accurate results, which was tested e. g. for the case of pure Cou-
lomb forces, for which the analytic results are known. We have also
applyed this method to potentials discussed in literature and have
compared our results with those found in original papers. No signi-
ficant deviations were found. Because this method provides reliable
results for the Green functions in any potential, it is reasonable to
check various approximations used in the previous works. But befo-
re we come to this issue, we outline the region of parameters where
efiects of perturbative potential dominate.




4. POTENTIALS

At small distances one-gluon exchange and the asymptotic free-
dom leads to the following «running coupling» potential

w8 g dalelr)
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The two-loop calculations made in refs [10, 11] relate our para-
meter lambda to more standard definitions, e. g. A=2.63A_ . (We
have disregarded the term log(log(rA)), also appearing in two-loop
approximation, which is not important at distances under considera-
tion.)

[t is tempting to neglect the first log too, and substitute this po-
tential by pure Coulomb with some fixed coupling. However, in spite
of the fact that the deviations from pure Coulomb potential are
slowly varying (see Fig. 2), the Green function depends on the po-
tential exponentially, thus the effect of this log is quite noticeable.

The main problem we address now is to fix the applicability li-
mits of this potential for b quarks. As soon as one approach the
distance r=1/(Ae) (e=2.71928...) the potential (9) has a maxi-
mum, and at larger distances attraction between the quark and the
antiquark changes to repulsion. Obviously, this is an artifact, and
some physical effect should modify the interaction earlier.

Some simple-minded ways to «cure» this expression are shown
in Fig. 2 by dashed lines: (a) correspond to condition, that the for-
ce is equal to standard string tension, while (b) assume for potenti-
al to be constant to the right from the maximum. Theoretically, the
problem is how to take into account the nonperturbative effects. As
noted by Voloshin [4], at small enough distances their effect is es-
sentially non-potential (see below).

Indeed, the potential is meaningful if the typical periods of qu-
ark motion are large compared to correlation time of the nonpertur-
bative fields. If vacuum is mainly populated by small-size vacuum
fluctuations (e. g. the instantons) this approach can be meaningiul.
In the instanton case the potential was calculated in ref. [12] and
substituting here numbers from phenomenological analysis [13] we
have the following corrections to potential

AV(r)=11.2772 S %%D(Q)EB.G- 10272 (G2, ) 0y~ 5.8- 10722,

0~ 1.6 GeV !, (g2 GLy ~ 1{GeV)*. (10)

The sum of (9) and (10) is shown in Fig. 2 by dotted curve.

The question we discuss now is where the ambiguity of the po-
tential is relevant. In Fig. 3 the results of calculations of F(t) for
these potentials are shown. We also have displayed by dot-dashed
curve a non-potential correction found by Voloshin, which corres-
ponds to vacuum model with very long-range nonperturbative field.
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These considerations allow us to {ix the bounds ol the «window»
to be used in our analysis. (Note, that with an increase in lambda
this window disappears.)

Voloshin [5] had used the Green functions corresponding to pu-
re Coulomb potential, with a, being fixed at 0.3. Baier and Pinelis
[6] have used the same Coulomb formulae, but substituting as by
its value corresponding to some typical distance a;=as(r,) with r,
depending on 1. Later [7] they have improved this approximation,
introducing more elaborated definition of ry(t). It corresponds to
approximate potential of the form

V(e Vn{r)+AV{r}=—%%ﬁ(1+'—1‘-‘ﬁ%{%’)}), (12)

where r,(t) is taken from the condition that first order correction in
AV to the Green function vanishes. So, the neglected terms are of
the order (AV)>

In Fig. 4 we plot the Green functions calculated in these appro-
ximations and for the original «running couplings one (9). It is
seen, that at small t the results are consistent, while for
1=1—2 GeV ! deviations are larger than the factor of two. The re-
ason for such bad accuracy is connected with the fact, that, with
large value of A~0.5 GeV used in [7], at such distances one comes
into the strong coupling region, as;~1, where all perturbative expan-
sions are meaningless.




5. RESULTS

We start with consideration of the phenomenological potentials
suggested for charmonium and upsilon systems. As some limiting
cases we have chosen the so called Martin potential [14]

V(r)=—8.064+6.8694. /"' (13)
and Cornell potential [15]

V(}_—-U—@ers (14)

The former does not posess any Coulomb term, while for the latter
it is rather large.

Making comparison with the data one should take into account
the following general fact. The small shiit of the potential V(r) b
some constant 8V is practically undistinguishable from the same
shift in the quark mass 8dmy=—>&V /2. In other terms, we know the
total energy of our virtual packet, but do not know how to split it
into the quark mass and the potential energy.

Experimentally allowed region is shown in Fig. 5 by the shaded
band, while the two curves correspond to potentials (13) and (14).
[t is seen that Martin potential agrees with data, while for Cornell
one a shift.in the quark mass by about 70 MeV (compared to that
indicated in the original work) also leads to good description of the
data. Note however, that the slope of these two curves at small ti-
mes is quite different. Therefore, with better data on ete~ annihila-
tion into beauty above the threshold one may hope to obtain purely
experimental contstraints on the shape of the phenomenological po-
tential at small distances.

The same problem can be considered from another, more theore-
tical side. We know that QCD prescribes the potential to be equal
to «running muph[}g» potential (9) at small distances. Assuming
this, can we [ix the parameter lambda? The fit should be done in
the «window», in which one can neglect both relativistic and non-
perturbative effects, and we have already discussed its bounds
above.

Therefore, we can at least fix the sum of the quark mass and
the potential depth. At Fig. 3 our results for the logarithmic deriva-
tive F(t) for various lambdas are compared with data. Making the
vertical shift (mass adjustment) one can fit the data inside the
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«windows. Accuracy is of the order of 100 MeV, both for data
themselves and for the fit. This fit is then translated to lambda va-
lue, and the final results for the & quark mass and lambda parame-
ter are given in Fig. 6. Our strip ends at large enough lambda (the
dashed region), where the window disappears. The point shown in
this plot is taken from ref. [7]. Let us note, that in refs [6, 7] the
correlator has been fitted to data for the region of t=2—5 GeV~".
For a rather large value of A~0.5 GeV obtained in the iit this regi-
on lies obviously outside the allowed «window». Moreover, as it
was shown above, the analitical approach for correlator developed
in ref. [7] fails in this region as well.

With better data and account for relativistic corrections one may
hope to make better fit and extend the «window», lixing not only
the absolute magnitude of F(r) in it, but its slope too. Only in this
case, one may obtain stronger restrictions on parameters under in-
vestigation, in particular, extract my and lambda separately.

5. CONCLUSIONS

The main result of our investigations of the sum rules for upsi-
lon system is that, unlike for all other known hadrons, there exist a
possibility to consider the wave packet which is neither too large, in
order to be affected by nonperturbative effects, nor too small, so
that nonrelativistic approach is meaningful. Moreover, available ex-
perimental data fix the total energy of such packet with the accu-
racy of the order of 100 MeV.

This observation put important constraint on both the quark
mass and the magnitude of Coulomb-type potential. Unfortunately,
experimental accuracy is insufficient to fix these fundamental para-
meters of strong interaction theory Independently By the same rea-
son, it turns out that such sum rules cannot decrease existing ambi-
guity in the shape of phenomenological potentials at small distan-
ces. Nevertheless, with progress in data quality one may hope to do
this, because the corresponding curves are in fact rather different.
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Fig. 1. The logarithmic derivative of the correlation .iuuc.tiﬂ1r1 Fit) -
——d/drt (log K(t)) minus that for the propagation of two nuqmtcractmg quarks
with the mass my=4.9 GeV. The shaded regions show the experlrncnta[ errors. TI‘{E
dashed curve shows what happens if the quark propagators are taken in nnnre!atal-
vistic approximation. The dotted curve shows what happens if one ignores the contri-

bution of states in continuum energy region.
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Fig. 2. The setrm' potentials between b quarks under consideration. Solid curves
show the «running coupling» potential given by eq. (9), while dashed and dotted
curves correspond to its different redefinition near the infrared pole (see text).
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Fig. 3. The same quantity as in Fig. 1. The curves are calculated for the set of po-

tentials shown in Fig. 2. The dot-dashed curve shows the magnitude of nonpotential

contribution given by eq. (11). The left bound (t~1 GeV~') arises because of relati-

vistic effects and right bounds indicate places, where nonperturbative effects seem to
be dominant.
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Fig. 4. Correlator K(tr) and its logarithmical derivative F(t). Points show our nume- ; : : b ot
rical results, while solid curves are calculated by analitical formula taken from Fig. 5. The same quantity as in Fig. 1. The curves correspond to Martin’s an
refs [6, 7]. Cornell potentials (see text).
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