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Abstract

A consisten: analysis has been made of amplification of
an electromagnetic wave during its inieraction with electirons
and poaitrons moving in planar channels of a single crystal.
The main effects: dechanneling, unharmonism in transverse mo-
tion and radiation losses of energy, have been taken into ac-

count.



1. Introduction

As known, generation of coherent radiation using a beam of
relativistic particles is realized in the devices called freae-
electron lasers (FELs) [:1-5}. The FEL action is deacribed in
terms of the classical theory and in s wide range of parameters
one can apply the so-called single-particle theory where an in-
teraction of the changed particles in the beam ie neglected
[2,3]. Because of an interactiorn of the electron beam woving in
a periodic magnetic structure* (undulator) with the radiation
field the beam particles are spatially buncked. The important
feature of the procese 18 the phasa stability which in turn en-
sures the bunching stability, thereby creating the conditions
for generation of coherent beam radiastion. In the region of
low gains & (G&4) an analysis is considerably simplified sin-
ce the phuase shift of the radiation fielda may be neglected
fz,j], which bacomee necessary at G'-?..f 1 [4}. Sometimeas the re-
gion G{{ 1 is described within the framework of quanium theory.

So far a lot FELe have beeri created, which operate in the
range from centimeter waves to visible light (see, e.g. the

special 1ssue [3] ). The wavelength of emitted photons in a

FEL A 1is
T )‘0/2\52 (1.1}

<
where A, 1is the lattice wavelength and )’ = =~ i the
Iorentz factor**., Since the minimum wavelength 4in = magretic

undalator is about one centimeter, a transition to ths short-

g e i o o AR ar

* PFor FEL sction a pariodicity in the beam motion is really
needed,

** The system of units ¢ = 1 is used,



wavelength region is possible only due to an increase of the
particle energy. The difficulty in realizing this way 18 con-
nected with the foliowing dependence of the gstn{;ba ﬁ-%

Of great interest is a search for the objecis where the
particles ars in periodic motion with a amall wavelengta, One
of such possibilities takee place at charged particles chan-
neling in single crystals (see, e.g. [Q]J. The wavelength of
a particle at channeling may be eetimated as follows:

A~ 2_?.'._3.'_{ e = 2Uot (1.2)
e m2
where of ie the characteristic size of the channel and 43(5

is the depth of the potential well of the channel. For instan-
ce, at channeling in the (710) plame in Si (2= 25 eV, of =
0.1 om) we hava.ﬁg ~ 10t ~ tﬁ¢n, at £E = 100 NeV,

In this paper we shall deal with a consistent analysis of
en interaction between the linearly polarized plﬂni electro-
magnatic wave propagating along the single crystal's planes
end the beam of ultrarelativistic particles moving irn the same
planar channels, with the specific features of particle moiion
in a single crysial taken into acccunt. The accepted approach
is eimilar to that applied in Ref.2, The enlution of this prob-
lem gives the basic parameter, ths gaim G,

T"he induced radistica when moving the particles in the
single crystal's channels have been considered in [%—1?]. In
Rnf.{?*ﬁj for the gain use has becn made of an expression da-
rived in an enalysis of a wholly different physical si-
tuation: propagation of signals in medium with inverse popu-
lation. Naturally, in this analysis no allowance has been ma-
dé for the dynamics of an interaction of the beam particles

with the electromagnetic wave and, therefore, such features

4

ae the shape of & speciral 1line and the functional time depen-
dence have not been reproduced. In Ref.[10] this dynamics has
been alrecdy taken inte consideration. The results chtained in
[16] wiil be compared with ours in the Conclusion.

II. b a8 i Soluti

Let uy analyse the induced radiation of ultrarelativistic
particlss moving in the plenar channels of a single crystal.
For the cass of motion in axial channels the problem is much
more complicated from & technical point of view and at the ea-
me time does not be of great interest, as will be seen from
the resuls obtained. lLet the particle beam is incident on the
erystal iu a such way that the momenta of the electroms lie
near the crystallographic planes and interacts with the linear-
1y polerized plane electromagnetic wave propagating along the
same planes; its electric field is perpendicular to these pla-
nes. Our set of coordinates is: the xiaxis is perpendicular to
the planss forming a channel, and the x*axis 1s chosen parallel
te these planes such that the velocity alonmg the !1-&115 is & 2-
S. Just as in {-2] s 1t is canr&niant to use the equations of
moilon in covariant form ( du._q_ F?F ) ard then for our
prohiom we obtain

AWV _ out sing

AS

Zﬁg - __i_V“ S QuP-uZ) Sinp (2.1)
3
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wnera o is the component of the four-veloeity, f‘“-)

A (x*) 1is the inter-planar potential, () = —— efvs B e e
strength of the 2
the electric wave field given by the vaetur—potantial AL -

:;Efvrmgx_]? ’ (P:V(-é 3)4-&.}/ a}a ‘;ie whera i is the

particle density in the beanm, and i (€] ie the mass (char-

ze) of an electron. The latter equation (2.1) followa from the
energy conserwation law and the av&raging sign means the averag-
ing over the wave phase: O ‘:g‘{ﬁ.‘) oy a(y) + The set of equa-
tions (2.1) is valid only in the case when the gzain 18 (R <« {
{for the approach at & 2. 1 see Ref.[fp and mey be solved
here in an adiabatic approximation, i.e. the first three equa-
tions in (2.1) can be solved useuming that () = const.

The integral of motion follows from the first and the me-
cond equations in (2.1):

u"-—u.3+ Vfﬂfﬁ = C:rh.st‘z (2.2)
We shall consider the particle motion in a channel, i.s.
Wee oY Y = e'Ue
G:l ) < el ORES . M L » under the sssumption that

the transverse momentum is small: [Ul| K |U3| , The problem
of particle interaction with the wave field will be solved in
an approximation linear with respect to the field strength of
the wave., The inter-planar potential is convenient to represent

as followsm:

V&Y =V, §) , 5= )

e
where Qd is the inter-planar distance, W-Y m s

and U, 1s the depth of the potential well. With the wave
ebsent, we will write the solution of eqs:(2.1)

xirs) = X(S); uS{'S)z‘)” Wf&):;ﬂ/g)

e ﬁ({igj

With the wave gwichec or, the perturbation of this motion ceccure:

xi)= X+ & yul=y+g (P=@+X (2.4)
411 the increments, g 5 6" ~ and .X , are proportionsl
toe {L . The initial conditions being the following:

?(o} = ?."Ef"}: 9 (o) = X (o] =0
DAL LS 5 af-%frﬂj utlo) , Plo)=y

Let us introduce the quantities the using of which enables the
azprauaions toc be simplified cnnuiderably'
= ¥ @oﬂf V. f (2.6)

It is convenient to change over to the dimanninnleas variables:

¥ s Sef v,
i S 2 e e

Substituting eqs.(2.3), (2.4), (2.6) and (2.7) into the set

(2.7)

(2.1), performing appropriate expansions and collecting the
zéro- and first-order terms with respect to _CL. , we have,
with eq.(2.2) taken into account, the final system of equations

for dimensionless variables: '
MG +§lg) = 0 ;QB=ttreg)8; D 8 g5 ;

@Y =-&fl) PORER Y (4)e~Fip+ E—"g_;’%@f; (2.8)

G
(6) E‘:—E — Qﬂjﬁa/ [§\SJH¢S+J£§X'§JCOSF5)

where the notations are: y -—— and f@} ; we have in-
troduced the gain g

o Q¥T)—-_Q%0) 2(2 - R0))
GTo) ey X e ghg)

(2.9)




Tt 18 remarkable that despite the apparent complexity, the
aet {2,8) is solvable in quadrature for sny inter-planar poten=
timl zf(mf}. Tet us start to solve the set (2.8)., Equation (1)
i2 solved in quadrature and we denote its solution as g(t‘}
This solution is a periodic function of pericd T. Prom eq.(2)
we have
d@)=Yy + QS&H?gzﬁﬂ)dt v + t‘c%’*?(g%‘) +

(2.10)
+ Sotegd (4% <4)

where <(d' 2> :I.: the squared velocity averaged over the motion
period, Eq.(3) in the met (2.8) gives

Sﬂcg‘ ('r.-*y Sth Blr')dT! (2.11)
Eq.(5) ingthn set (2.8) is the most complicated one, To solve
it we will use an srtificial trick : we differentiate aq.{'l}
uvar"ﬂ"g:‘-‘ fg}g multiply both parts of eq.(5) by
and express f’fg)g via g'" Using eqs.(2) and (3) and tak-

ing integral over T of both parts, we have

3§~ 3? ) (2.12)

It is seen from (2 12) that the expression for & (¢Tj may be

found in quadrature, It is useful to introduce a periodic func-
-

tion Z(T) 72

Z(T) = 3;(?) § ot

5 3 > g (‘t"} (2.13)
Here T=T- #5 whers K 1ie the number of the turning
points on the trajectery of a particle in its transverse mo-
tion for the time T . Using this function the solution of eq.
(2.12) may be presented in the form, taking eq.(2.11) into ac-

count:

g(‘r) = = Saf.s Sih @/(SJ_W—(S =)

g

(2.14)

Ti— W

vhar o
V v”ri%f't-} = #v) 5(&)-3{5} 3{1') +9a~5) g'(SJé(' (v (2.15)

The aa‘lmmﬂ f*f eg.{4) in the system (2.8) is

L)(({‘tj = Sds (3} 3 (s) {2,16)
Substitating a,,.u- solutions of eqs.{1)~(5) into eq.(6) and mak-
ing an everaging over YV’ we have for the gain

f‘__{; oL {g rBW(’sxr)

AT

cos(Bce) - geg) s +

(2.17)

+2¢%:..a{f‘c S 350["5 g(s}w_{.; )S’ih(¢(£} ﬂ(r))}

where G & da
5 Qafgl

The expression (2.17) solves, in zenéral form, the problem om

(2.18)

an amplification of the plane slsciromagnetic wave with linear
polarization as 8 result of its interaction with the charged
particles woving in ths single cryetal's planar channels.

srae Motion

In the region of comparatively low emergies (tens and humnd-
reds of MeV) the parameter Q@ = ﬂ{ <4 (in the (110) plane,
at room temperature we have _V; ~ 1074 for S1i and diuond,Ya
2.10~% for ce snd'D:*:& 5-10"% for W). Then the transverse
motion of the particles in the channsal is non-relativistic:
(u“}ﬂ.'g X4 . A8 we gshall see below, it is the energy ran-
ge which is of especial interest from the point of view of ra-
diation gemeration, By virtue of the said, in what follows we
confine curselves to an analysis of the case when P« {. Bat
the "time™ T (dﬁt-minad by the number of particle oscilla-



tions in the channel) is assumed to be large ac that et 2 T

In the accepted approximation, in formula (2,17! ore can
put, according tc formuls (2.10),

d{r} = Q{(s} —1 C“{“‘- 5) f (3.1)

Since we analyse the aitunation wher the particle ogcilis-
te many times in the channel, the integral (2.17} ies comveni-
ent t¢ reduceé to that over period and summation ove= the num-
ber of oscillations, regarding for the fasct that the funciiomns
g@«‘.‘) and Z (,T:} , entering into -WZ:F*T), are periodic. There
is no difficulty in performeing thio summation using an ele-

mentary formmla .

n=-1l Sin — ®, -

Z cos (p+otm)=  —, cos [P+ 5 (n-1))] (3.2)
pa= 0 Sth 3 :

The integrale entering into eq.(2.17) are "large™ only if the
resonance condition

P i:m-—-f- -(\';': K= I 2'3.-- Jédi & g,

é— - 'T' oy ) g ]
is satisfied, After simple calculations using egs. (3.1)-(3.3),

for the gain for the "time”™ T we obtain

: . % d’ |
) == Ge I @) - Lo R
Ihﬂﬂﬂ'?{)-"—" sm}éldatsminaﬂ the shaps of the spectral line
and z, and -‘_, are the Fourier-harmonics:

sl
& b r
o  2xs) < _{ - Le47053.5)
Zx -q-;j"ffn 2(s) exp K“' ;‘):gg*wafdsg&)exﬁ( T’ﬁ?’(
The quagtit'; Ga is given by formmla (2.18).
Accnrding to formmlae (2.6) and (3.3), for the resonance

frequency wae have o2xF
Vy, = 268k o (3.6)

In addition, in formula (3.4) an averaging over thz, coordinate
(2
of the point of incidence of the particle {J(d::x )/d ) should

I0

te verformed, Changing g(ﬂ} we have different values of the

transverse snergy (see sq.(2.8, (1)):

£, = ?_"ii,. ly) = ‘.}ﬂ)—r £(%0) (3.7

Sy

and, geuerslly speaking, different periods of moticm T.

Por aversging it is neceasary to take an integral over
3{@?;.& the area whers &; < 1)"2; this corresponds to the con-
4iticn of presence of the particle in the channels (see eq.
(2.3)3:

a s 2 4
3- £ Jdsigga) , L2+5@)=3 (3.0
the particular case of an oscillator potential f@}-
3 , we find Z)= ‘s;hi/‘?{a} . In this case there is on-
ly one harmonic A = 7. T = 2§ and for the reasonance fre-
quency (3.6) we obtain ‘.’Ja:"' 25 Y . After the simple calcu-
lation we find the gain for an oecillator after the averaging

over the coordinates of the point of incidence:

Gnsz-gﬂ*gzﬁ_?lff_j?(a) f—ﬁf??ﬂ})ﬁ{%)ﬁé‘/ (3.9)

Fote that only in the cama of an oscillator potential the
averaging over tha coordinates of the point of incidence does
not affeat the spectral curve.

w, I

{1

n
/
£

IV, Conclusion

We proceed now to the discussion of the results obtained,
The first term in the expresaion for the gain (3.4) always
deacribes the absorption. It is easy to ses that this expres-
glon is an radiation absorption coefficient by the system of
relativiatic oscillators. The structure of the second term 1is
completely similar to the gain G for a FEL and can be com-
pared with thies G if onme takes into account the similarity of

2a

‘particle trajectories (see Ref.[2]), nmllw(“’o)F: )

II



(Vn)F::"QOJ i . Note that vmder typicsl FEL condtitlons

%a) EMi , then the second term in ths sxpreseicu for G
dmma: and the first term ia wsually omitted, Howswver, in
the energy range under discuseion the first term muy be rough-
1y equal to the second and it must be taken imte accoum?, IS
is seen from the expreseioms (3.4) and (3.8) that thy emolifi-
cation of the wave is possible asctuslly omly if ¢T3 1, cther-
wise the amplification can occur oxly im a very nersor vand of
the spectral nnrnﬁ' -ﬁ«i where an additional suppreseion of
G takes place and wheres it is readily smesred by {bhe spread
over the periods of motion. Ome can amplify the wave omly if
the condition a—}"é. RE)> O 14 satisfied and the smpiifica-
tion muet exceed the sbsorption.

There are a number of conditioms whick llmii comeiderab-
1y the possibilities of selecting the perameters for thie prob-
lem. Let us dwell upon these conditione.

We start with an anslysis of the dechamneling effects.
Within the energy range under analysies the basic effact is mui-
tiple scattering of particles. Under the actiom of tuls mecha
nism the particles scouire an addlitional transverse momeniul.
And, sas a result, they leave the chiannel after pasaing the
length é . If the scettering is assumed %o cecur in the @ome
way as in amorphous matter, then the lemgth of £ ‘s (Bef,

EI‘I‘] )t

@ bisad

g &%

il
Rfa i F

/fr

where ol = 1/137 and L, is the radiation length in an ap-
propriate amorphous mattsr. This estimation is, eir? etLy Hpesk-
ing, overestimated for electrons and understimsted for posii-

e~ pat ,
rons ( ﬁ? 3 < f of Js I.f allowance ‘& made for the fact Lhat
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during the intersction with radiation the basiec rols is played
by the particles whose oscillatien amplitude is comparable with
the sizes of the channel, then the above estimation sceme to bde

rather eztisfectory. The pumater o Tof , corresponding to 1‘5.

is 3/
Qrﬂd ~ V { Z
9? ol

Tt is obvious that T < T » To reach the region where Ry~L 5

S (4.2)

it is necessary that the enmergy be fairly high. The estimates
show that for the usually used cryetals (diamond, Si Ge, the
{110) plage) we have g'??ufviat & = 200 MgV, For this energy
for the (110) plane @ 2= 0,04 in diamond andsi and§20.08 in
Ga. Remind that at the indicated eaergy ome can use the clag~
sical theory with large margin.

Another effect limiting T is the dependence of the peri-
od T on the transvarse energy. Sote once more that the gquantity
3' entering igto the sxpression for the speciral curve in eq.
(3.4) 18 3=t( 557 ) (soe 00.(3,3)). In order that the am-
plification effect occur, the increment of the quactity c‘;.‘ -
must e A2 & T~ , et averaging over the point of incidence
3({3) : the latter can be representad as the averaging over the

period T, This imposes the limitations on a possible spread

with respect to the periods of motion:

L A O (4.3)
T : 3 Chae= Y

[

(N - is the rumber of
F‘?bf .9&4_ and TP 1. The effect ie possible in it only for

oscillations). We discuss the region

the potentiale close to the oscillator omee: in additicn, as

follows from (4.3) the quantity T cannct be very large. The
inequslity (4.3) excludes, in practice, the utilization of pla=-
nar channeling, of electrons because AT ~T  for them. Since

I3



tha criterion (4.3) follows, in fact, from the coherency con=-
dition, it should be satisfied also for induced radiation et
axial channeling. Thie excludes actually the use of the axial
chenueling of elecirons and positrons since at this channeling
AT~T . It is worth noting that in Ref.[1q the induced radis-
tion has been considered at axisl channeling under tne assump—
tion that the particles move &long the circular trajectories
of given radius, Their weight in the set of trajectories has,
however, the set of measure zera so that this analysis is not
guitable for the analysis of a realistic Eituation. For the
planar channeiing of positrons the potentials are close 1o

the oscillator ones. Unfortunately, even in this case, under
the moat favourable cnnditio::‘a ﬂ%-r & 0,05, thenT . 100
{for the patantialgféf)- K@ (g)-—g/ see Ref.[12[).

We would like to dwell upon one more restriction due to
the energy spread in the incident beam and to the energy los-
ses during its passege through a single crystal. Im the ener-
gy range unda> consideration the radiation losses dominate.

Then, having suostituted the quantitivs entering into $‘ (3.3),

wa find ﬁr j_
s Bhaananc (4.4)
¥ T -
Wheace, we have _ﬁ/r,ﬁi ] A
¢ =« (ngsz d_}e-ffzj (4.5)

For 81, eq.(4.5) gives T « 103, i.,e, the restriction is
weaker then that discussed above. It is seen from eq.(4.4) that
the requirement for the monochrcwaticity of the incident beam
ig roiher waak, Note that the width of tie speciral curve fol-
lows also from the analysis of expresaion for G (eq.(3.3), cf.

Ref, 2-4 ) and we hava ‘5% ~ !{-é -

f

14
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The analysis made above enables one to estimate the magni-
tudes of the smplification effects. After the substitution of
N = 10% 3, © =100, of =103 cm and §° = 400 in-
to formulas (3.8) we find that G = 10°1=, Thus, at even 80
high particle demsity of the electron beam the wave gain turns
out to be negligibly low. The exiremely high requiremente for
the particle density in the beam are, to & imown degree, avident
and are due to a microscopically small amplitude cf particle os-
cillations in the channei. The rigid limitations on the magnitu-
de of © are much less evident, meanwhile this does not allow
one to comrensate the smallnese of the quaetitr f;i by a high
<=  (we would have & ~ 1 at 2 ~ 108).

In the present paper a consistent analysis has been made of
the amplification of anm electiromagnetic wave by electrons and
positrons moving in the planar channels ol a slngls erystal for
an arbitrary shape of the inter-planar potential. In our araly-
aie the main effecie occurring during the paseage ot fast char-
ged particles through aligned aingle cryotals have been taken
jnto ronmsideration. The conclusion we have drawn 1s pessimistic
since thevs is a large gap between the denasities of the particls
beams with an energy of hundreds of NMeV, generated by modern ac-
celeratere, and the densities needed for the FEL action on elsc-
trong and positrons moving in the chamnels of a single crystal.
The pessibiiity of increasing the gain at the expense of a
growth of the number of oscillations in the channel (7 ), has
proved to be rigidly restricted by the crystaliine effects.
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