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ABSTRACT
In the evolution of an N-level system interacting with
an external noise there is in general a specific phase
transition from damped oscillations to an aperiodic
motion when the intensity of the external noise increa-
ses. But in some cases the region of aperiodic motion
can be absent. On tne other hand, several such regi-
ons can exist. Under seme conditions a strong interac-
tion with environment can stabilize a nonstationary
quantum state of the system.
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In Refs [1—8] the influence of an external noise on quantum
beats in a two-level system was considered. The motion of a partic-
le in a double bottomed potential well was studied there for the si-
tuation when the noise cannot knock the particle over the barrier.
This simple model is interesting since it describes such various
physical phenomena as the oscillations of optical activity of molecu-
les, the behaviour of the magnetic flux in a superconducting ring
with a Josephson junction and of a system of vortices in a droplet
of superfluid helium,

A curious peculiarity of the mentioned model is the qualitative
change of the character of the motion when the noise intensity in-
creases—irom damped oscillations to an aperiodic motion. This
change can be considered as a specific phase transition [5—7]. It is
important here that in the oscillating regime the relaxation of a sta-
te localized at t=0 in one of the wells is accelerated with the incre-
ase of the noise intensity, but in the aperiodic regime the relaxation
becomes slower as the noise increases. In other words, an extremely
strong noise stabilizes such a state. The existence of the mentioned
phase transition in this situation leads to the hypothesis [7] that it
is impossible in principle to observe quantum-mechanical beats in a
system strongly interacting with its environment. Another aspect of
the same problem is the stabilization of a quantum state by measu-
rements [3,4,8].

The natural question arises: to what extent are these conclusions
independent of the specific structure of the quantum system and of
nature of the noise. The question is especially appropriate since even
for a two-level system one can choose the interaction with environ-
ment in such a way that the character of the relaxation does not
change qualitatively at any intensity of the noise (see below).

Let us consider an N-level quantum system interacting with its
environment. It is convenient for us to present the density matrix of
the system as

o= 7,}(: + 2P (1)

Here % are N®—1 traceless Hermitean matrices of the dimension

NxN which are the generators of the SU(N) group. Evidently N—1
parameters P;, the components of «the polarization vector», determi-
ne completely the density matrix of the N-level system. In terms of
the same matrices A one can expand both the Hamiltonian of the
considered quantum system
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H=QI + 2Qi (2)
and its inte;’action with a medium

Vt)y =V () I+ ZVi(t) . (3)
From the equatic:n io=[H+ V(t),0] we find

P; =E fie [Qe+ Vi(t) ] P; (4)

Here f.—k; are the structure constants of the SU(N) group:
[Mhe] = i Zfiaj &
!

They are antisymmetric in any pair of the indices.

As to the functions V.(f), we shall assume that they are ran-
dom pulses, both their duration t and the intervals between them
being much smaller than the characteristic periods Q@' of the un-
perturbed motion. It allows one to neglect the free motion of the
system when averaging over the interaction with the medium. The
formal solution of the eq. (4) for the intervals < Q™' can be writ-

ten as
al| In- I

o
Pity= BNdt Nty Yara B,V WIE, V)Xo
n=00 0 0 k. |

(5
V,, (t) P,.(0) . )
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Assume further that the characteristic amplitude V of the pulses sa-
tisfies the condition Vt« 1. One can check that it allows to restrict,
when averaging the expression (5) over the pulses, to the pair cor-
relators

It can be easily shown then that for the intervals t< Q' the avera-
ge value of the polarization vector p;(f) = (P:(f)) satisfies the equa-

tion p; = — Xn; p; where

' 7
Nij = 2 rimk,fjnkvmn- (7)

k.m.n
For arbitrary time intervals one should restore the term with Q, co-
ming after it to the equation

pi= 2(wii—nij) pj, Wiy = szmﬁk- (8)

]I- -

The matrix w; is antisymmetric, and n; as well as v, is symmetric
and nonnegative.

The evolution of the polarization vector p; depends both on the

quantitative relation between the matrices w; and M, and on the de-
4

tailed properties of the latter. In the limit n<w the motion of the
(N®*—1)-dimensional vector p; is sufficiently evident: it rotates with
slowly decreasing absolute magnitude.

In the general case the decrements v« of the system (8) are ei-
genvalues of the matrix n;—w;. Consider the limit n>>w. It is con-
venient here to diagonalize the matrix n by means of an orthogonal
transformation. It leaves the matrix w;; antisymmetric. If the noise
Is completely arbitrary, the most natural situation corresponds to
nondegenerate and nonvanishing eigenvalues n; of the dissipative
matrix. In this case we find by means of elementary perturbation
theory

2
?k:nk_z Whn

n Ne—"Ma

(we retain here the previous notation ® for the transformed mat-
rix). All the terms in the expansion (9) are real. On the other hand.
as it was mentioned above, at n—>0 the eigenvalues y become imagi-
nary. It means that the series (9) in w has a finite radius of con-
vergence. In other words, at some finite value of w/n the qualitative
change in the character of the evolution of the system takes place,
from an aperiodic motion to damped oscillations. Therefore, in the
general case of an N-level system the same phase transition takes
place as in the two-level example considered in Refs [5—7].

The case when some eigenvalues 1 of the matrix 1, are degene-
rate, requires a special consideration. In the lowest order in @ we
restrict to the subspace of degenerate eigenvectors. We perform in it
the unitary transformation diagonalizing the corresponding submat-
rix w. Its eigenvalues are evidently imaginary. The submatrix M pro-
portional to the unit one does not change under this transformation.
Therefore, the eigenvalues y, degenerate in the zeroth approximation
in @ are in the first order

Ye="1—iwg. (10)

If all eigenvalues of the matrix n are degenerate, formula (10) is

- evidently the exact solution of the problem, and there is no phase

transition. In a more general case in the next orders of perturbation
theory in @ an imaginary part appears in other eigenvalues as well,
due to the term —iw, in (10). Therefore, damped oscillations take
place here not only at large frequencies, but also at small ones. As
to the intermediate region, damped oscillations may survive here as
well, so that there is no phase transition. However, it is possible
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that the regions ol aperiodic motion arise here. Then the number of
phase transitions is even. Moreover, even in the nondegenerate case
at intermediate frequencies not one but several transitions between
periodic and aperiodic regimes are possible.

As an illustration to this assertions we shall use a two-level
system with somewhat more general than in Refs [1—8] interaction

with a medium. We take H=%mi}‘x, V(1) =—%~[V.{f]nx—|— Vi(t)a.]. Then
the secular equation is 1

Ry 0 Nia
U n”+"35_1‘-’ — =U {:]]J

Mia w Nas—Y
Nonnegativity of the matrix n; means that
0,20, 05,20, 0 -y, =0l

In the special case V,(f{) =0, considered in the Rels [l1—38],
N, =1, =0 and along with y=v,, we get

v [ = Vit —407] (12)

(Although the eigenvalues of the matrix n are doubly degenerate, y
has no imaginary part at small w, since the matrix elements w; in
the subspace of degenerate eigenvectors vanish.) From the expressi-

on (12) the phase transition at =%n” is seen.

On the other hand, il V,({) =0, then n, =n, =0 and the roots of
eq. (11) look as follows:

Y0=0, ¥+ =10, Tio.

The absence of the phase transition is evident.

Consider now the eq. (11) without additional simplifications. It
is a cubic equation for y and the character of its roots depends on
the sign of the discriminant

D::-Q-I?[Du(ﬂ_)+ D, (mao’+ D,(n)w + e®]. (13)

Here

D
Dy(n)=— T(ﬂ I lrlaa—"’l?a)?[("hj —N3a)’ +4M75]1 <0

In the nondegenerate case 7311n33—“193}0= D,<0 and D is negative
at small o together with D,. It means that here all the roots of the

secular equation are real and the motion is aperiodic. On the other
&

hand at large w D=;}—?‘;>f], two roots are complex and damped os-

cillations take place, Therefore, at intermediate frequencies, where
D =0, the phase transition takes place. It can be easily seen that at
D,<0 or D,>0, D,>0 there is only one such transition (see curves
a,b, at Fig. 1). However, if D, >0, D,<0, then under some relations
among D; three phase transitions, i. e. two regions of aperiodic mo-
tion, are possible (see Fig. 2).

In the degenerate case n,m,—n’ =0 the coefficient D;=0 and
Dy=n, (n, —|—T]33)2:::»U‘ [t means that at small o there are two com-
plex roots y.. Ii n, <8n,, the regime ofi oscillations exists at all o
(see curve a at Fig. 3) . In the opposite case n, >8n,, at intermedi-
ate frequencies there is a region of aperiodic motion (curve b at
Fig. 3), i. e., the phase transition takes place twice. In a remarkable
way, the aperiodic regime arises here not at the most strong dam-
ping.

[t is seen from the expression (12) that at n > one oi the
decrements y=~w?/v,, is anomalously small and falls off with the
increase of w,,. It means that in the used representation for the
problem of a double bottomed potential well, when the states locali-
zed in the left or right well are taken as basis ones, such a state is
stabilized by a noise that does not knock the particle over the barri-
er [1—8]. This state is an eigenstate for the noise operator o.. A
natural generalization on the N-level case is the problem of the re-
laxation of the eigenstate of the operator A, under the noise
V. (t) 4. In this case the dissipation matrix (7) looks as

Nij = Ef ik f ik Uyn

Its elements turn to zero if at least one of the indices i or j equals
to N or refers to the matrix commuting with & . The total number
of commuting A-matrices is N— 1. Therefore, the matrix n; may be
presented in a box form:



e
=]

k N 0 N(N—1)
) (14)
a 0 0 (N—1)
N(N—1) N—1

We reduce again the upper left box in (14) by orthogonal tran-
sformation to the diagonal form n:8. (here and below k£, (=1.2,.. ..
NN—1)). In the matrix w; we reduce the right lower box
wep (@,p=12,..., N—l=n) to the diagonal form iw.8, by means of
an unitary transformation U.s. Then the corresponding eigenvalues
y are

] ]
o =—i0a+ 2 —lw, U "+ -
¥ b, W oy oo

Therefore, in this, more general, case as well the decrement is small
and falls off as n, increases.

Let us choose as an initial state of the system the eigenstate of
the interaction operator A . It means that the initial density matrix
is expanded only in the matrices A, that can be diagonalized toget-
her with 4,. The corresponding polarization vector p, lies in the
subspace a. From the expression (15) it follows that it precesses in
this subspace, its absolute magnitude slowly damping.

The considered case corresponds to the rank N2 —N of the mat-
rix n; when there is only one independent correlator. If the zero ei-
genvalue of this matrix is unique, i.e., its rank is N*—2, slow dam-
ping of the corresponding mode follows trivially from the general
formula (9).

The obtained result, stabilization by a strong external action of
the state that is the eigenstate of the corresponding operator, is qui-
te natural from the physical point of view. The random nature of
the action is of no special importance here.
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