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Abstract

It is shown that the localization length of quasienergy
eigenfuncting is determined by the classical diffusion rate:
£= D/.Z. A numerical method for the calculation of g in

one-dimensional systems is proposed.

A dynemical approach to the problem of the quantum
limitation of classical cheos''™3), which plays & significant
role in the excitation of atoms by a strong monochromatic field
(4}, is proposed. This method is based on the observation that
the properties of quantum quasiemergy eigenfunctions can be
determined by the dynemics of a classical Hamiltonian system
with many degrees of freedom. We diacuss here also the possi-
bility of using such an approach for the problem of one-dimen-
sional Anderson localizetion in solid state s:rntema('j]. The
analogy between the problems of Anderson locelization and
quantum limitation of chaos was established in Ref. (6).

Let us conasider the system with the Hemiltonian H=
?anfj+\/f’i9)g1-ff}, where f= -4 g_{; ) 5.7-({‘) is the
periodic delta-function, & 1is the phase variable, h =1, and
Ho is ﬂiﬁenuionleaa{T'B’G}. The classical equations of motinn

are

I=T-.2V/e8

O = 0 T oHNIYA T

Here | and & are the valnes of the veriables | and &

(1)

after nne_pariad of time | . If the resonances ovarlap{ﬂ, then
the acticn grows without 1limit according to the diffusion law:
(fﬁI}E)r =D7T , where T 4is the number of periods. In the
region of strong stochasticity the phases 6(7) are zi;_ndEPendent
and random, So, the diffusion rate is equal to -.DQE"’E“V!JEJQ/QE
The quaﬁinlaasinal codition has the form D > 5 1 4:{1(2'3}.
Hme{ical axperimenta{1'3'5'8} with the quantum standard
map {H{;.: I;’z?, /=K €058 ) have shown that in the course of time,
< IE)- stop growing. Thie means that the external field effec-

tively excites only & finite number of unperturbed levels (All=
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=Al ~ E ). It is natural to interpret this effect es resulting
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from the localization of quasienergy eigenfunctions 2]

following theoretical estimate has been obtained in Refs. (2,3):

e p o

where oL is an unknown numerical conatant. This relation is
valid when the field excites a large number of levess ( D >»1).
This was confirmed indirectly by numerical experimenta with the

(3) end & highly excited hydrogen atom in

guantum standard map
a monochromatic fiel-:i{“ by measuring the stationary distribu-
tion ?-,L on the unperturbed levels.

To directly calculate E from an eigenfunction, let us
consider the equation for the eigenfunction with quesienergy

(6) ' N
L) : 4 tleo = T H(
U, = e g i

TeAdepy - o
whe) =e we) (3)

Here L{; are the values of the funection (4 before and after a
1 i
kick 0(t)ana (L, are the Fourier coefficients of W (0). 14
i, tivig =
is convenient to introduce U =€ M,/? , Where 3, iz some

arbitrary real function of € . Then from (3) we obtain

Zan-rrwf" S’Ll’l.(jn-l-*{{?r,):ﬂ “.”
»

irére.)
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Here W(Q)=EXP{-“‘§’2}§=EWQ }n=(W“THng.-})f2
=

and we consider the case W(9)=W(-flonly. In Ref. (6) the function

3=1f305§ was implicitly taken. Such & choice leads to & non-

physical singulaerity which does not allow for an analysis of

the wide clases of potentials with V(QJ 2 7 . However, the choice

of g— is arbitrary and does not influence the localization in
the originel system (3). So, for example, in the quantum stan-

dard map it is convenient to teke ¢ =1. The formula (4) gives
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the relation between one-dimensional Anderson locelization and
localization of quasienergy eigenfunctions in an external field.

Let us assume that in (4) only Wr with [H<A qiffers
from zero. Then the formula (4) determines the dynamics of some
Hemiltonian system (W(Q]IW':"E)} with A degrees of freedom
in which the serial level number /L plays the role of discrete
time . It is well lmown that in the case /A =1 the localization
length 1s determined by the single posgitive Lyapunov m:pr:.-r1-1+r-.-:--1t(“:’,J
It appears that the calculations of ﬁ for /> 1 have not car-
ried out. For N> 1, there are A/ pairs Lyapunov exponents
?j"._+= -b’;‘z@ (9). The asymptotic decay rate of the quasienergy
eigenfunctions is then determined by the minimel positive Lya-
punov exponent X,,= i/é (see Fig 1). The condition for exponen-
tial localization is Ho #0. Anumerical method for calculating
all of the Lyapunov exponents is described in Ref. (9). An
example of the calculation of 2 by this method is shown in
Fig.2.

To determine the value of & in (2), let us consider the
exactly solveable Lloyd model (see, for example, Ref.(5))., It is
obtained from (4) when Mﬁeiﬂ=i-if, \.miiEiﬂf:ik and ), are
rendomly distributed on the interval [0,2 7] (see also Ref. (6)).
Then the diffusion rate in (1) is D= ]}qugbﬁfk‘t £* (for D >1),
The comparison of D with the exact value of E’ (5) gives
< =1/2.

In the quantum standard map we have L‘x/;.*—‘ jr(’k@), {-ﬂf ‘gf’_
In this model the }’,L are not random and both D and B de-
pend on the clessical paremeter of stochasticity K‘—‘ kT A
comparison between numerical data and the theory (2) gives
satisfactory agreement for the value o =1/2 (see Fig.3). The

parameters k eand K in Fig.3 vary within the intervals
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5< k ¢ 75 and 1.5¢ K ¢ 29 and T/ysy is a typical irrational
number. An example of the dependence B(K) is shown in Fig. 4.
The resulting expression for the localigation length is

= D, /9T%, where DD( K ) is the diffusion rate for the stan-
derd map: P=P+KsinB, 6=6+p, < P>aB P gL
The obtained average value << » =0.57, with root-mean-square
deviation A =0.11, significantly differs from the value ob-
tained in Ref. (3),<x> =1.04, A =0.20. The cause of this
discrepancy is apparenily related to the fact that in Ref. (3)

E was determined from the stationary (time averaged) distri-

T -21n|
bution £, =< @ 42

(here we have introduced the index § ).
If initielly only the (L =0 level were excited, then this dis-
tribution would be given by ,ﬁn = g | "PM{BHE | ’-men,"ﬁ where
LP,H(HJ is the eigenfunction with quasienergy ¢(J,, . In Ref.(3)
in the assumption that fLF,,ErLJI{:c e_zlh'"ﬂ)’? and the fluctuations
or 11 (n)|? are negligibly small it was shown that Fg=f,
However, the influence of strong fluctuations of ftﬁ,‘{ﬂ}fzmay
be significant, that may lead to fs?f v So, for example, in
Anderson localization the fluctuations cause the difference
between the rate of exponential decay of the#denﬂity-densit:,r
correlaetion function, which is analogous to Fn , and the decay

(5)

rate of the square of the eigenfunction . A comparison of the
numerical ltil:a;t:a.(:”I for 66]5 with the results presented ¥In Fig.5b
of this paper shows that Cc~ 2/ The ceuse of difference bet-

ween fg and 4 apparently connected with the stronge fluctua-

: "3 /
tions of [ ¥ (n). A detailed discussion of the fluctuation

properties and the localization in the region K < 1 will be
given elsewhere.

Apparently, the anelytic expression for 4 (2), and the

numerical method of minimel Lyapunov exponent, may be used in
one-dimensional solid state problems. As an example, let us
consider localization in the Lloyd model with many neighbores:
W, Elﬂzik, Wgelw‘}: 1-tE, W,.=0 for IrI>A  and the g
are random. Then the potential is given byVf9)=.2ﬂ-?tfgf£“‘?!<§fﬂ$f9j.
For this model, f = Dytso ~ 2 kA% (for E =0) and the theory
gives gsatisfactory agreement with the numerical data in Fig.?2
which were obtained for parameters in the intervals 0.1< k < 80,
4 £ A/€20. The average value of o obteined from the nume-
rical data was <ol> =0.52 with A =0.07.

The author express his deep gratitude to B.V.Chirikov,

for attention to this work and wvaluable comments.
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Figure captions

Localization of the quasienergy eigenfunctions in the
quantum stendard mep ( k =2.8, i =4.867). The points
and circles represent numerical date from Ref. (6). The
straight lines correspond to the value of E obtained
by the method of minimal Lyapunov exponent.

An exemple of a calculation of the localization length
for the gquentum standard map ( k =40, K =10). The solid
lines correspond to positive Lyapunov exponents and the
dashed lines to negative. Two minimal exponents are
ghown.

The ratio ot=F/ for aifferent values of the diffusion
rate 1 in the quantum standard mep (circles) and

in the Lloyd model with many neihbors (points). Here

and in Fig.5 the logarithm is decimal.

The dependence 0(K) in the quantum stenderd map
{erosses, k =30). The curve and circles show the theory and
numericel data for the diffusion rate D(K)from Ref.(10),
Dye= kg,

The dependence of the localization length on the diffu-
gion rate j%, of the clessical standﬁrd mep. The circles
represent numerical data from Ref. (3) for values of Es
obtained from stationary distributions. The dashed line
corresponds to the aversge value <« r=1.04. The points
show the localization lengths obtained from the quasi-
energy eigenfunctions by the method of minimal Lyapunov
exponent. The straight line shows the theoretical locali-

zation E=:3%_ In the inset the numerical data from
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Ref. (3) are shown, giving the dependence of

aK=K-K., K, =0.971635.
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