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ABSTRACT

A new type of symmetry (O(5)-invariance with

strongly nonlinear dynamics) is proposed to describe

adiabatic collective excitations in even-even soft sphe-

rical nuclei. Predictions for physical quantities are ma-

de; when compared with experimental data they lead
to a fairly good agdeement.
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Collective spectra of low-lying excited states in complex atomic
nuclei are not completely understood [l]. Magic nuclei (those with
occupied nucleon shells) have a stable spherical shape and multipo-
le vibrations around it with small amplitudes and rather high frequ-
encies (w=1.5—2 MeV). Ground states of all even-even nuclei have
quantum numbers J/* =07 of the angular momentum J and parity n.
This is connected with the condensate of Cooper pairs due to strong
superconducting pair correlations and does not imply the sphericity
of the nuclear shape. It is well known that the interaction between
valence nucleons and the polarization of the magic core lead to the
instability of the spherical shape. As a result, nuclei with many nuc-
leons in partially occupied outer shells have a stable quadrupole de-
formation. The pattern of the low-lying spectrum of a well deformed
nucleus is again relatively simple being that of distinctly separated
rotational bands built on various intrinsic configurations. The most
difficult problem is that of description of pretransitional soft nuclei
which are intermediate between magic and deformed ones. For defi-
niteness, below we limit ourselves to even-even nuclei.

Experimental data manifest clearly [2] the collective character
of low-lying states in nuclei under consideration. Almost all obser-
ved levels can be regularly classified according to the multiplet
scheme corresponding to irreducible reprsentations of the SU(5)
group. This group is generated by the set of operators d'd, where
djand d, are operators of creation and annihilation of a quadrupo-
le quantum with the angular momentum [=2 and its projection p.
In contrast to magic or near-magic nuclei, typical energy intervals
o between the multiplets are small here (0~0.5 MeV) compared
with breaking energies 2E~2 MeV of Cooper pairs. Among the
electric quadrupole transitions between multiplets one can find sig-

3



nificantly enhanced ones their probabilities being one or (wo orders
of magnitude higher than it follows from single-particle estimates.

Thus, this part of spectrum is dominated by the soft quadrupole
collective mode. At small ®, the vibration amplitude is large
(~1/yw) so that other (noncollective) degrees of ireedom become
aware of the slowly changing field of quadrupole symmetry. There-
fore nonlinear phenomena are essential resulting in the effective
strong anharmonicity. Along with the virtual deformation, the possi-
bility of the collective rotation around the axis perpendicular to that
of quadrupole motion appears. This is the origin of the difficulties of
the development of the consistent microscopic theory of soft spheri-
cal nuclei. '

Phenomenological approaches to the problem can be divided into
two types. The classical Bohr-Mottelson description [I] assumes
that the collective Hamiltonian . exists covering the whole subspa-
ce of states generated by the quadrupole collective motion. This Ha-
miltonian can be expressed in terms of coordinates
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of quadrupole phonons. Since the motion is adiabatic one should ex-

pect that the terms of higher order with respect to m, are small so
that
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where the potential energy U(a) and the inertial tensor B ,(a) de-
pend on the coordinates a, only. The general Hamiltonian (1) con-
tains seven independent tensor structures which are arbitrary functi-
ons of the rotational invariants (a®),, and (a®),. Here (...),,, me-
ans the vector coupling to the total angular momentum L with the
projection M. Actually one truncates in some way the expansions of
U(a) and H'”l,(a) over these invariants. Then it is necessary to dia-
ogonalize the Hamiltonian containing many fitted parameters [3].
Since the anhgrmonicity is not weak, the number N,= Xd}d, of ba-
1
re quanta is not conserved.

In the more recent alternative approaches (the interacting boson
approximation, IBA [4, 5]) bosons are identified with the images of
the fermion pairs in the limited subspace of collective states. Then
the total boson number N, is determined uniquely by the nucleon
number in the outer shells and should be conserved. In practical
calculations one takes into account usually s- and d-bosons with the
angular momentum [=0 and /=2 respectively. At fixed N, =N+ Ny
such a model corresponds to the SU(6) group. The effective non-
conservation of N, arises due to the excitation s—d of the conden-
sate s-bosons into the d-state.

The phenomenological schemes of both types give in general the
reasonable description of the data. But the abundance of free para-
meters together with the lack of the selection principles leads to the
feeling of dissatisfaction. The attempts to obtain the collective Ha-
miltonian (1) microscopically from the nucleon interaction turns

on the extremely complicated calculations [6, 7] using the boson ex-
pansion of fermion operators [6, 8]. The boson expansion procedu-
res are rapidly convergent at the weak anharmonicity. This is not
case in real nuclei. Apart from that, it is necessary to take into ac-
count the coherent responce of noncollective degrees of [reedom
[9, 10] particularly the virtual rotation [11]. As for the different
versions of IBA the serious shortcomings of its microscopic justifi-
cation are not overcome [2, 12]. Specific predictions of this model
(for example, the cut-off of rotational bands) have no experimental
support.

The analysis [13, 14] with the aid of the microscopic estimates
of the main features of the quadrupole motion (collectivity and adi-
abaticity) makes possible to establish the most important contributi-
ons to the collective Hamiltonian, namely the quartic anharmonicity
and the virtual rotation. Hence, we are able to formulate the simple
phenomenological scheme taking into account the quartic anharmo-
nicity and angular momentum effects (QAAM [13]). .

It can be shown that the QAAM scheme gives a reasonable ag-
reement with the vast set of data for the typical soit spherical nuc-
lei. The attractive advantages of the method are the small number
of free parameters and the simplisity of the computational work
(the essential part of it can be carried out analitically with the use
of the group algebra).

Thus, we find that the new type of symmetry is realized approxi-
mately in the soft nuclei: the symmetry of the quartic five-dimensio-
nal oscillator. As it was shown earlier [14] the ground band of
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'"Pd gives a good example of such a symmetry. The angular mo-
mentum effects as well as minor corrections due to other anharmo-

nic terms are superimposed on the main symmetry.

In accordance with the microscopic analysis and with the experi-
mental data, the square of the five-dimensional angular momentum,

i. e. the Casimir operator of the O(5) group

= S [did, — (—1pwdr, d_Jldhd —(—1p+vdt d ], (@)

C0®)1= 5 2 [4]4,
is an approximate constant of motion in spite ol the strong anhar-
monicity. This operator has quantized eigenvalues according to

ClOB)] =v(v+3), (3)

where the integer number v is so called seniority number of nonpai-
red bosons. The O(5) symmetry is confirmed by the multiplet struc-
ture as well as the selection rule |Av| =1 for the enhanced collecti-
ve E2-transitions. In our scheme this symmetry follows naturally
from the dominance of the quartic anharmonicity. Let us consider
an arbitrary quartic phonon Hamiltonian H* with the only restricti-
on of the time reversal invariance:
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This Hamiltonian is prooved to be rotationally invariant in the fi-
ve-dimensional space.

The proof is based on the isolation of phonon pairs coupled to
the three-dimensional angular momentum L =0 (the pair number is
n=(Ny—v)/2) and the construction of O(5)—invariant operators
P' and P creating and annihilating these condensate pairs without
changing the seniority v:
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the operators (ba) generate the noncompact SU(I,1) group with the
Casimir operator C[SU(1,1)] connected with that of O(5) gro-
up (3),
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CISU(1, 1)]=Pi— - (PP* + P*P)= - C[O()]+ (6)

Now we can transform the Hamiltonian (4) to the explicitly
O(5)-invariant form

H® = A(2P,+P+PT)2 4+ A (2P,—P—P%)?+ 0 [2Py—P—PT,2P,+
+P+PY] L +BC[SULD) ] +yJ(J+1)+E (7)

where J stands for the O(3) angular momentum quantum number
and designations of coefficients are introduced as
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The Hamiltonian (7) together with the harmonic term H‘-EJ‘conta-
ining a bare phonon frequency € can be solved analytigaily. The ap-
propriate method of solution is the v-dependent canonical transior-
mation [15] which chooses the optimum parameters of the boson
pair condensate and of the renormalized phonon frequency o, fo_r
each subspace with v fixed. For the low-lying states, such approxi-
mate procedure guarantees the high precision of results avoiding in
many cases the numerical diagonalization. The stationary s_tates can
be labelled with the number N=2i+v of new (renormalized) qu-
anta and with the exact constants of motion v, J and M.

The most interesting case is that of the soft collective mode (the
adiabatic limit). Here the main terms in (7) are the first ore and
the quasirotational term vJ(J+1). The physical meaning of these
terms was discussed above. Other terms can be readily taken into
account as corrections. Note that the quasirotational correction sho-
uld be co isidered for all states except the single-phonon one
(J=2, i=0, v=1). By definition, this is pure collective state which
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serves as a reference point for the calculation of the response of
noncollective degrees of freedom.

In the limiting adiabatic situation one can neglect the harmonic
term H? (Q—0) so the model has only one parameter yJ/(/+1) to
calculate energy ratios. Transition probabilities for the enhanced
(allowed in the harmonic approximation [1]) E2-transitions with
| AN4| =|Av] =1 are determined by the operator

TLFQ] :diif}+x{d{+}i‘]0d51+}‘ {I[}}

Here the second term arises from the boson expansion of the fermi-
on quadrupole operator when the dominant role of the quartic an-
harmonicity is taken into account properly. We have neglected in
(10) small terms ~ (d?) responsible for the weak (forbidden in the
harmonic approximation) transitions and for the quadrupole mo-
ments of excited states.

Intraband E2—transitions inside the yrast band (quasirotational
band of states with aligned phonons, /=2v, #A=0) and interband
transitions from B-band (one boson pair, i=1) to the yrast band
have the probabilities

B(EZ;v+ 1,fi=1,d =20+ 2>0,7=0,/ =20) = 2L k47 4,0, (11a)
Wy
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D Y Weg = 4% 2047
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= D) Qo —ay
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As an illustrative example we consider the typical soft spherical
nuclei ' Ru. Fig. 1 shows the comparison of calculations (11) for
n=—0.22 (solid line) with the experimental data [16]. Dashed li-
nes correspond to predictions of the complicated IBA versions (IBA
(2) takes into account s- and d-bosons of two kinds, «protons and
«neutron» ones, whereas IBA+ g adds g-bosons with {=4).
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In table | we have collected the reduced probabilities [16—18]
of allowed E2-transitions in '"“Ru (column 2; the experimental er-
rors of the last digits are indicated in parentheses). Column 3 show
the results of present one-parameter model (10) for %= —0.22.

Energy levels (in units of the energy E(2}) of yrast states are
compared in Fig. 2 with the calculations of QAAM model (the sim-
plest adiabatic limit with one parameter y=0.026) and many-para-
meter models IBA—(2) and IBA+g [16, 17]. Similarly, energies of
side bands (/<2v) are given in Fig. 3. The number of fitted para-
meters for IBA calculations in indicated.

We see that the exposure of principal anharmonic effects makes
possible to formulate the simple phenomenological approach repro-
ducing main features of the real picture with the minimum number
of free parameters. The scheme can be specified further introducing

new parameters the total number of them being still essentially less
than in traditional models. In such a way one obtains a good agree-
ment for quantities forbidden in the harmonic approximation (expec-
tation values of quadrupole moments and transition probabilities
with |Av|5£1). Moreover, the approach is applicable at not very lar-
ge negative values of Q* where the standard methods are highly
unstable. In some cases one can obtain the better agreement intro-
ducing Q*<0 as an additional parameter (see the last column of
Fig. 3) whereas results for the yrast band (Fig. 2) don’t change.

The main conclusion of the analysis is that low-lying collective
states of soft spherical nuclei manifest the new dynarmic symmetry:
the five-dimensional isotropic oscillator with the quartic anharmoni-
city.
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Tahle 1.

B(E2) B(E2)
Transition BIEZ; 2,-+0,) B(E2; 2,-+0,

(Exp) (Theor)
9,0, 1.00 1.00
4.1, 1.44 (23) 1.57
6,4, 2.03 (28) 1.90
8,—+6, 2.20 (27) 2.05
10,—8, 2.00 (31) 2.08
12,—10, 2.09 2.02
WS 1.0 (2) 1.57
. S 1.28 (27) 1.36
3 i, 0.28 (15) 0.54
4i—+2, (.54 (16) 0.99
4,4, 0.33 (10) 0.91
5,3, 0.79 (60)* 1.07
6,—>4, 1:24 (24) .40
8,6, 1.48 (73) .58
0,2, 0.41 (6) 0.47
9,0, 0.66 (17) 1.22
Il 0.28 (38) 0.11
T 0.06—0.12 0.06
2,0, 0.012 (11) 0.018
5,6, 0.27 (17)* 0.48
5,4, 0.44 (18)% 0.49
6,6, 0.38 (17) 0.65
i 0.26 (21)* 0.40
7,5 1.30 (67)* 1.40
7,—6, 0.26 (15)* 0.25
4,6, 0.08* 0.04

* pstimates from rel. (17).
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