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G.Casati*, B,V.Chirikov, I.Guarneri**, D,L,Shepelyansky

Institute of Nuclear Physics
630090 Novosibirsk, U S S R

Abstract

A simple numerical reversibility test which proves use-
ful in exposing the chaotic nature of classical dynamical
systems is applied to the quantum model of hydrogen atom in
a microwave field., The remarkable result is that, in spite
of some appearent chaotic features, the quantum motion pro-
ves to be perfectly stable in contrast to the high instabi-
1ity of the classical chaotic motion.,
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sezione di Milano.
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The crucial way in which expunentiai instability of orbits
affects macroscopic reversibility is theoretically well under-
stood. In particular, it implies that non-equilibrium statisti-
cal ensembles evolve in time towards equilibrium. This approach
to equilibrium does in no way contradict the strict reversibi-
1ity of the equations which describe evolution of phase densi-
ties. Indeed, by integrating backwards the Liouville equation,
the initial distribution would eventually be reassembled; ne-
verthelese, should this integration be contimued still further
in the past, an equilibrium distribution would sgain be appro-
ached.

It ie an impressive demonstration of the unwieldy charac-
ter of exponential instability that this reversal of time evo-
lution cannot be carried out in practice on actual computer ex-
periments, where, due to inevitable numerical errors, the memo-
ry of the initial distribution is completely lost after a while,
Thue the numerically computed time evolution will not reproduce
bachwards the history of the system, except for a short time;
afterwards, approach to equilibrium will again show up, and the
initial distribution will be lost forever. Needless to say, the
exactly computed evolution would in any case find its way back
to the orliginal state; therefore, in order to explain irrever-
glble macroscopic behaviour one must resort to some kimd of
coarse graining.

However, this lack of "practical"™ reversibility is a dis-
tinctive mark of true dynamical chaos [1,2]. Its appearance
in computer experiments enambiguously hints at a quite complex
and sensitive nature of orbite.

The question, whether or not chaos persists in quantum
dynamice, has already been the object of many investigations
[3]. To the present state of knowledge, quaatum mechanics pla-
ces severe limitations on the claseical chaotic propertiss of
the motion. In this paper, we'll inquire abc t the existence
of amy "practical™ irreversibility of quantum motion: as a re-
sult, we'll be able to give one more illustration of quantum
suppression of dynamical chaos. '

Numerical experiments on time reversal of quantum evolu-
tion of classically chaotic systems were already described in
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ref.[#] for the so-called "kicked rotator". Evidence was given
there that, whereas the classical rotator is chaotic and prati=
cally irreversible, the gquantum rotator is not, and its evolu-
tion can be traced back to the initial state just by reversing
phases in the Fourier expansion of the wave packet (velocity
reversal). Even more remarkably, this reversibility is substan-
tially unaffected by any small change in the phases before the
reversal. Here we present results of similar numerical experi-
ments on another quantum system subjected to a time periodic
perturbation: the one~dimensional model of a hydrogen atom in

a monochromatic field., Our motivation is not only to give
another, more physical, example of such a reversibility. A

more important point is that the kicked-rotator is a very spe-
cial model in that the quantum motion is known to be always
localized (in momentum space) which implies a pure point quasi-
-energy spectrum and a recurrent quantum evolution. Strictly
speaking, there are values of the external period, both reso-
nant and noneresonant, which give rise to a continuous spec-
trum [5]. However, the localization picture looks fairly gener—
al. Thus one may have some doubts as to whether quantum rever-
8ibility would persist in the quantum systems where the locali-
zation phenomenon is absent. This is just the case for the one-
-dimensional hydrogen atom, where we are faced with a more com-
plex and general situation. In particular, the quasi-energy
spectrum is here known to be continuous, which 1is expecially
obvious in case of delocalization. As is well known, continuity

of the spectrum is a2 necessary feature of classical chaotic mo-
tion.

Let us consider the one-dimensional model of the hydrogen
atom in an extermal monochromatic, linearly polarized, electric
fleld specified by the Hamiltonian

Bl s dp R RSO

= I/ X S(wt) ; x>0 (1)
where £ and <2 are the field strength and frequency in
atomic units.

It ies known that the classical system undergoes a transi-
tion from regular to chaotic motion [6,7] as the strength of
the external field exceeds a critical velue £.=&n’ = i/(-ﬁ'-ﬂ?a):'ﬁj

4

:

b

where Ldb::u?ﬂgand ., is the initial action corresponding to
the principal quantum number of the hydrogen atom., In this re-
gion the motion can be approximately described by a diffusion
in action space obeying the Fokker-Planck-Kolmogorov equation:

? ?
92':,?) i @R(mfw}ﬁ%{m)?}) : (2)

where D':—::.225n‘a’/(wfﬁnﬂj:,zsznsfw*fﬁ and 72 = &t/27 s
the dimensionlesc time measured in the number of field periods,

In the quantun. case another critical field strength was
shown to exist, the gquantum delocalization border [8]: € =
ﬁ&ﬁﬁﬂ@ﬁz'Belnw this value quantum effects lead to a limita-
tion of classical diffusion within a finite interval of n va-
lues., For the field strength above the quantum border E$ the
diffusive excitation becomes unbounded and is again approxima-
tely described by the classical diffusion equation (2).

We performed the reversibility test with parameters and

initial conditions above the delocalization border : n,= 100,

£,=0.08, ¢p= 1.5, In this way we provide the maximal chaos
possible in a quantum system. Similarly to the quantum case
where the single unperturbed state n, = 100 was excited, in
the classical computations, we chose the same parameters and
analogous initial conditions. Namely, we computed 1000 trajec-
tories with the same initial action ng= 100 and phases uniform-
1y distributed within interval [0,27].

In order to numerically simulate the quantum evolution we
made use of a Sturm basis which sllowed us to take into acco=-
unt transitions to, from, and within continuous spectrum. The
details and checks of our numerical technique will be describ-
ed elsewhere [9]. The numerical computations have been done on
CRAY-IXMP,

In Pig., 1 we show the probability distribution on unper-
turbed states after 7 = 60 periods of the microwave field
for both classical and quantum system. As well as the approxi-
mate analitycal solution of tne classical diffusion equation

(2): ? 2 { 2

-(v";‘f*l)/; (7% -1)73
i o 4 (3)
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where y = n/n,, y= n/n,, ?=:2:§i/h;$3. The solution (3) holds
for fh@? << 1 only and corresponds to the boundary condition
( ﬁifanjn=ﬁ =0 at the value n given by c¢lassical numerical
simulations.

The sharp drop of the probability distribution at n = 7 jg
due to the stability of classical motion for n<a [6]. From
Fig. 1 it is seen that, in the average, the quantum behaviour
follows the classical one which, in turn, is in satisfactory
agreement with the solutlon of the diffusion equation. In this
sltuation the classical motion is known to be highly unstable, 1
¥ill be the same true for a similarly looking quantum motion?
To answer this question we applied the revergibility test dim-
cussed above, Namely, at time 2° = 60 we reversed the velociti-
es both in the classical and quantum systems and followed the
evolution for other 60 field periods. The result is shown in
Fig. 2. Now, unlike Fig, 1, we ser a striking difference bet-
ween the classical and gquantum bshaviour. In the former case
there is no sign of reversibility, as expected, due to the
8trong instability of classical motion. Moreover, the new dis-
tribution in Pig. 2 again agrees with the theoretical curve for
¥ = 120 (see also Pig. 3)., To the contrary, the quantum motion
proves to be completely reversible and this implies, however
strange it may seem, that the quantum dynamics is stable even
though it is diffusive. The interesting conclusion can be drawn
from this, that, unlike classical chaotic motion, the past his-

tory of a quantum system can always be recovered from its pre-
gent state.

A different illustration of this reversibility phenomenon
is given in Fig. 3 where the ionization probability is shown as
a function of time 7 . The symmetry of the quantum curve about
the time of reversal 7 = 60 again demonstrates the reversibi-
lity stability of the diffusive quantum motion. In contrast,
the strong inastability of the classical motion leads to & con= :
tinuatlon of the diffusion procese after velocity reversal (ob-
viously except for a short time interval).

¥e emphasize that the reversibility phenomenon does not
depend on the particular initial condition which we used in 1‘
this paper simply as an example.

The reveraibility of the quantum motion is even more spec-
tacular if we notice that a part of the recovered initial state
comes back from the continuum (see Fig. 3). The latter process
is a peculiar kind of coherent recombination.

Thus quantum mechanics provides an interesting example of
a dynamically stable diffusion. Of course this process is by no
means a truly chaotic (r:niom) process [1,2]; nevertheless, it
ie characterized by strong snd important statistical properti-
es, In this connection the interesting question arises whether
gtill stronger statistical properties are necessary at all for
statistical mechanics [10].

Ne notice that a similar situation may happen also for
some classical system, for axample, for linear waves in cavi-
ties so shaped as to behave like chaotic billiards in the ge=~
cmetrical optics 1imit.

This interesting phenomenon of stable diffusion suggests
8 reconsideration of some fundamental problems in the nature
of classical and quantum mechanice., Until recently, classical
mechanics was considered to be perfectly deterministic; howe-
ver, we are now aware that, owing to dynamical chaos, it also
possesses some inherently statistical features. On the other
hand, gquantum mechanice i# still understood as an intrinsical-
ly statistical theory. Yet, on account of the stable character
of "quantum chaos", quantum dynamics must now be acknowledged
a much more deterministic character than classical dynamics,
Of course, the quantum measurement process remains irreversib-
le and imevitably mstatistical, so that we see here an additi-
onal reason to distinguish the measurement process from the un-
distured quantum dynamics. As a matter of fact, the latter is
much more stable and less chaotic than classical dynamics.
However it would ke misleading to think that the discussed sta-
bility of guantum mechanics is only due to the exclusion of me-
agurements., Indeed, it is quite posaible to observe the quan-
tum stability in real laboratory experiments, for example, in
cage of localization in a Hydrogen atom discussed above.
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FIGURE CAPTIONS

Pig. 1 Probability distribution on unperturbed states after
T = 60 periods of the microwave field for the classic-
al (®) and the quantum (< ) system, Here, n,= 100,
o= 1.5, &, = 0,08, Notice a fairly good agreement
between classical and quantum numerical resultis, and
the analytical solution given by eq.(3) (@)

Fig. 2 Probability distribution on unperturbed states at
T = 120 for the case of Fig. 1, after reversal of
velocities at ¥ = 60, Notice that the quantum sys-
tem ({) recovers its initial state to 17 decimal pla-
ces which corresponds to numerical error. On the cont-
rary, the classical motion (®) proceeds according to
the diffusion equation ().

Fig. 3 Ionization probability (excitation above the unpertur-
bed level n = 150) as a function of time 72 for the
case of Fig. 2. Notice the perfect symmetiry of the qu-
antum () curve about the time of reversal T = 60,
comp., with classical motion (@ ).
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