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Abs tract

Recursion operator, infinitedimensional group of gene-
ral Backlund transformations, infinitedimensional group oT
symmetry and the compact form of hierarchy of equations for
dispersive long waves equations are found. The corresponiing
infinite family of Hamiltonian structures is congtrucied,

1. Recently A.G.Reyman [1] and B.Kupershmidt [2] shown
that the disperaive long waves equations

Uy = E'(LC +,Z/I—C_fx)x)
— 'é:(;zﬂiﬁf1hégkbf

are integrable by the inverse Bcattaring transform method with
the spectral problem [ 2=

(P+u+477%)p = Agv (2)

Equationa (1) have been studied earlier in [} {] In paper
[2] the hierarchy of equations associated to (1) has been con-
structed and three Hamiltonian structures for this hierarchy
has been found.

In the present paper it is shown that the method of re-
cursion operator which has been developed for some matrix and
differential spectral problems [5—1%] is also applicable to
integro-diffemntial problem (2). Recursion operator for spec-
tral problem (2) is calculated. General form of evolution 8ys-
tems integrable by (2) and corresponding infinitedimensional
abelian group of general Backlund transformations (BTs) and
infinitedimensional abelian symmetry group are found. The in-
tinite family of Hamiltonian structures for equation (1) and
whole hierarchy is constructed. The quasiclassical 1imit of
equation (1) and corresponding hierarchy is discussed, The ge-
neralization of the problem (2) and the general form of cor-
responding integrable equations are also considered.

2. Firstly we represent problem (2) in the matrix form

2 e (2i)r

where F—(@ (p tp_)T. Then we introduce the quantity ‘P

q}d@ﬁ* Fa;ﬁ (F).té' (r'fff,]}f- !j.z) where BF' ppf
= PF . This quantity obeys the equation

;%f%j? = Plo¥_orp. @)

Let us multiply (4) by matrix 5’6‘ 1‘)-: ( ﬂgﬁf) s ﬂ'ef};)ﬂ)
AT A OfA

where Q(A f) and - g(;}, f-') are arbitrary functions entira on ,\
r
5

(1)



Such g matrix B8 gives the general form of matrix commuting
with f= Pm = g; . Taking the trace and integral from the
equation obtained we get

{r(ﬁ[w’f:@—@?f:-w)) :;ﬁf"xr’r((gﬁi 58)95@@ }m

™
where P= P-R, -:_{._E_pu) . There always exist the subspace
A for which 1:hiss of (5) ies equel to zero., As a result

_Td*“’“((%f) Ptxe) - Pst)Be) Plxn))=0 .

The equality (6) is equivalent to the following

dex[a(,ﬁ,f)[(éfﬁ)ﬂ +ulu) Py ] + A

t 6’()519[5 f% ce'e -4 2 +)(1', t(«" ) @,f)]}:.o
where <P‘5=($; g‘;) g '

The equality (7) contains the explicit dependence on A .
This explicit dependence on /\ can be eliminated by the use
of relations

O = -0 - [ (B h) O +(c"DF]

Q=90 —h'® -Gl i
and :
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where
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follows directly from (4).

The operator A is the recursion operator. Using (8) and

tp{'ﬁ){g:): tp{d;}{&) for entire function ‘f’(')i) » we have

Chs.(3) = [dxf ant) 'y b4 X f“-r) (20 f)} e
= [bef 0y 2 atn?)(i} | + gare)( %)]}=c

where

L= h-h +2a!~a, +[hheir, 2ula)d-a!)|(1-exps (4-u")),

{12)

iyt s A (ulw](1- exp¥(a-a)) .

and
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From (11) one cbtain the transformation {Hfﬁ)--a@(;ﬁ f) :
a (At 44 + (A% oA ol 0 e
) /Lh=h ) gﬁf ot

whire Ci(r"lj{-) and g(ﬂ“:f} are arbitrary functions entire on
The transformations (14) form the abelian infinitedimen-
sional Backlund-Calogero group of general Backlund transfor-
mations (BTs) for spectral problem (2)., The construction of
this group is a main aim of the method of recursion operator

[10-13].

Considering the infinitedimensional displacement in time

f"‘ (e 3 M f'-‘ E F'" 2&. —
ta':"t"tf ¢t>0 a—u'ﬁqu‘ r/fhﬁ'f'sgf_ s a=1 ,
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6=1- f‘d)_(}. 1&) we obtain from (14) the evolution system

2¢ (h) -ﬂ.(fﬁ‘)'t)/f) (15)
where §), (L {-) is arbitrary function entire on [f and opera-
tor L"" A" g is

L—f Yp el VP By 12 #16) [
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Formula (15) gives the general form of nonlinear evolution
systems, integrable by the spectral problem (2). The hierarchy
(15) coincides with the hierarchy of eguations found in [2] .
The form (15) of this hierarchy ie more explicit and compact.
The system (1) corresponds to J) = -L[f

The infinitedimensional group (14) with time-independent
a(A?) end € {‘1'4,} is the group of general auto BT for equations
(15) and, ir particular, for system (1). The simplest auto BT
is

a(ulu)+ g{ﬁ ALY o=l +[hh etty (T u,ﬂ({_ exp (- UQJ} i
CLTIR!
a(bih) +6f by +[oh 26l (1~ exp o) | =

where @ and g are arbltrary constants. Formula (17) gives
the spatial part of BT which is universal.

Backlund-Calogero group (14) contains aleso the infinite-
dimensional symmetry group of equations (15) as the subgroup

with 9 = eyp{(A’) where {(Af) 15 an arbitrary entire
funetion. In the infinitesimal form these symmetry itransforms-

tione are (?__:) e {(Lf)['ﬁgq

Using the technique developed in ﬁﬂ—‘i.?] one can show that
equations (15) are Hamiltonian systems with respect to the in-
finite family of Hamiltonian structures. The corresponding fa- l
mily of Poisson brackets is of the form

A

{jﬂ_} _Yd" ;Ef EE (P/[f)( ) W (18)

where tP{L‘F) is arbitrary entire function., Note that QJ,{'I.-*)(
={9 ﬂ) tp{r) .QThree Ha:flﬁiltonian operators which I';aver f;und
i (3 are 62 (§2) B 1(32)= (820 . BB=1(32)~(32) 1

An impurtan'l: feature of the Poissnn brackets (18) is that
the three Hamiltonian operators g: 5 ; gﬂi are pure diffe-
rential operators while for previously k:ﬂc-wn examples only
first Hamiltonian structure (NIS equation, N-waves equation,..)
or firet and second Hamiltonian structures (KdV and Gelfand-Di-
kij equations) are pure differential.

Equations (15) for any JZ{I,*) admit the reductions 4 = O

=y . In hoth cases the hierarchy (15) is reduced to the
Burgers hlerarc:hjr For f&ﬁuctlor ﬁ ={fy the spectral problem
(2) 38 oo = 2(2+ u)d'f = A . Calculating the recursion
operator for tuis reduction one obtains )\9’« 3—[ 0+ u)‘?'p =
_gﬂlrz wher- ?u f 2% . For R~ ) M equatione (15) admit
alsc the reductian U = 9, In this case the hierarchy (15) is
reduced to KdV hierarchy [2].

3. Consider now a quasiclassical limit of equations (15).
Follows to Zakharov [14'] this means the change gf —?EQ.‘: : };—a
- ng with €-20 . As a result we obtain the quasiclassical

1imit of hierarchy (15}
2y
G}L (19)

¥)= (k)

L+ Qua'i red
#e (9!&!:9)9_1 , U

In the infinitesimal fo
are '(?fl)': 'F([n.;r_
Family of equations (19) is Hamiltonian with respect the
infinite family of Hamiltonian structures of the form (18) whe-
re one should put operator Lf‘ instead of operator [,f e
Follows to fl-#:l the quasiclaaaical 1limit of spectral prob-

lem (1) can be obtained by change 9;-& f?x and (){/._, ‘??rP(E'? I)

where

I

(20)

the symmetry transformations for (19)
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As & result one has
)(z*"uf *h ":/\f . (21)

Evolution in time of } is given by equation ﬁdj

? e
,_a%za%/m) (22)

where M(y) is a certain function. In particular for the die.
persiveleds long waves equations

;(f 5 '%Zg.'f“ﬂ')x » /lf C @f&_)x 5 (23)
one has N = %}I-H'J « In virtue of (22) C{)):HLO’I}(J;A)

1s the integral of motion for any /\ . As & result for equati-
ons (19) we have two infinite geries of integrals of mntion

C+ {}.) = -_.fj fd:(ﬁ-{(fx) :l‘_{ r-:U(r)}z_zf'}(xi « Expanding (C;(a) into
asymp:otic series on A C:t(i) =15 C:/‘ one can easily
find the explicit form of the intgﬁals of motien f_': + Cne
can prove that {C:e(?u)f Ct(.‘a')_??, == it for any function .
So all integrals of motion C; are in invelution with respect
Yo any quasiclassical Poisson bracket (18).

Zakharov EIJ,J obtained the system (23) as a quasiclassical
limit nonlinear Schroedinger (NLS) equation, The corresponding
guxiliary problem differs from (21)-(22). But it is easy to
show that this difference is trivial:}(ﬂ}éh) - f?%‘ Au +.A .
In paper fl4] it was also shown that fhe integrals Ci“*%are
in involution with respect the simplest Poisson bracket {’}Fﬂf

4. Spectral problem (2) is equivalent to differential

spectral problem (‘Bz-r- u'Bflf)@_:f’t?S? . This spectral problem
has a natural generalizationm

(Veudeh)y= Apeody ool

where P(I;'H is a scalar function and _Pr;_'_?uf . Nonessentially
modifying the construction of Section 2 one can find the gene=-

ral form of evolution systems integrable by (24). This systems
are of the form

u 5 U +@-3)2(%)\ v
(he)-L12)- 01 oAf) halg) )= 0

8

where ﬂ[{,‘*{—)is an arbitra:;‘y function entire on [,.F » and
J
~ \
L“‘ /{9(”"9"c u)_'}{? I, % (26)
L(MMB_J}%‘BA ,  F(%¢u) | .

System (25) admit the reductions )A=0, ) U= 0 &nd
d’)u’:ﬁ= Bae . Fcr/[ = 0 system (25) is reduced to equation

U - 9-u) L4300 + Q(LG )24 +U-9)%($))= 0.

Under the reduction U = }1 = 0 and for ,ﬂ.: -wa(f;‘f'} aystem (25)
is equivalent to equation
o 2 I) ;
= ) (27)

where &J(Z t"*) is an arbitrary function entire on [, and
= -gz-L’fg"‘ » The hierarchy (27) is representable also in

$e = 9260(_5&})?; - (28)

the form
Equation (28) with U = const is linearizable by the changing

of variable X - ‘;_ given by{)x =f(:c)gf . For (o) = '?.P 3 one
has the equation Q¢ = (£ ")y yx which has the following Ha-

3 -4
miltonian form ©. =9 }E *_fﬁfgg {;5].
5 It is not difficu{t"%u show that the problem (24) by

the gauge transformation (' -» ((.’r: w exp(?; jf(u-)‘_pj)can be

convert into the spectral problem

2! + (el # p R(D) + Qlx)) = 0_[ 58
where y=4d , R =-c(Py+9u) , Q=h-4Ux -FU’.

In the case §£= 1 the general form of evolution aqutations
integrable by (29), their Hamiltonian structures and B[S have
been studied in [i5-18]. So equations (15), BTs (14) and FPois-
son brackets (18) are gauge equivalent to equations, BTs and
Poisson brackets mssociated with the problem (29). Nevertheless
it 18 of interest-to study the problem (2) itself. The results
of section 2 show that the mathod of recursion operator can be
generalized to the general pseudo-differential spectral problem

Z’ﬂt?r(f't e i

E=-m
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