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Abairact

Tn the presence of topological monopole-type fluctuations
(merons), the discrete chiral symmetry breaking takes place.
This phenomenon resembles the Rubakov-Callan effect. The con-
nections of this phenomenon with Gribov's ambiguity and with
fermion number fractionization are discussed. It is shown that
the Gribov's vacuum has the nonzero axial number.

1e« In this note we discuss the properties ol well-sapurn-
ted meron-antimeron fluctuation [1]. It is well-knowvm !i] that
the meron configuration has monopole-type component. Uo, the
effect of Rubakov-Callan-type [2,3] (the chiral condensate ap-
pears in the presence of magnetic monopoles) can arise. ideally,
below it will be shown that in the presence of meron's confi-
guration the whole variation of chiral charge (during the life-
-time of meron) is nonzero.

The another interesting property of meron is the follo-
wing one. The meron connects [4} trivial and Gribov's vacua [ 5].
Our main purpose of this note - 1s the analysis of this Gribov
vacuun,.

The example of vacuum fluctuation with the finite action,
which creates the quasi-Gribov state (weakly dependent on time-
variable) is shown at fig. 1. In the following we wili neglect
this nonstationary.

It will be shown that static Gribov vacuum ( 4, - ¢ ,fﬁ
=2 W s .g-‘—‘,rf;/&pfz) ‘f/ /:’oﬂ/ gile) =u ) is not
equlvalent to trivial vacuum field { ﬁg u} in the presence of
fermions'. The consequence (and independent proof) of this is

exigtence of normalizable zero-energy eigenmode in the

4= -2*/) %  field. This means that the soliton 4 inter-
polate between the two vacua., Hence the Gribov states are doub-
ly degenerate and they are marked by chiral charge ¢.- . 5o we
have states with discreie chiral symmetry (£S5 ): /¢ = »7> <>

/@5 =-f> being spontaneo. :ly brokan;r“ﬂf{p;ﬁé}?fﬁ

Let us note, that in one space dimension, when discrete
symmetry is spontaneously broken, there are always sclitons,
the states interpolating between two different vacua [6]. Be-
caugse of spherical symmetry of field 4%  our problem can
be reformulated in the 2=-d language. And analysis of discrete
syastem of vacua can be carried out analogously to that of
ref. [6].

P -
* It is so because # 2?75 when "r" tends to infinity
(Z/#c,t>o°), Hence & is not acceptable as gauge tranaforma-

tion. In other words, 2Z/ does not satisfy boundary condition

( #fer=2(<) =¢C ) in the box, see p. 5.
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is mentioned above the meron-antimeron fluctuation have
finite ~ontribution to fun:tional integral because normalizab-
1le }?fif*mero energy eigenmode is sbsent in this case. Hence,
the phenomenon of spontaneous bresking of discrete &5 , which
ig discovered in one fluctuation is left in full theory.

Tn the p. £ the problem is reformulated into 2-d field
theory with some boundary condition {amalogously to E2]yi-one
"bosonization method [77 is very useful for analysis of this
2=d1 theory. .

Ainother independent approach (point 3) to this problem is
sonnected with the caleculation of value &5 in the piresence of
Gribov's field. This value reduces to the fermion number of
24 roliton. The suitable methods of calculation of this fermi-
on numbers are well-known [8]. The physical scnse of this ap-
proach is partially lost (the role of the monopole-configura-
tions, boundary conditions and so on are not seen). However,
the reducing of the problem to the calculation of fermion num-
ber of corresponding szolitons is very useful. Due to this redu-~
cing we can reformulate the problem in topological language
(point 4), without restriction by spherically-symmetric fields.

2. Before the reformulation of problem in the 2d language,
let us discuss some questions, concerning Buclidean formulati-
on of theory and notations.

For the reformulation of theory in DBuclidean language we
follow paper [9], where in particular if was showvm that there
is no necessity to change fields fwg?):ﬂ;} and @ﬁ - matrix
for this reformulation. We may carry out calculations in #lin-
kovsky space. However after calculation we have to replace

Yo by =<4 , where X, = £ is real valuc. This prescripti n
is not necessary in QCD (in contrast to SUSY-models [9]), but
it is very usgeful.

Taking into account this remark let us consider spherical-
ly-symmetric Witten's Ansatz _10] in the following form:

"-X»i_d = f/"f‘Afu
o] / @i ] ‘I,r; EDI . "j . L W /;;ﬁ:}t (1}
W : fo =Py 7 A i P

&4

Here #'= x'/s  E T VraT ] A (=g 1), . - some functi-
ons of fo , ¢ » In this notation the standart meron's solution

Lf,"u 2 bf’,,-'{fgd}l:“é!e' g,z'*;i;‘uzi{’ takes the form:

5 g g £

TR ,q{ T "5Xf-’tk = Ao 2

oy e, B S B oy =
N ST i e R

In the 4o = 0 gauge, the solution (2) reduces to the gimple

form:

oty e Prm@son B et iy (3)

The topological charge &

% dzﬁi ./‘}"f /w e

ig 1/2 for the configuration (2) and zero for eq. (3) [1].

So, following the papers [2] and take into account S -wave
fermions only, let us write Lagrangian /. for the effective 2d
theory. This Lagrangien describe the spherically symmetric de-
greeg of freedom of QCD with suU(2) gauge group. The claasical
background field is defined by eq. (3), the quantum fluctuati-
ons of vector fields are described by ;fﬁ y 4 = 0,1; the B -
-wave fermions are described by the following form [2]:

Fgrtx'//@’ 4?1 f';fﬂﬁ‘)f“ffn‘{/ } "]-'/‘;y

/ ‘?”i ae e acf
%=Wé/,9§:/£z ~(78) ¢ /

Here «(:) = 1,2 are indexes describing spin and color correspon-
dly,:fﬁ =1, In notation (1), (5) we have:

(5)
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of 24 space:
fbj g, Jovc (o de', % (D)

Note that % (%), % (%) interact with A, % fields

with the &ifferent gipns (this fact was noted in rel, [2]).
Besides that the parameter /73 ‘p/)}: can be underatood as
effective mass of ¥ -~ fields. It is very importdnt that mess
5> changes sign when time-variable (Z=-== =Z=+>" ) does.
This fact leads to the different boundary condition depending
on sign of Z (8). All this leads to the nonzero variation of
value £ §; when ,{;"’ interpolate between the trivial {/f = 0)
and Gribov (4 = -« &9 & ygmsm this.

The boundary condition are connected with the requirement
of absence of singularities near the point ¢ =0 [2]. Since
Rrsd<0) B> -ff£>0], we have:

3 - /‘r_-_‘; G'-JE/J Sk 250 e f_‘: {‘L;Jj
ﬁi/ 2 EHr e F (8)

“E’{‘x}/é:u}/:;:‘ ﬁ""")(-{‘j = . Z( -

ILet us discuss the bose-repiesentation of our 2d theory. The
spinor fields 2, , X, are described by bose-fields ( £ ,§)
[7]« Then, massive term /7 ¥ in Lagrangian is given by:

Cra BArlX CosiTl - / . We may show that the bose=-
representation of ¥ ¥ reverses its sign when time = variable
does:

Zmlf?”}'—“%’mm/«fmf;/ﬂ-ifjf Lt (9)

v-.@ufﬂj{;f’ﬁ—.‘ﬁ{ VR
0f course this fact is connected with the boundary condition
(8)s The other terms in Lagrangian are zero for vacua states.
That's why, only the term /,, (9) determines the vacuum value
L-¥
On the other hand, the baryon and axial current 4d-theory
in the boson-representation have a form:
e ra e = - K I =
P F.oRm : T :
T = gre (Hde 4, *fi/"’s b/ 2 o i e "E”/gfr’f/ (10)

-

i g £ e .
Gt =i (Bfe s Tl b) = it 57 Gen (69, g
¢J- in

The whole variation of axial number the presence of

meron is equal to:

< ln (3070507 [Petir s ) 5 5

i

f?’/ﬁ/?f-f/fﬁw
In the eq. (11) we take into account the finiteness of Coulomb-
—-intersction at » = 0: & /2-0/-¥[¢-c/<(i Besides that, the Lag-
rengian is minimized when &-¢, =0 for Z<¢ end ¥-¥ =
=+y7 for ¥ >0 at tsoo,

=

'r‘%ﬁi/-?y-z’(-f% s Ay

= &

So, the meron with half of unit of topological charge con-
nects trivial vacuum and doubly degenerated ( (- = 1) arivov
state. Hence @_Grihnv = =1 and /(1) condensate < F¥ozd
is nonzero

in order to understand the role of such configurations we
discuss the 2d - theory [11] with analogous property. In ref.
[11] it was shown that <¥&¥)># O for the 2d theory:

2 ey - o e R s £
é 2-;",5_‘,‘, f?’/u:?*ﬂé“ﬁ’/f" *—f/&/ﬁww/ :'-/P,ﬁ:—}"'/j (12)
due to the fluctuations with topological number = 1KH. The

result < ¥ ¥>#C means that the theory (12) is noninvariant
under the Sdffwyland 2¢ (1) chiral transformation. The Lagran-
gian (12) is explicitly noninvarisnt under chiral S ¢ (N). The
/(1) chiral current has an anomalous divergence, o & =

= Sr &0 /v and does not conserve. But despite the anomaly,
a discrete N-fold CS . ¥» expfinrd- %4/ ¥  takes place. This
discrete symmetry is spontaneously broken due to the fluctua-
tions with nonintegral topological number. This phenomenon pro-
vides the nonzero value of < ¥¥> [11].

In the case of QCD the aituation is quite analogous. The
fluctuations with nonintegrel topological charge provide the
spontaneously broken discrete ¥#/{and can saturate the anoma-



ly. Hence, this fluctuations can influence numerical value of
<Pey it S W/MmJ)CS is wlready spontaneously broken.

3. Let.us discuss more general approach to this problem.
By eq. (10) the calculation of fermion number # and axial
number 4} of 4-d theory reduces %o calculation of fermion
numbers #4,, of 2-d theory (6):

L = s b A - A
St G 3O < (13)

— P‘"—"
£ Jor I X

But this problem = the calculation of fermion number in back-
ground field - is well-knowm [12]. The adiabatic approach [13]
to this problem is more useful for our problem. Let us remind,
that adiasbatic computation gives a reliable prediction only
for the fractional part of the fermion number [8, 13]. So, if
the background is zero at s - (£ (¢- --"‘*f—-c?f/ and the back-
ground have the soliton-profile at 2+ > then AF =

= T!}&/;‘ff/—ﬁf-rgf can be calculated in adiabatic approach
and a4 ~ 1is equal to the soliton fermion number.

le have interested in variation of #,s for 2d theory
(6) when we pass from one vacuum ( 7 = - =2 }dsnother one
(7 =+ = ), The analogous model have been discussed in ref.
[13] and the result is:

;r_'_/_f_gr_j,_”
7ot A S el

Here sign is not determined. It is due to double-degeneratirn
of states. In the language of [13] it corresponds to that we
nave two solitons with ﬁ; = 3 '12' We can calculate the value
Ak = -Ak analogously. The minus sign is comnected with
opposite sign of interaction of X, , ¥x with background fields
Byl

T

By eq. (12) we have:

(14)

a4~ :-i'n"i,:.*’-‘if:izb?

[

=in e = - * 7
: 4% a5 B

Hence the result (11) is derived independently.

Above we have diacusﬁeﬂ the meron fluctuation connecting
two vacua. Let us discuss now another problem: what is the va-
lue of axial number of Gribov gtate irrespective of exiatence
of meron. Remind some properties of this state:

-~ 5 aiT= va? e’ 2 = );f;}
;" e 2 B e i i i s
ke 5. Vol + T bl el ”""f"f’}/&ﬁ&)ﬁ (15)
C;(a"""{?/:f? g G?/;‘*:{;yﬂj/::rf
Prom (13), (15), f‘lﬂ we have:
s Z{ i ;”{?Ic’ﬂ v ft ’
Fr.20r PR (- ffﬁ?jr’f/% :Erﬁ/‘“"/j/b‘%fjms)
&=
&%‘:- = ﬁ:; —_{::? = _{_"_2/! " :,-ﬂ:f& =/

Here the values ~7¢ are determined by function "g" (15). In
this calculation both gigns occur. In the language of me-
chanical model [5], fig. 2) it corresponds to both possibili-
ties of mution:j’{é‘:cﬂ/ =77 at 7=E&r? =+, while at
r=bntz- o + 9090, i.e. the perticle can move to any mi-
nimum of potential.

The result (16) indicates that the normalizable zero-
-energy eigenmode in the 4 = field (15) exists. This fact
can be checked manifestly.

T would like to make some remarks concerning the egs. (14),
(16). In our approach all the vacuum states have /~ = Etls =
= 0. So, spontaneous breaking of fermion number can not appear.
This statement is in egreement with rigorous result of ref, [15]
on impossibility of such violations in vector-like theories.

Let us remind that in the fermion number fractionization
phenomenon [8,12] the ground state is doubly degenerate and
cormected with each other by the creating (@ ) and annihila-
ting (a) operators fermion zere energy mode. In our casde we
have analogous connection:

[Go=rl> =4 G [Cr =10, [@o=d> =G4 /05 =11>

s Suorigel (17)
G (7 -3/ -(% % ,sa/



Here ¢, is the operator creating zero energy mode of ,}Q/f‘z/ -
- field; & is the operator amnihilating that of X (ve/ field
(5). The chiral nmumber of opersator QE,I@ is equal to 2 and
fermion number is zero.

Let us note that there is analogous structure of vacuum
in the supersymmetric S # (N) gluodinamic [16]. Namely, in this
theory we have N vacuum states of spontaneously broken chiral
symmetry connected with each other by the discrete chiral rota-
tions: W > @xp i HT AL fi

4. Let us derive the eq. (16) without invoking 24 theory
(6). The problem can be formulated as follows. We have interac-
tion of Dirac fermions with extermal static field 4-:-:'&'*3'5( :

Link, =Bl (Qtr)is r b (070 0)t (18)

What is the value of axial number of ground state of this sys-
tem? In formal mathematical sense analogous problem was solved
some years ago. Namely, the problem of calculation of baryon
number in the skyrmeon model [17-19] remind formally the prob-
lem (18). The differences between these problems are the follo-
wing ones. a) Instead of baryon number B we calculate axial
number ¢ ; b) instead of 7 -meson background V=erpf. #‘ﬁf{“'/f /
interacting with % }{'{a with opposite signs we have gluon
background /= gZxp 4 s/ f”f , interacting equally with ¥ ,
% « In the standart adiabatic approach [B 13] one may calcu-
late ¢ and transform to the form:

2 j&riﬁfg ® 77/@”:?;@//!? ‘.J?//Qﬁc; JZ// (19)
R U= erpflpt) 5 G)

The right -and side of eq. (19) can be recognized as the pro-
perly n. mealized integral expression for Pontryagin number in
73l /=7 « In a Gribov field (15) the right hand side of
(19" 2quals ¥1 because 2 tends to E;,D/-’f.»‘&’:?j when %

* 8 to »® . It is in agreement with eqs (11,14,16).

I would like to make some remarks concerning the analogy
vetween skyrmeon and Gril_:nmr field (15). Remind, that Coulomb
gauge for the field (15) consists in the following: 3‘;_/31""2'47= 0.
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But it is extremum of action J!z’/j’/g}/gi”%‘:’/far the static
solution of effective chiral theory. Hence, the existence of
skyrmenon-goliton and Gribov's solution are equivalent prob-
lems. Then, inequality /5 #£ O for the skyrmenon is equivalent
to statement that ¢4 # 0 for Gribov's state. The existence of
baryon ( 8 = 1) and antybaryon (8 = =1) is equivalent to that

Gribov's gtates are doubly degenerate ( ¢} = n- 1)e

5. The main result is the following one. The well separa-
ted meron-antimeron (tc-p_nlugical charge is 4 13’2) fluctuation
with finite action create the Gribov state. This state ia doub-
ly degenerate and discrete (S /@, =4/> <=/ < rfgapig é’ff"’ -
gpontaneously broken: There are the analogous phenumena in 24
theories [6,11], (12) and in the supersymmetric S % (N) gluo-

dynamic [16].
As mentioned above we interpret Gribov's state as soliton,
having the normalizable zero energy mode,and connecting two wvacua.

Let us note that this phenomenon is possible because
transformation Z/ = €xp fiolt) 77" j J(%=q g(eP/ =27  1is
unacceptaeble as gauge one and -2/.2'4 is non-vacuum soluti-
on in the presence of fermions. In other words, if % - the
solution with boundary condition ¥/x/) =y /xX+</, then & * is
not. It resembles the result of ref. [20] on impossibility to
add fermions to the theory with twisted ( Z//~°./# ¢(2/ ) boun-
dary conditions. It is due to that the gluon-fields are invari-
ant under the center Z (N) of the gauge group S #(N), but
quarks are not invariant under 2 (N).

I would like to thank V.L.Chernyak, E.V.Shuryak, V.V.Soko-
lov and A.I.Vainshtein for useful discussions.

* Let us note that these doubly. degenerate states are needed
to resolve @ - puzzle /[21/
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