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ABSTRACT

It is shown that the Hartree—Fock method provides

the exact fulfilment of the Shiff theorem (external

electric field shielding at the nucleus). The numerical

calculation of the electric field in TI" ion was carried

out. The shielded field Ewi=E,+ £, (E, is the external

field, E. is the induced field of electrons) has the non-
trivial radial dependence inside the atom.

© Hucruryr sdeprod ¢pusuku CO AH CCCP

In calculation of the atomic polarizabilities and of the oscillator
strengths the problem of an electric field inside the atom arises. It
is well known that at the nucleus of the neutral atom the static
electric field is shielded completely (the Schiff theorem [I]). One
can easy understand this theorem. The homogeneous electric field
does not accelerate the neutral atom. Therefore the field acting on
atom’s nucleus is equal to zero. However if one uses the approxima-
te atomic wave functions the Schiff theorem generally speaking co-
uld be violated.

In the present paper we show that the Hartree—Fock wave fun-
ctions, self-consistent in the external electric field reproduce the shi-
elding of field at the nucleus. For an illustration we have carried
out the numerical calculation of electric field in TI* ion. The radial
dependence of the field turned out to be very complicated. Let us
denote by E, the external field and by E. induced field of electrons.
The total field E,=E,+E. few times changes the sign inside the
atom. The most interesting point is that E, can exceed the external
field E,.

Let us remind how to calculate the field at the nucleus using the
exact atomic wave function. The Hamiltonian of an atom in the ex-
ternal electric field E, has the form

N 2
Ze* e =
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Here @, B are the Dirac matrices, Z is a nucleus charge. N is a
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number of the electrons, —|e| is the electron charge. The Breit inte-
raction can be neglected even in heavy atom (see e. g. ref. [2])
N

Commutator of the total momentum of the electrons P= kEi pr with

the Hamiltonian is given by

N
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Here E.=—le| ¥ f?;fri is the field of the electrons at r=0. For the
&

cigenstate @ of the Hamiltonian H; we have

0= (D I”E;T[ﬁ‘ Hl| ®y =Z(E.y + NE,. (3)

Thus, the total electric field at the nucleus

E‘u(l—g) ~E, 2, (4)

where Z;=Z—N is the charge of an ion. In the neutral atom the
field at the nucleus vanishes.

Let us calculate now the field at the origin in the Hartree—Fock
approximation. We stress that we mean the Hariree—Fock approxi-
mation in the external field. The wave functions |HF) are the ei-
genstates of the Hamiltonian -

Ei(0)=Eq+ (Ee) =

Hyp = E (Ho(re)+lel EyTe) (9)
3. Ze? _ . .
where H{,=up+ﬂm——+‘iﬁ V = Virect + Vexer is the sum of the di-

rect and exchange self- Lonsmtent potentials of the electrons. Thus,
we have

0= (HF]| [P, Hy| | HF) = (HF| [P, Hg] | HF) + ¢(HF| [P, U] |HF) . ' (7)
Here U is the residual Coulomb interaction .

e g Z == V(). (8)
i<k
|

[t easy to show, that the term ([P, U]) in eq. (7) vanishes. Using
the complete set of the eigenstates |n) of the Hamiitonian H,r we
can decompose it in such a way

(HF| [P, U]|HF) = Z((HF| P| n) (n| U| HF) — (HFI Ul n) (nl PIHFY). (9)

Momentum P is a one particle operator. Therefore it has the matrix
elements only to the states with excitation of the one electron. At
the same time the matrix elements of the residual Coulomb interac-
tion U to such states are equal to zero (see e. g. ref. [2]). Thus
matrix element (9) is equal to zero and so we see from eqs (2),
(7) that Hartree—Fock approximation reproduces the exact formula
(4) for the electric field at the origin.

We calculate now in the Hartree—Fock approximation the elect-
ric field at the arbitrary distance from the nucleus. We mean the in-
duced field (the part of field which is proportional to external one).
One can expand Hartree—Fock equation (H,+|e| E F—Ek}ile-—U in
the linear approximation in external field.

Pe=1e+8Pe,

Hobr=exPe, (10)
(H,—ex) S¢e=—le| Eqrpp—8V ¥, (11)
SV =V (%, ¥z - Piy) —V (¥, ¥g s By) - (12)

Here 1, is the solution of Hartree—Fock equation in the field, e is
the solution without field, 8yx and 8V =0Vuirect+8Veren are the cor-
rections to the wave function and potential induced by the field. The
equations (11)—(12) should be solved in seli-consistent way for all
the atomic electrons. For numerical calculations it is convenient to
expand the correction &y in the states with definite angular momen-
tum. If function . has the total angular momentum j and orbital
angular momentum [ then three components in correction 8¢ arise.
First component has j'=j, !’=I[=x1, for the second and third
j'’=jx1, I'=I[=x1, (for j=1/2 there are only two corrections). Thus
in TIT the total number of the radial Dirac equations for the correc-
tions is 56. For example, in AlT the self-consistent solution of the
egs (11), (12) does not cause any problem. However in TIT this is
rather long computation because of large number of corrections.

Let us suppose that we carry out iterations in solving eqs (11),
(12) in such a way. At n-th iteration 6V" is fixed and we define
SyM=08vy, where 8¢ is solution of eq. (11) at SV =58V (M At next ite-
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ration we put SVUTV=V(p+8¢”)—V(¢) in accordance with
eq. (12) and so on. In this case the n-th iteration corresponds to
n-th order of perturbation theory in the basis of HF states without
field. The electric field at the origin as a function of n is shown at
Fig. 1. It is seen that one needs to take into account the configura-
tion mixing in ~20th order of perturbation theory even to get the
correct order of magnitude of the field (E(0)~E,/Z). It needs
~30—35 iterations to get the accuracy ~20% in E(0).

We can accelerate essentially the convergence procedure by

standard way introducing the «weight»: ﬁmb{"}=%(6¢+ﬁ¢(“+']). The

field at r=0 for such procedure is shown at Fig. 1 as well.

The plot of the field E,(r) =E,+ (E.) on the z axis in the TI™ is
shown at Fig. 2. The axis z is directed along the external field E,.
Contrary to the well known case of Debye shielding the field profile
is rather complicated. Most surprising is the deep E,= —3E, at the
radius of ls-electron orbit (r~az/Z). Nevertheless at the r<az/Z
the field approaches the asimptotical value E,=E;/Z.

The above discussion concerns the static field. In the time-depen-
dent field E=E,coswt there is no exact shielding at the nucleus.
However difference from static case is small for small frequency.

Field is the even function of frequency. Therefore
2

GE(r)~%EE(r,m={]) where ®, is the minimal excitation energy of

2
electrons. Only near the resonance 8E ~ o g " i EXE.

We have carried out calculation of the electric field in TI* using
the time-dependent Hartree—Fock method. The plot of field on
z-axis for frequency w=0.207 Ry/k is presented at Fig. 2. This fre-
quency corresponds to 6p,,—7s transition of the external electron
in TIY. For TIt minimal excitation energy is w,=£FE, —E;, so
w?/w2~1/10. In accordance with the estimate deviation of «time-de-
pendent E» curve at Fig. 2 from static one is of the order of 10%.

There is another exact theorem which is valid in frameworks of
time-dependent Hartree—Fock method, namely the gauge invariance
of the transition amplitudes (see e. g. refs [3, 4]). One can easy to
check this statement. Gauge transformation of electromagnetic po-
tentials

) We want to stress that this is not experimental 6p,,—7s energy interval, but in-
terval calculated in frozen core approximation [2].

6

Q}’=q3+iq A'=A—-vV0 (13)

leaves the Hartree—Fock wave function ® be one-determinant:

N

@’ =D exp{ie kzi 0(rs, 1)} - (14)

Therefore if @ is the solution of Hartree—Fock equation in one gau-
ge G(tﬁ(.f%—h*) ®) =0 the transformed function @’ is the soluti-

on of the transformed equation ﬁ(ﬂ.i’(ig—t—-H') @’) =0. The com-
mon phase in eq. (14) does not influence the transition amplitudes

and field of electrons.
Due to the gauge invariance the transition amplitudes calculated

in velocity and length form should be identical. For the linearly po-
larized plane electromagnetic wave (E=Ecos (of—Fk7)) gauge cor-
responding to velocity form looks as follows

p=0, Ez—%sin(mtwﬁﬂ,

T

o @By Gy (15)
L]

In length form
E,Nk

¢=—E,7cos(wi—kF), A=-— (—'@m— cos(wt—kF)=~0,

Hini = I€| EGFCGSWI i

We neglect the corrections ~kr. The gauge (15) can be obtained
from (16) by transformation (13) with

g 245 sin(wt—EF).
®

To control the accuracy we have calculated El-amplitudes for tran-
sitions of an external electron in Tl. The amplitudes in / and v-form
coincide with an accuracy ~107% Of course this disagreement is
not defect of Hartree—Fock, but pure numerical unaccuracy. For
example, for mentioned above 6p,,—7s transition the ratio of cal-
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culated amplitude to experimental one is 1.04 =0.03. We present the
experimental error. So good agreement is accidental because of the-
oretical uncertainty which is due to correlation correction. We re-
mind the reader that in the present paper only Hartree—Fock (or
time-dependent HF) calculations are considered. The correlation
corrections can be taken into account by the method used in
ref. [6]. The results of such calculation of El-amplitudes in TI
would be presented in following paper .

Let us note that equality of amplitudes in / and v-form follows
from eqs (13)—(16) not only for one-photon transition, but for
many-photon transition as well.

The authors are thankful to M.Yu.Kuchiev for helpful discussions.
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Fig. 1. The electric field at the origin in TI* as a function of a number of iteration.
The solid curve corresponds te the calculation without weighting (<«perturbation

|
theory»), the dotted curve—with the weighting (69" = ?(51F—|—ﬁ¢-c“_”}}.
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